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Abstract

Disturbances introduced in wall-bounded flows can grow and lead to transition
from laminar to turbulent flow. In order to reduce losses or enhance mixing
in energy systems, a fundamental understanding of the flow stability and tran-
sition mechanism is important. In the present thesis, the stability, transition
mechanism and early turbulent evolution of wall-bounded flows are studied.
The stability is investigated by means of linear stability equations and the
transition mechanism and turbulence are studied using direct numerical sim-
ulations. Three base flows are considered, the Falkner–Skan boundary layer,
boundary layers subjected to wall suction and the Blasius wall jet. The stabil-
ity with respect to the exponential growth of waves and the algebraic growth
of optimal streaks is studied for the Falkner–Skan boundary layer. For the
algebraic growth, the optimal initial location, where the optimal disturbance is
introduced in the boundary layer, is found to move downstream with decreased
pressure gradient. A unified transition prediction method incorporating the in-
fluences of pressure gradient and free-stream turbulence is suggested. The
algebraic growth of streaks in boundary layers subjected to wall suction is cal-
culated. It is found that the spatial analysis gives larger optimal growth than
temporal theory. Furthermore, it is found that the optimal growth is larger
if the suction begins a distance downstream of the leading edge. Thresholds
for transition of periodic and localized disturbances as well as the spreading of
turbulent spots in the asymptotic suction boundary layer are investigated for
Reynolds number Re = 500, 800 and 1200 based on the displacement thickness
and the free-stream velocity. It is found that the threshold amplitude scales
like Re−1.05 for transition initiated by streamwise vortices and random noise,
like Re−1.3 for oblique transition and like Re−1.5 for the localized disturbance.
The turbulent spot is found to take a bullet-shaped form that becomes more
distinct and increases its spreading rate for higher Reynolds number. The
Blasius wall jet is matched to the measured flow in an experimental wall-jet
facility. Both the linear and nonlinear regime of introduced waves and streaks
are investigated and compared to measurements. It is demonstrated that the
streaks play an important role in the breakdown process where they suppress
pairing and enhance breakdown to turbulence. Furthermore, statistics from
the early turbulent regime are analyzed and reveal a reasonable self-similar
behavior, which is most pronounced with inner scaling in the near-wall region.

Descriptors: Boundary layer, suction, wall jet, streaks, waves, periodic dis-
turbance, localized disturbance, turbulent spot, algebraic growth, exponential
growth, stability, transition thresholds, transition prediction, PSE, DNS.



Preface

This thesis considers the disturbance growth, transition and turbulent evolu-
tion of wall-bounded flows. The thesis is divided in two parts, the first part is
a short introduction to the field and a summary of the following papers. The
papers are re-set in the present thesis format and included in the second part
of the thesis.

Paper 1. Levin, 0. & Henningson, D. S. 2003 Exponential vs algebraic
growth and transition prediction in boundary layer flow. Flow, Turbulence and

Combustion 70, 183–210.

Paper 2. Byström, M. G., Levin, 0. & Henningson, D. S. 2005 Optimal
disturbances in suction boundary layers. Submitted in a revised version.

Paper 3. Levin, 0., Chernoray, V. G., Löfdahl, L. & Henningson,

D. S. 2005 A study of the Blasius wall jet. Journal of Fluid Mechanics 539,
313–347.

Paper 4. Levin, 0., Davidsson, E. N. & Henningson, D. S. 2005 Tran-
sition thresholds in the asymptotic suction boundary layer. Physics of Fluids,
In press.

Paper 5. Levin, 0. 2005 Turbulent spots in the asymptotic suction boundary
layer.

Paper 6. Levin, 0., Herbst, A. H. & Henningson, D. S. 2005 Early
turbulent evolution of the Blasius wall jet. Submitted.

iv



PREFACE v

Division of work between authors

The first paper deals with the energy growth of eigenmodes and non-modal
optimal disturbances in the Falkner–Skan boundary layer with favorable, zero
and adverse pressure gradients. The numerical codes are based on already
existing codes at KTH Mechanics. The numerical implementations needed for
this work were performed by Ori Levin (OL). The development of the theory
as well as the writing of the manuscript itself were both carried out by OL with
some assistance from Dan Henningson (DH).

The second paper is devoted to the energy growth of non-modal optimal
disturbances in boundary layers subjected to wall suction. The numerical code
for the spatial analysis is the same as for paper 1 with new subroutines for
the base flow. The work was performed by Martin Bystöm (MB) as part of
his Master Thesis with OL as the advisor. The writing was done by MB with
some assistance from OL and DH.

The third paper is a numerical and experimental study of the stability of
the Blasius wall jet. The work is a cooperation between KTH Mechanics and
Thermo and Fluid Dynamics at Chalmers University of Technology (TFD).
The numerical codes for the linear analysis are the same as for paper 1 with
new subroutines for the base flow. The Direct Numerical Simulations were per-
formed with a numerical code, already in use for many research projects. The
code is based on a pseudospectral technique and is developed originally by An-
ders Lundbladh and DH. The numerical implementations needed for this work
were performed by OL. The experimental work was done by Valery Chernoray
(VC) at TFD. The writing was carried out by OL with some assistance from
VC, Lennart Löfdahl at TFD and DH.

The fourth paper deals with energy thresholds for transition in the asymp-
totic suction boundary layer disturbed by streamwise vortices, oblique waves
and noise. The numerical code for the temporal simulations is the same as for
paper 3 with minor implementations by OL in order to account for the mass
flux through the wall. The work was performed by OL and Niklas Davidsson
(ND) and the writing was done by OL and ND with some advise from DH.

The fifth paper is on the thresholds for transition of localized disturban-
ces, their breakdown to turbulence and the development of turbulent spots in
the asymptotic suction boundary layer. The numerical code for the temporal
simulations is the same as for paper 4. All the work was carried out by OL
with some advise from DH.

The sixth paper is devoted to the early turbulent evolution of the Blasius
wall jet. The numerical code for the spatial simulation, carried out by OL, is
the same as for paper 3. All the figures and animations were prepared by OL.
The analysis of the statistics was performed by OL and Astrid Herbst (AH).
The writing was done by OL and AH with some advise from DH.





Contents

Abstract iii

Preface iv

Part 1. Summary 1

Chapter 1. Introduction 3

Chapter 2. Weak disturbances 7

2.1. Waves 7

2.2. Streaks 8

2.3. Growth of weak disturbances 9

2.3.1. Linear disturbance equations 10

2.3.2. Algebraic growth 11

2.3.3. Exponential growth 12

2.4. Application to the Falkner–Skan boundary layer 12

2.4.1. Comparison of algebraic and exponential growth 12

2.4.2. Transition prediction based on linear theory 14

2.5. Application to boundary layers with wall suction 17

2.5.1. Suction boundary layers 17

2.5.2. Algebraic growth 18

2.6. Application to the Blasius wall jet 21

2.6.1. Comparison of linear theory with experiments 21

Chapter 3. Strong disturbances 23

3.1. Numerical method and disturbance generation 23

3.2. DNS of the Blasius wall jet 24

3.2.1. Spectral analysis 24

3.2.2. Flow structures 25

3.2.3. Subharmonic waves and pairing 28

3.3. DNS of the asymptotic suction boundary layer 28

vii



viii CONTENTS

3.3.1. Energy thresholds for periodic disturbances 28

3.3.2. Amplitude thresholds for localized disturbances 32

Chapter 4. Turbulence 35

4.1. The essence of turbulence 35

4.2. Spots in the asymptotic suction boundary layer 36

4.3. Turbulence statistics of the Blasius wall jet 39

Chapter 5. Conclusions 42

Acknowledgment 44

Bibliography 45

Part 2. Papers 49

Paper 1. Exponential vs algebraic growth and transition

prediction in boundary layer flow 53

Paper 2. Optimal disturbances in suction boundary layers 83

Paper 3. A study of the Blasius wall jet 105

Paper 4. Transition thresholds in the asymptotic suction

boundary layer 151

Paper 5. Turbulent spots in the asymptotic suction

boundary layer 177

Paper 6. Early turbulent evolution of the Blasius wall jet 201



Part 1

Summary





CHAPTER 1

Introduction

A solid material possesses the property of rigidity, implying that it can with-
stand moderate shear stress without a permanent deformation. A true fluid,
on the other hand, is by definition a material with no rigidity at all. Subjected
to shear stress, no matter how small this stress may be, a fluid is bound to
continuously deform. The fluids that all of us are most familiar with are wa-
ter and air. Water is a liquid, while air is a gas, but that distinction is less
important than might be imagined when it comes to fluid dynamics.

A fluid flow is usually defined as either laminar or turbulent. The laminar
flow is characterized by an ordered, layered and predictable motion while the
turbulent state consists of a chaotic, swirly and fluctuating motion. The differ-
ence between the two kinds of motions can easily be visualized in the kitchen
while pouring water from the tap. If the tap is opened only a bit, the water
that flows from the faucet is smooth and glassy, because the flow is laminar.
When the tap is opened further, the flow speed increases and the water all of
a sudden becomes white with small bubbles, accompanied by a louder noise.
The jet of water has then become irregular and turbulent and air is mixed into
it. The same phenomenon can be seen in the smoke streaming upward into
still air from a burning cigarette. Immediately above the cigarette, the flow
is laminar. A little higher up, it becomes rippled and diffusive as it becomes
turbulent.

The two above everyday examples illustrate the effect of flow speed and
distance on the cause of turbulence. As the flow velocity or the characteristic
length of the flow problem increases, small disturbances introduced in the flow
amplify and the laminar flow break down to turbulence. This phenomenon is
called transition. There is one more quantity affecting the state of the flow,
namely the viscosity of the fluid. For sufficiently large viscosity, motions that
would cause turbulence are damped out and the flow stays laminar. For exam-
ple, it is very hard to get the flow from a bottle of sirup to become turbulent
since the viscosity of sirup is very high. Air with its considerably lower viscosity
becomes turbulent very easily.

The basic difference between laminar and turbulent flows was dramatically
demonstrated by Osborne Reynolds in a classical experiment at the hydraulics
laboratory of the Engineering Department at Manchester University. Reynolds
(1883) studied the flow inside a glass tube by injecting ink at the centerline of
the pipe inlet. At low flow rates, the flow stayed laminar and the dye stream

3



4 1. INTRODUCTION

was observed to follow a well-defined straight path inside the tube. As the
flow rate was increased, at some point in the tube, the dye streak broke up
into a turbulent motion and spread throughout the cross section of the tube.
He found that the value of a dimensionless parameter, now called Reynolds
number, Re = Ud/ν, where U is the mean velocity of the water through the
tube, d the diameter of the tube and ν the kinematic viscosity of the water,
governs the transition from laminar to turbulent flow. Reynolds made it clear,
however, that there is no single critical value of Re, above which the flow
becomes unstable and transition may occur. The whole matter is much more
complicated and very sensitive to disturbances from the surroundings entering
the pipe inlet. In fact, transition and its triggering mechanisms are even today
not fully understood.

In a laminar flow, the shear stresses are smaller than in a turbulent flow
and as a consequence, the friction drag over the surface of a wing is much lower.
On the other hand, a laminar flow can not stay attached to the upper surface
of a wing as far downstream as a turbulent flow since the pressure increases
downstream. Instead, laminar separation occurs resulting in the formation of
a wake and increased pressure drag. However, for a turbulent flow, separation
is delayed due to the mixing provided of the chaotic motion and the total drag
force decreases. That is also the reason why golf balls have dimples over the
surface, to enforce turbulence and a smaller wake behind it. Due to the excellent
mixing of a turbulent flow, it is required in chemical reactors and combustion
engines. In some applications, it is important to keep the flow laminar and
in others to enforce turbulence. Therefore an increased understanding of the
triggering mechanisms of transition from laminar to turbulent flow and its
foregoing amplification of introduced disturbances is important.

For transition to take place, some part of the flow has to be unstable to in-
troduced disturbances. Such flows usually possess some kind of velocity shear,
like the boundary layer and the free shear layer shown in figure 1.1. The bound-
ary layer is the flow, in the lower part of the figure, over the horizontal flat plate
subjected to a uniform oncoming flow with velocity U0. Due to viscosity, the
flow velocity varies from zero at the wall to the free-stream velocity a distance
of the boundary layer thickness above the wall. The free shear layer, in the
upper part of the figure, evolves from the difference in the streamwise velocity
below the vertical wall and behind it. The streamwise velocity varies from the
maximum velocity U0 below the shear flow to zero above it. The thickness of
the shear layers grow as the flow develops downstream. The combined flow field
in figure 1.1 and the downstream interaction of the shear layers are defined as
the Blasius wall jet.

The whole transition process consists of three stages: receptivity, distur-
bance growth and breakdown. In the receptivity stage, disturbances are initi-
ated in the part of the flow where velocity shear is present. Typical sources from
which disturbances can enter the shear flow are free-stream vortical structures,
free-stream turbulence, acoustic waves, and for the case of wall-bounded shear
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Figure 1.1. Wall-bounded and free shear layer flow that to-
gether form a wall jet.

flows, surface roughness and vibrations. Once a disturbance is introduced in
the shear flow, it may grow or decay according to the stability characteristics of
the base flow (the undisturbed flow field). When the disturbances are yet weak
compared to the base flow, one can study linearized stability equations to de-
termine the disturbance growth. In fact, the linear mechanisms are responsible
for any disturbance energy growth, while the nonlinear effects only redistribute
energy among different frequencies and scales of the flow (Henningson 1996).
As the disturbances amplify, nonlinear effects start to be important and the
distortion of the base flow begins to be apparent. The disturbances usually
saturate when they have reached a large enough amplitude and a new laminar
base flow, which normally is unstable to new disturbances, is established. In
this stage, the usually rapid final nonlinear breakdown begins, followed by a
multitude of scales and frequencies typical for a turbulent flow.

One way to stabilize a boundary layer and keep it laminar is to apply
suction at the wall. As more suction that is applied the more persistent to
incoming disturbances the boundary layer becomes. But the cost is the energy
required to maintain the suction and an increased friction drag as the shear
stress at the wall increases. If too much suction is applied, the friction drag
can in fact exceed the value for a turbulent boundary layer. The optimal
performance is the balance between retaining the flow laminar while keeping
the energy consumption as low as possible. When uniform suction is used,
the downstream growth of the boundary layer thickness changes and the flow
evolves to a boundary layer with constant thickness, given that it is free from
disturbances. Such a flow is defined as an asymptotic suction boundary layer.

In the present thesis, the disturbance growth, transition mechanism and
early turbulent evolution of wall-bounded flows are studied. Three cases of
base flows are considered:
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(i) The Falkner–Skan boundary layer, which is the boundary layer over a
flat plate with a favorable, zero or adverse streamwise pressure gradient.
This flow is a good approximation to what can be found in parts of
the boundary layer over a wing in flight. Over the front part of a
wing, the pressure decreases downstream and the pressure gradient is
said to be favorable. A short distance behind the leading edge, the
pressure receives its lowest value and the pressure gradient is close to
zero. Downstream, the pressure starts to increase again, what is defined
as an adverse pressure gradient. The case with zero pressure gradient
is also called Blasius boundary layer.

(ii) Boundary layers subjected to wall suction are appropriate flows to study
if you are interested of stabilizing the flow over a wing. Both the semi
suction boundary layer where constant suction is applied a distance
downstream of the leading edge of a flat plate and the asymptotic suction
boundary layer are studied. The latter case is the simplest boundary
layer with wall suction and its flow profile is an analytical solution to
the equations governing incompressible fluid motion.

(iii) The Blasius wall jet is the most unstable flow of the three studied cases.
Laminar wall jets break down very easily with a rapid transition process.
Most applications concern turbulent wall jets where they serve as cooling
of gas turbine blades and combustion chambers and boundary layer
control on wings and flaps to prevent turbulent separation.

In Chapter 2, the growth of weak disturbances are investigated by means
of linearized disturbance equations. Both waves propagating in the direction
of the flow and steady streaks orientated in the streamwise direction are con-
sidered. In Chapter 3, the behavior and breakdown of strong disturbances are
studied by the use of direct numerical simulations (DNS) of the Navier–Stokes
equations. The disturbances considered are streamwise propagating waves,
streamwise elongated streaks, oblique waves, random noise and localized dist-
urbances. In Chapter 4, the development of turbulent spots is investigated as
well as turbulence statistics computed with direct numerical simulations. In
Chapter 5, the main conclusions are summarized.



CHAPTER 2

Weak disturbances

2.1. Waves

The prediction of the stability of a given flow and the amplification of weak dist-
urbances have been of interest to the fluid dynamics community for more than
a century. An equation for the evolution of a disturbance, linearized around a
mean velocity were first derived by Reyleigh (1880) for parallel inviscid flow. He
also derived the criterion that for an unstable mode to exist in an inviscid flow,
the mean velocity profile has to possess an inflection point. Fjørtoft (1950)
later derived that a necessary condition for instability is that the inflection
point has to be a maximum (rather than a minimum) of the shear stress. The
traditional stability-analysis technique for viscous flow, independently derived
by Orr (1907) and Sommerfeld (1908), is to solve the eigenvalue problem of the
Orr–Sommerfeld (OS) equation, which is the linearized stability equation based
on the assumption of parallel flow with wave-like disturbances. The unstable
eigenmodes are historically referred to as Tollmien–Schlichting (TS) waves, af-
ter the work of Tollmien (1929) and Schlichting (1933), usually taking the form
of exponentially growing two-dimensional waves. In fact, Squire (1933) stated
that parallel shear flows first become unstable to two-dimensional waves at a
value of the Reynolds number that is smaller than any value for which unstable
three-dimensional waves exist. The stability of such waves depends on their
frequency and the Reynolds number of the flow.

The effect of streamwise pressure gradients on the stability of boundary
layers were studied by Pretsch (1941), who carried out stability calculations
of the Falkner–Skan family. It was found that boundary layers subjected to
adverse pressure gradients are more unstable and that accelerated flows are
less unstable to two-dimensional waves than the Blasius boundary layer. The
first successful experimental study of TS-waves was carried out by Schubauer
& Skramstad (1947) who showed that wave disturbances may occur naturally
in a Blasius boundary layer over a flat plate. They also confirmed the strong
influence of the pressure gradient on the stability predicted by theory.

The application of wall suction is dramatically changing the stability of a
boundary layer. Hocking (1975) modified the OS-equation in order to account
for uniform suction. He found the critical Reynolds number (the lowest Rey-
nolds number for unstable modes to exist) to be two orders of magnitude larger

7



8 2. WEAK DISTURBANCES

for the asymptotic suction boundary layer than that for the Blasius boundary
layer.

The streamwise amplitude function of TS-waves in boundary layers has
one large peak in the boundary layer and normally one smaller peak in the
free stream. For wall jets, one more peak can be found. The temporal linear
stability of a wall jet was examined theoretically by Chun & Schwarz (1967)
by solving the OS-equation. The streamwise velocity fluctuation was found to
exhibit two large peaks, one peak on each side of the wall-jet core and one
smaller peak in the ambient flow. Bajura & Szewczyk (1970) performed hot-
wire measurements in an air wall jet and found that the amplification rate of
the peak in the outer shear layer is larger, and hence, the instability of the wall
jet is controlled by the outer region. By solving the OS-equation, Mele et al.

(1986) clarified the existence of two unstable modes in the wall jet. One mode,
unstable at low disturbance frequencies, shows the highest amplitude close to
the inflection point in the outer region of the wall jet, while the other mode,
unstable at higher frequencies, attains the highest amplitude close to the wall.
They concluded that the inviscid instability in the outer region governs the
large-scale disturbances while the viscous instability governs the small-scale
disturbances in the near-wall region.

The drawback of the assumption of parallel flow in the OS-problem is
that it does not account for the growth of the thickness of a shear layer as
the flow develops downstream. The idea of solving the parabolic evolution of
disturbances in non-parallel boundary layers was first introduced by Floryan &
Saric (1979) and later also by Hall (1983) for steady Görtler vortices. Bertolotti
et al. (1992) developed the method of parabolic evolution of eigenmodes in
boundary layers and derived the parabolized stability equations (PSE). The
method is computationally very fast and has been shown to be in excellent
agreement with DNS and experiments (see e.g. Hanifi 1995).

2.2. Streaks

In low disturbance environments, the transition in boundary layers is usually
preceded by the exponential growth and breakdown of TS-waves. However,
exponential instability involving unstable eigenmodes is not the only transition
scenario. For a sufficiently large disturbance amplitude, algebraic non-modal
growth can lead to so-called bypass transition, not associated with exponential
instabilities. At a moderate or high lever of free-stream turbulence, many ex-
perimentalists have observed streaky structures, taking the form of elongated
streamwise structures with narrow spanwise scales and much larger stream-
wise scales. This type of disturbance is historically denoted as the Klebanoff
mode after the boundary-layer experiments of Klebanoff (1971). More recent
experiments displaying streaky structures in boundary layers, subjected to var-
ious levels of free-stream turbulence, have been performed by e.g. Westin et al.

(1994) and Matsubara & Alfredsson (2001).
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Ellingsen & Palm (1975) performed linear stability analysis of inviscid
channel flow. They showed that finite three-dimensional disturbances with-
out streamwise variation can lead to instability, even though the basic velocity
does not possess any inflection point. The instability leads to an increase lin-
early with time of the streamwise disturbances, producing alternating low and
high velocity streaks. Landahl (1980) demonstrated that all parallel inviscid
shear flows can be unstable to three-dimensional disturbances, which lead to
a growth of the disturbance energy at least as fast as linearly in time. The
physical interpretation of the formation of streaks is the lift-up effect, i.e. that
fluid elements initially retain their horizontal momentum when displaced in the
wall-normal direction, hence causing a streamwise disturbance.

Andersson et al. (1999) solved the linear stability equations for the Bla-
sius boundary layer, taking the non-parallel effects into account, to optimize
the input disturbance at the leading edge giving rise to the largest disturbance
energy gain at the final downstream location. By going to the limit of large
Reynolds number, it was shown that the optimal initial disturbance consists
of streamwise vortices developing into streamwise streaks with zero frequency.
The results agreed remarkably well with experimental data produced by Westin
et al. (1994), irrespective of the absent optimization procedure in the experi-
ments.

Since the asymptotic suction boundary layer is such stable to TS-waves,
the formation and breakdown of streaks are the most likely transition sce-
nario. The first measurements of streaks in a fully developed asymptotic suc-
tion boundary layer subjected to free-stream turbulence were performed by
Fransson & Alfredsson (2003). The experimental results were also compared
to the streaks evolving from optimal disturbances calculated by means of linear
stability equations in the temporal framework (Fransson & Corbett 2003). The
algebraic growth was found to be less but of the order of that occurring in the
Blasius boundary layer. On the other hand, algebraically exited disturbances
were shown to persist longer in the asymptotic suction boundary layer.

Wall jets are very unstable to two-dimensional waves and bypass transition
due to breakdown of streaks is not likely. On the other hand, three-dimensional
disturbances are needed, yet of a very small level, for breakdown of the waves
to happen. Therefore, the presence of streaks in the unstable upper shear layer
of the wall jet may enhance transition to turbulence.

2.3. Growth of weak disturbances

Waves and streaks are associated with different scales. Waves propagating in
the downstream direction have a wavelength in the order of the thickness of the
shear layer while streaks usually have much larger streamwise scales. The result
is that the corresponding frequency is much larger for waves than for streaks.
The opposite is true for the associated spanwise scales, which are narrow for
streaks and much larger for waves. Yet, the exponential growth of waves and
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the algebraic growth of streaks can be described by a common set of stability
equations.

2.3.1. Linear disturbance equations

Consider an incompressible wall-bounded flow over a flat plate, such as the
boundary layer and the wall jet illustrated in figure 1.1. Fluid is blown tangen-
tially along a wall and shear layers are growing downstream. When working
with such flows subjected to weak disturbances, the boundary-layer scalings
are appropriate. Thus, the streamwise coordinate x is scaled with an arbitrary
distance l from the leading edge, while the wall-normal and spanwise coor-
dinates y and z, respectively, are scaled with the boundary-layer parameter
δ =

√

νl/Ul, where ν is the kinematic viscosity of the fluid and Ul is the undis-
turbed streamwise velocity in the free stream above the boundary layer and in
the wall jet core, at the location l. In the case of a boundary layer with zero
pressure gradient, the free-stream velocity is constant, thus Ul = U0, where
U0 is the free-stream velocity at the leading edge. The streamwise velocity
U is scaled with Ul, while the wall-normal and spanwise velocities V and W ,
respectively, are scaled with Ul/Reδ, where Reδ = Ulδ/ν. The pressure P is
scaled with ρU2

l /Re
2
δ, where ρ is the density of the fluid, and the time t is

scaled with l/Ul.

We want to study the linear stability of the flow at a high Reynolds num-
ber. The incompressible Navier–Stokes equations are linearized around the
two-dimensional steady base flow

(

U(x, y), V (x, y), 0
)

to obtain the stability
equations for the spatial evolution of three-dimensional time-dependent dist-
urbances

(

u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), p(x, y, z, t)
)

. The disturbances,
which are scaled as the base flow, are assumed to be periodic in the spanwise
direction and in time and are decomposed into an amplitude function with
weak streamwise variation and a phase function as

f = f̂(x, y) exp
(

iReδ

∫ x

x
0

α(x) dx + iβz − iωt
)

, (2.1)

where f = (u, v, w, p)T . The complex streamwise wavenumber α captures the
fast wave-like variation of the modes and is therefore scaled with 1/δ but α itself
is assumed to vary slowly with x. The real spanwise wavenumber β and the real
angular frequency ω are scaled in a consistent way with z and t, respectively.
By introducing (2.1) in the linearized Navier–Stokes equations, the parabolized
stability equations can be written

∂f̂

∂x
= Lf̂ , (2.2)

where L is a linear operator. The initial conditions and the boundary conditions
are specified for the disturbance velocities. The boundary conditions are, no-
slip conditions at the wall and homogeneous conditions far above the wall. The
state equation (2.2) is integrated in the downstream direction from the location
x0, where initial conditions are specified, to the location x1. The solution may
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be written in an input-output formulation

f̂1 = Af̂0, (2.3)

where A is a linear operator. The disturbance growth is measured by the
increase of the kinetic disturbance energy E, which depends on x, β, ω and the
Reynolds number of the flow.

2.3.2. Algebraic growth

Consider solutions to (2.2) associated with disturbances with weak stream-
wise variations. Since the amplitude function captures weak variations, the
streamwise wavenumber is set to zero. We are interested of maximizing the
disturbance energy in the downstream location x1 by optimizing the initial dis-
turbance in the initial location x0 with given initial energy. That is, we want
to maximize the disturbance growth

G(x0, x1, β, ω,Reδ) =
E(x1)

E(x0)
. (2.4)

The optimization procedure is based on the adjoint equation to the state equa-
tion (2.2). By taking the inner product between an adjoint state vector g and
the state equation and integrating by parts

(

g,
∂f̂

∂x
− Lf̂

)

= BT −
(

f̂ ,
∂g

∂x
+ L∗g

)

, (2.5)

the adjoint equation follows

−∂g

∂x
= L∗g, (2.6)

where L∗ denotes the adjoint operator to L. The appropriate boundary condi-
tions and initial conditions to the adjoint state equation (2.6) follows from the
boundary terms BT and are specified in paper 1. The adjoint state equation
is integrated in the upstream direction and the solution may be written

g0 = A∗g1, (2.7)

where A∗ denotes the adjoint operator to A. The maximum growth, where the
energy is evaluated as an inner product, can be written

Gmax = max
(f̂1, f̂1)

(f̂0, f̂0)
= max

(A∗Af̂0, f̂0)

(f̂0, f̂0)
, (2.8)

and is attained as the largest eigenvalue of the eigenvalue problem

A∗Af̂0 = Gf̂0. (2.9)

The most natural attempt to calculate the optimal initial disturbance and its
associated maximum growth is by power iterations

f̂
n+1

0 = A∗Af̂
n

0 , (2.10)

where the initial disturbance is scaled to the given initial energy in each it-
eration n. The optimization procedure is valid in the limit of large Reynolds
number. Because of the difference in scales between the streamwise velocity
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and the velocities in the cross-flow plane, the maximum growth is obtained for
initial disturbances with a zero streamwise component resulting in streamwise
streaks with negligible cross-flow components. Furthermore, a growth that are
independent of Reynolds number can be defined as

G = lim
Re

δ
→∞

G

Re2δ
(2.11)

2.3.3. Exponential growth

Consider solutions to (2.2) associated with wave-like disturbances, i.e. where α
in the phase function is not equal to zero. As both the amplitude function and
the phase function depend on x, one more equation is required. We require
both the amplitude function and the wavenumber α to change slowly in the
streamwise direction, and specify a normalization condition on the amplitude
function

∫ ∞

0

(

û
∂û

∂x
+

v̂

Re2δ

∂v̂

∂x
+

ŵ

Re2δ

∂ŵ

∂x

)

dy = 0, (2.12)

where bars denote complex conjugate. The Reynolds number appears due to
the different scaling of streamwise and cross-flow velocities. Other conditions
are possible and are presented in Bertolotti et al. (1992). The normalization
condition specifies how much growth and sinusoidal variation are represented
by the amplitude function and the phase function, respectively. The initial
condition is taken as the least stable eigenfunction from parallel theory with
corresponding eigenvalue α(x0). The exponential growth is maximized in the
sense that the envelope of the most amplified eigenmode is calculated.

2.4. Application to the Falkner–Skan boundary layer

In the first paper, the stability of the Falkner–Skan boundary layer to expo-
nentially growing waves and non-modal streaks is analyzed. A comparison of
the algebraic growth with the exponential growth is performed and a unified
transition prediction method based on available experimental data is suggested.

2.4.1. Comparison of algebraic and exponential growth

Linear stability analysis is performed with the Falkner–Skan boundary layer
as the base flow. The acceleration of the free-stream velocity driven by the
pressure gradient is described by the Hartree parameter βH in the formula-
tion of a similarity solution. The stability of optimal disturbances and ex-
ponentially growing waves are examined for three base flows with favorable,
zero and adverse pressure gradients. The corresponding Hartree parameters
are βH = 0.1, 0,−0.1. Figure 2.1 shows the stremwise velocity profiles and
the downstream growth of the boundary layer thickness for the three cases.
The dashed lines show Blasius boundary layer with zero pressure gradient and
therefore also constant free-stream velocity. The solid lines show the acceler-
ated flow with favorable pressure gradient and a thinner boundary layer. The
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Figure 2.1. Downstream development of streamwise velocity
profiles and thickness of the Falkner–Skan boundary layer with
favorable (—), zero (−−−) and adverse (· · ·) pressure gradi-
ents.

dotted lines show the decelerated flow with adverse pressure gradient and a
thicker boundary layer.

The initial streamwise location, where the disturbance is introduced in the
boundary layer, has a significant impact on the algebraic growth. Figure 2.2(a)

shows the amplification, N = ln
√
G, of the optimal disturbances as a function

of initial location for β = 0.5 and ω = 0. Disturbances introduced closer to
the leading edge, than the optimal initial location, grow with a slower rate,
while disturbances introduced further downstream grow in a larger rate but
do not have distance enough to grow as much before the final location. The
slower growth rate for disturbances introduced close to the leading edge is
due to the influence of the boundary layer thickness. Upstream of the optimal
initial location, which moves downstream with decreased pressure gradient, the
boundary layer is not thick enough for the lift-up effect to cause the optimal
disturbance. The optimization of the initial location has the advantage of
ensuring that the true optimal disturbances are found. Since the adjoint-based
optimization technique optimizes the initial disturbance with respect to the
disturbance energy in the final location and we are interested in the maximum
energy in the whole domain, the true optimum only results when the maximum
energy appears in the final location. The optimization of the initial location
does not only give the optimal growth, it also ensures that the maximum energy
is reached at the final location.

For algebraic growth of optimal disturbances, the optimal initial location
moves downstream with increased spanwise wavenumber and angular frequency
of the disturbance. Furthermore, the optimal spanwise wavenumber increases
with decreased pressure gradient, while the optimal angular frequency is equal
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Figure 2.2. (a) Lines as in figure 2.1. Algebraic amplification
versus initial location for Falkner–Skan flow at Reδ = 1000
with β = 0.5 and ω = 0. (b) Contours of constant algebraic
and exponential amplification for the Blasius boundary layer
at Reδ = 1000. The contour spacing is 0.2 and the peak
values are indicated with crosses. The optimal disturbances
are calculated with the optimal initial locations.

to zero. For exponential growth of modal disturbances, the optimal angular fre-
quency increases with decreased pressure gradient, while the optimal spanwise
wavenumber is equal to zero, as expected according to the Squire’s theorem
(Squire 1933).

In both the algebraic and exponential growth scenarios, the growth in-
creases with increased pressure gradient, although the effect is much more
pronounced for the exponential growth. Therefore, in a comparison of the two
different growth scenarios at Reδ = 1000, the algebraic growth is much larger
for the base flow with a favorable pressure gradient and the exponential growth
is much larger for the base flow with an adverse pressure gradient, while they are
comparable for the Blasius boundary layer. Figure 2.2(b) shows the contours
of constant algebraic and exponential amplification for the Blasius boundary
layer at Reδ = 1000. The optimal disturbances are calculated with the optimal
initial locations. The exponential growth is maximized in the sense that the
most amplified eigenmode is calculated from the lower-branch neutral point to
x1 = 1 or the upper-branch neutral point, if it appears for a lower value.

2.4.2. Transition prediction based on linear theory

In the transition community, the eN -method is a well known transition-predic-
tion tool and has been shown to fairly accurately predict transition for simple
flows. It was developed independently by Smith & Gamberoni (1956) and van
Ingen (1956) and empirically correlates the exponentially growing amplification
of linear eigenmodes with the onset of transition. Transition takes place when
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the amplitude of the most amplified disturbance reaches eN times its initial am-
plitude. The eN -method does not account for the receptivity process. However,
Smith & Gamberoni (1956) and van Ingen (1956) reported, after analyzing data
from a large number of low-disturbance experiments, that the amplification be-
tween 8 and 11 fairly well describes the onset and end of the transition region.
They also concluded that those values decrease with increasing free-stream tur-
bulence. A modification of the eN -method in order to account for free-stream
turbulence was proposed by Mack (1977). The free-stream turbulence level
Tu was correlated to the amplification N by comparing the transition Rey-
nolds number ReT from experimental flat-plate boundary layer data collected
by Dryden (1959) with parallel linear stability theory for the Blasius boundary
layer. Mack (1977) suggested the following relation for the amplification at
transition

N = −8.43 − 2.4 lnTu, (2.13)

which he claimed is valid in the range 0.1 % < Tu < 2 %. For a free-stream
turbulence level less than 0.1 %, he mentioned that the dominant disturbance
source is thought to be wind-tunnel noise rather than turbulence.

Andersson et al. (1999) made an attempt at prediction of bypass transition
due to algebraic growth by correlating the transition Reynolds number and the
free-stream turbulence level

ReTTu = K, (2.14)

where K should be constant for free-stream turbulence levels in the range
1 % < Tu < 5 %. By comparison of different experimental studies, the constant
was chosen as K = 12.

Other empirical transition-prediction correlations involving the effects of
free-stream turbulence and streamwise pressure gradient have been developed.
van Driest & Blumer (1963) postulated that transition occurs when the maxi-
mum vorticity Reynolds number reaches a critical value, to be correlated with
the pressure gradient and free-stream turbulence level. In the case of zero pres-
sure gradient, their formula correlated with experiments agrees well with (2.14).
Another example is a model of Abu-Ghannam & Shaw (1980), which gives the
Reynolds number based on the momentum thickness θ, at the start and end
of the transition region. The only inputs to the model are the free-stream tur-
bulence level and the pressure gradient parameter λθ = (θ2/ν)∂Ul/∂x. More
advanced transition prediction and studies of the transition phenomena itself
can be made by numerical simulations such as the nonlinear PSE technique
(e.g. Hein et al. 1999) and DNS.

The transition model of Andersson et al. (1999) can be complemented with
the addition of base flows with various pressure gradients. The model is based
on three assumptions.

1. Assume that the initial disturbance energy is proportional to the free-
stream turbulence energy

E(x0) ∝ Tu2, (2.15)
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for isotropic turbulence with the free-stream turbulence level defined as

Tu =
√

u′2/Ul. Here u′ is the fluctuating streamwise velocity in the
free stream and the overbar denotes the temporal mean.

2. Assume that the initial disturbance grows with the optimal rate

E(x1) = GE(x0) = GRe2δE(x0). (2.16)

3. Assume that transition occurs when the final energy reaches a specific
value ET , regardless of the pressure gradient of the base flow

E(x1) = ET . (2.17)

Combining assumptions (2.15–2.17) yields the transition model

ReTTu =
k√
G
, (2.18)

where k should be constant. Using the same correlation as Andersson et al.

(1999) and the optimal growth in the Blasius boundary layer gives k = 0.70.
This model differs from the one of Andersson et al. (1999) in the sense that
the growth is optimized over the initial location and the disturbances does not
evolve from the leading edge.

The influence of free-stream turbulence on the generation of TS-waves is
not conclusive. In fact, Boiko et al. (1994) made experiments on the behavior
of controlled TS-waves, introduced by means of a vibrating ribbon, in a bound-
ary layer subjected to Tu = 1.5 %. The measured amplification rates for the
waves in the presence of the turbulence generating grid were smaller than for
regular TS-waves, and damping set in further upstream than in the absence
of the turbulence generating grid. Thus, we make the simple assumption that
transition resulting from exponentially growing disturbances occurs at N = 8,
the dashed line in figure 2.3(a), irrespective of the free-stream turbulence level.

Figure 2.3(b) shows the transition Reynolds number based on the results
from the linear stability analysis and the transition model discussed above for
free-stream turbulence. The straight part of the lines represents the transition
Reynolds number for exponentially growing modal disturbances and the curved
part represents bypass transition. For high free-stream turbulence levels, tran-
sition occurs as a result of the breakdown of streaky structures and for low
free-stream turbulence levels as a result of exponentially growing disturbances.
The cross-over point occurs where the bypass-transition model predicts a higher
transition Reynolds number than for the exponentially growing disturbances.
According to the model, bypass transition occurs in the Blasius boundary layer
(dashed lines) for a free-stream turbulence level higher than 0.76 %. Similar
results have been found in experiments. Suder et al. (1988) found in their ex-
periment that the bypass mechanism prevailed for free-stream turbulence levels
of 0.65 % and higher. Kosorygin & Polyakov (1990) suggested that TS-waves
and streaks can coexist and interact for free-stream turbulence levels up to
approximately 0.7 %. However, the model does not account for the interaction
between TS-waves and streaks.
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Figure 2.3. (a) Predicted amplification at transition versus
free-stream turbulence level given in percent for algebraic (—)
and exponential (−−−) growth. Model of Mack (1977) (· · ·).
(b) Lines as in figure 2.1. Predicted transition contour in the
ReT -Tu plane with the turbulence level given in percent. Ex-
perimental data for the Blasius boundary layer from Matsub-
ara & Alfredsson (2001) (M) and Roach & Brierley (1992) (◦).
Numerical data from Yang & Voke (1991) (

�
).

2.5. Application to boundary layers with wall suction

In the second paper, a comparison of the algebraic growth of spatially devel-
oping streaks in the asymptotic suction boundary layer and the semi suction
boundary layer is done. The difference between spatial and temporal theory is
also considered.

2.5.1. Suction boundary layers

In the boundary-layer experiment of Fransson & Alfredsson (2003), suction was
applied through a plate of porous material. However, the leading-edge part of
the flat plate was made of an impermeable material allowing the boundary layer
to develop and grow downstream until it reaches the porous plate. Downstream
of this position, the flow undergoes an evolution from the Blasius profile towards
that of the asymptotic suction boundary layer, which have a constant boundary
layer thickness. The semi suction boundary layer, where uniform suction is
applied from the distance l downstream of the leading edge of a flat plate
can be calculated with the boundary-layer equations. Figure 2.4 shows the
displacement thickness of the calculated flow compared with measurements
from Fransson & Alfredsson (2003). In order to avoid a discontinues jump in
the suction rate with a corresponding kink in the development of the boundary
layer thickness, the suction is smoothly increased from zero to its full value
over a short distance, see the zoom-up in figure 2.4. On the right-hand side of
figure 2.4, the profile of the asymptotic suction boundary layer is shown. It is
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Figure 2.4. Calculated displacement thickness of the semi
suction boundary layer compared with measurements (•) from
Fransson & Alfredsson (2003). The zoom-up shows the start-
ing position of abruptly (− − −) and smoothly (—) applied
suction. On the right-hand side, the profile of the asymptotic
suction boundary layer is shown.

an analytical solution to the Navier–Stokes equations and can be written as

U(y) = U0 [1 − exp(−y∗V0/ν)] , V = −V0, (2.19)

where y∗ is the dimensional wall-normal coordinate and −V0 is the suction
velocity. The analytical solution allows the displacement thickness to be calcu-
lated exactly, δ1 = ν/V0, and the Reynolds number based on the displacement
thickness to be expressed as the velocity ratio, Reδ

1

= U0/V0. Thus, for this

flow it is natural to use the displacement thickness as the length scale. However,
if we choose l = Reδ

1

δ1 it follows that δ = δ1 and accordingly Reδ = Reδ
1

. In

the experiment of Fransson & Alfredsson (2003), the suction was applied from
360 mm downstream of the leading edge and the suction Reynolds number was
Reδ

1

= 347.

2.5.2. Algebraic growth

Fransson & Corbett (2003) performed temporal stability analysis of the as-
ymptotic suction boundary layer and compared the spanwise scales of optimally
growing streaks with those observed in the experiment of Fransson & Alfredsson
(2003). Here, a twofold improvement is done by performing a spatial stabil-
ity analysis of the semi suction boundary layer. Fransson & Corbett (2003)
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Figure 2.5. Optimal disturbances in the semi suction bound-
ary layer at Reδ

1

= 347. (a) 0 ≤ x ≤ 2. (b) 0 ≤ x ≤ 6.

(c) 0 ≤ x ≤ 10.

found that the optimal disturbance has the spanwise wavenumber β = 0.53.
With spatial analysis, the optimal growth is 16 % higher corresponding to a
disturbance with spanwise wavenumber β = 0.52.

The suction boundary layers are studied over nine streamwise intervals,
starting at x0 = 0 and with suction from x = 1 to the end of the interval. The
length of the interval is varied by changing the end position from x1 = 2 to
x1 = 10 in steps of one. The optimal disturbance at the initial position takes
the form of streamwise aligned vortex pairs, as seen in figure 2.5, which shows
the optimal disturbances in the semi suction boundary layer at Reδ

1

= 347 for

three intervals. It can be seen that the vortex cores of the optimal disturbance
move upward and the vortices grow in size when the streamwise interval is
prolonged. Thus, the optimal spanwise wavenumber decreases as the interval
is prolonged. Furthermore, the corresponding optimal growth decreases with
increased interval and the optimal angular frequency is zero.
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Figure 2.6. Comparison of algebraic growth in the asymp-
totic suction boundary layer (− − −) and the semi suction
boundary layer (—) at Reδ
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(c, d) 0 ≤ x ≤ 6. (e, f) 0 ≤ x ≤ 10.

Figure 2.6 shows a comparison of the optimal growth versus spanwise
wavenumber and streamwise coordinate, with the optimal spanwise wavenum-
ber, between the semi suction boundary layer and the asymptotic suction
boundary layer. It reveals that for the shortest interval, the semi suction
boundary layer gives a 25 % higher optimal growth than for the asymptotic
suction boundary layer. The optimal growth also occurs at a lower spanwise
wavenumber. Studying the growth as function of streamwise coordinate, we
conclude that the reason for the difference in growth is the contribution from
the Blasius profile at the beginning of the interval. However, the differences in
growth and optimal spanwise wavenumber decrease as the interval is prolonged.
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2.6. Application to the Blasius wall jet

In the third paper, the Blasius wall jet is constructed and matched to an
experimental set-up. The stability of the flow to eigenwaves and non-modal
streaks is analyzed and compared to the experiments.

2.6.1. Comparison of linear theory with experiments

Linear stability analysis is performed with the Blasius wall jet as the base
flow. The stability of optimal disturbances and exponential growing waves is
examined and compared to measurements performed in the wall-jet facility at
Chalmers University of Technology. The base flow is matched to the experi-
ment with the maximum outlet velocity U0 = 15.4 m s−1, corresponding to the
Reynolds number Reδ = 173. Due to growing boundary layers in the experi-
mental nozzle, a virtual slot is placed the distance l = 29 mm upstream of the
experimental nozzle opening and the virtual slot height is b∗ = 2.06 mm cor-
responding to the non-dimensional value b = 12.3. A comparison of the base
flow with the measured hot-wire data is shown in figure 2.7(a). The agree-
ment increases downstream of the nozzle opening. The largest disagreement
is observed in the upper part of the wall jet. This is due to a jump of the
boundary conditions that occur on the top lip of the nozzle as the flow leaves,
resulting in a kink of the experimental velocity profile. However, with increased
downstream distance, the influence of the nozzle disappears.

The stability analysis reveals a very high instability of the flow to two-
dimensional eigenmodes and a rather high instability to non-modal streaks.
The waves are triggered by a loudspeaker in the experiment and the frequency
was chosen close to the natural dominating flow frequency, namely 1221 Hz
corresponding to ω = 14.4. Both in the experiment and in the computation,
the most amplified frequency decreases with increased streamwise location.
Figure 2.7(b) shows a comparison of the computed streamwise amplitude dis-
tribution and the measurement at the location x = 1.55. The measurement
was performed with three different forcing amplitudes, 0.3 %, 1.1 % and 1.7 %,
measured at x = 1.55, and the agreement in the results between the different
forcing amplitudes indicates the linearity of the disturbance. The disturbance
has a very typical shape and the peak in the shear-layer region is in antiphase
to the peak near the wall. The deviation between the linear stability analysis
and the experiment in the upper part of the wall jet is because the waves in the
experiment are not fully developed eigenmodes so close to the nozzle opening,
however, the agreement improves downstream.

The computed optimal disturbance consists of streamwise vortices devel-
oping into streamwise streaks. Between two vortices, the flow is either moving
upward or downward. Where the flow is moving upward between two vortices,
high-momentum fluid is moved up from the jet core, producing a high-velocity
streak in the shear-layer region of the wall jet. In the boundary-layer region,
a weak low-velocity streak is formed below the high-velocity streak, since the
upward motion of fluid there carries low-momentum fluid from the wall region.
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Figure 2.7. Comparison of computations (—) and measure-
ments of the Blasius wall jet at x = 1.55 for Reδ = 173.
The disturbance amplitudes are normalized with their max-
imum value. (a) Computed and measured (◦) base flow.
(b) Streamwise wave amplitude for ω = 14.4. The disturbance
are triggered in the experiment by a loudspeaker and have the
amplitudes 0.3 % (◦), 1.1 % (

�
) and 1.7 % (M). (c) Streamwise

streak amplitude. The optimal disturbance are calculated for
β = 0.211, ω = 0, x0 = 0.403 and x1 = 1.55. The experimen-
tal results are taken from three spanwise scales corresponding
to β = 0.176 (◦), β = 0.218 (

�
) and β = 0.264 (M).

The opposite motion results, half a wavelength away, where the flow is moving
downward between two vortices, producing a low-velocity streak in the shear-
layer region and a weak high-velocity streak in the boundary-layer region. In
figure 2.7(c), the resulting normalized streak from the optimal disturbance,
calculated for β = 0.211, ω = 0, x0 = 0.403 and x1 = 1.55 is compared with
the measured streaks with spanwise scales β = 0.264, 0.218 and 0.176. In the
experiment, the streaks are introduced in the flow by periodically distributed
roughness elements that are located onto the top lip of the nozzle. Both in the
computation and in the experiment, the streak remains very similar for differ-
ent spanwise wavenumber β. The same is true in the computation for different
initial location, x0.



CHAPTER 3

Strong disturbances

3.1. Numerical method and disturbance generation

In the present chapter as well as the next one, all simulations of the flows
are performed by solving the Navier–Stokes equations directly. That is, the
equations governing incompressible fluid motion are numerically solved without
any simplifying assumptions. This requires that all the relevant scales of the
flow must by resolved and results in large computational efforts, both in terms
of memory and effective time of the calculation.

The in-house numerical code at KTH Mechanics (Lundbladh et al. 1999)
uses spectral methods to solve the three-dimensional time-dependent incom-
pressible Navier–Stokes equations. All velocities and lengths are scaled by the
free-stream velocity and the displacement thickness at the inlet of the compu-
tational box, respectively. The time, frequency and wavenumbers are scaled
correspondingly. The discretization in the streamwise and spanwise directions
makes use of Fourier series expansions, which enforces periodic solutions. The
discretization in the wall-normal direction is represented with Chebyshev poly-
nomial series. A pseudospectral treatment of the nonlinear terms is used. The
time advancement used is a second-order Crank–Nicolson method for the lin-
ear terms and a four-step low-storage third-order Runge–Kutta method for the
nonlinear terms. Aliasing errors arising from the evaluation of the convective
terms are removed by dealiasing by padding and truncation using the 3/2-rule
when the FFTs are calculated in the wall-parallel planes. In the wall-normal
direction, it has been found that increasing the resolution is more efficient than
the use of dealiasing.

At the wall, a no-slip boundary condition is specified and at the upper
boundary, a generalized boundary condition is applied in Fourier space with
different coefficients for each wavenumber. The condition represents a poten-
tial flow solution decaying away from the upper edge of the computational box.
This condition decreases the required box height by damping the higher fre-
quencies rather than forcing the disturbance velocities to a rapid decay. In the
horizontal directions, periodic boundary conditions are used.

For spatially growing flows such as the Falkner–Skan boundary layer and
the Blasius wall jet, a fringe region (Nordström et al. 1999) is added in the
downstream end of the computational domain to fulfill the necessary periodic

23
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boundary condition in the streamwise direction, required by the spectral dis-
cretization. In this region, the flow is smoothly forced to the desired inflow
solution. When studying parallel flows, such as the asymptotic suction bound-
ary layer with periodic or localized disturbances, the advantage of omitting the
fringe region can be used.

The present numerical implementation provides several possibilities for dis-
turbance generation. Disturbances can be included in the flow by a body force,
by blowing and suction at the wall through non-homogeneous boundary condi-
tions and by adding them in the initial velocity field. When a fringe region is
present, disturbances can be forced in it and thereby be included in the desired
inflow solution.

3.2. DNS of the Blasius wall jet

In the third paper, waves and streaks are introduced in the Blasius wall jet and
the nonlinear interaction and transition process are studied by means of DNS.

3.2.1. Spectral analysis

Waves and streaks from the linear stability calculations (figure 2.7) are excited
in the DNS. The amplitudes, which are chosen to obtain a similar transition
scenario as in the experiment, are prescribed in the beginning of the computa-
tional box to 0.1 % and 3 % of the wall-jet core velocity, respectively.

A convenient way to study the nonlinear interaction between the waves
and the streaks is to look at the energy development of the Fourier components
shown in figure 3.1. The velocity components are Fourier transformed in time
and in the spanwise direction and (ω1, β1) denotes the frequency and spanwise
wavenumber, each normalized with the corresponding fundamental frequency
and wavenumber. Thus, the waves and the streaks are represented by (1, 0)
and (0, 1), respectively, and are shown as black solid lines. Before nonlinear
interaction sets in, the modes amplify in agreement with the linear theory as
observed in the beginning of the computational box, where the waves grow
exponentially and the streaks have an algebraic growth. The results from
the PSE are shown as circles and the agreement is excellent. Close to the
nozzle opening, the two-dimensional effects are dominating over the stronger
forced stationary streaks. At about x = 30 to 40, nonlinear effects begin to
be apparent when energy is transferred to the modes (1, 1), (2, 0) and (2, 1).
Further downstream, the streak mode (0, 1) is decaying and a dip in the energy
can be observed at approximately x = 55. At this location, the wave mode (1, 0)
starts to saturate and an abrupt change of the breakdown process happens,
namely, an exponential growth of the streak mode.

Flows such as free shear layers and wall jets can undergo pairing of the
fundamental vortex rollers as a result of a subharmonic instability. In order to
asses whether the pairing mode (1/2, 0) is present in the simulation, the energy
content in this subharmonic frequency is evaluated and shown as the gray line
in figure 3.1. However, since this mode is not forced (in the fringe region),
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Figure 3.1. Energy in different Fourier modes (ω1, β1) from
the DNS. Initially excited wave and streak modes (black solid
lines). Nonlinearly generated modes (dashed and dotted lines).
Pairing mode (gray line) grows up from numerical noise. Re-
sults from the PSE (◦) are shown for comparison.

but only grows out of numerical noise, its amplitude is small. Upstream of
the location where nonlinear interactions set in, the amplification rate of the
subharmonic mode is about half of the fundamental one. This is consistent
with linear theory, indicating that an eigenmode is born. At about x = 55, the
amplification rate doubles as a result of nonlinear effects. However, the energy
content in this mode stays at least one magnitude below the exponentially
growing streak mode.

3.2.2. Flow structures

Structures appearing in the flow can be visualized and contribute to an in-
creased understanding of the transition process. In figure 3.2, the streamwise
velocity is visualized, where dark areas display high velocity and white areas
show regions of backflow. Figures 3.2(a–e) show cross-flow slices from stream-
wise locations indicated in the figure. The high-velocity streak is lifted up from
the shear-layer region forming a mushroom-shaped structure. Such structures
have also been observed by, for example, Wernz & Fasel (1996, 1997) and Gogi-
neni & Shih (1997). Figure 3.2(f) shows the (x, y)-plane through the middle
of the low-velocity streak (the edges of the cross-flow slices). Counterclockwise
rotating rollers are moving with the wave troughs in the outer shear layer.
Slightly downstream of each shear-layer roll-up, clockwise rotating rollers in
the boundary layer exist, associated with small regions of separated flow. The
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Figure 3.2. Visualization of streamwise velocity with dark
areas displaying high velocity and white areas regions of back-
flow. (a–e) Cross-flow slices. (f–h) (x, y)-planes correspond-
ing to the edge of the box. The flow is from left to right.
(f) Streaks and fundamental waves are forced. (g) Streaks,
fundamental and subharmonic waves are forced. (h) Funda-
mental and subharmonic waves are forced.

breakdown to turbulence start in the mushroom-shaped structure and spreads
through the whole wall jet.

The transition mechanisms can be described by the development of vor-
tical structures in the flow. Figure 3.3 shows the vortical structures from the
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Figure 3.3. Vortex visualization using the same instanta-
neous data as in figures 3.2(a–f)

same instantaneous data as the visualizations shown in figures 3.2(a–f). Span-
wise rollers are formed in the wave troughs in the outer shear layer and move
downstream. In the boundary layer close to the wall beneath the wave crests,
counter-rotating rollers are formed. In the presence of streaks, the shear-layer
rollers are sinuously modified with the boundary-layer rollers deforming in the
opposite direction. Vortex ribs are formed in the braids of the waves, extending
from the top of the shear-layer roller to beneath the previous one. Such rib vor-
tices have been observed in many experimental and computational studies of
mixing layers (e.g. Bernal & Roshko 1986; Lasheras et al. 1986; Metcalfe et al.

1987; Schoppa et al. 1995). The vortex ribs follow the upward flow between two
neighboring shear-layer rollers and are associated with the mushroom-shaped
structures ejected from the wall jet into the ambient flow. The tail legs of
the vortex ribs, generated one fundamental period earlier, separate and form a
vortex ring around the upcoming vortex ribs and additional counter-rotating
vortex rings are created preceding breakdown to turbulence.
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3.2.3. Subharmonic waves and pairing

The primary instability in inflectional base flows such as free shear layers and
wall jets is a strong inviscid exponential instability resulting in the roll-up
of waves into strong spanwise vortices. These two-dimensional vortices can
experience two different types of secondary instability. For low initial three-
dimensional excitation, the secondary instability is subharmonic and associated
with vortex pairing, like that observed by Bajura & Catalano (1975). If the
initial three-dimensional excitation is large enough, a three-dimensional sec-
ondary instability is predominant, which suppresses the vortex pairing (see e.g.
Metcalfe et al. 1987).

In order to determine the role of pairing in the Blasius wall jet, the sub-
harmonic disturbance is studied. The Orr–Sommerfeld mode with half the
frequency of the fundamental one is forced in the DNS. Apart from the simula-
tion showed in figure 3.2(f), where streaks and fundamental waves are excited,
two additional simulations are performed, one with streaks, fundamental and
subharmonic waves forced in the flow (figure 3.2g) and the other with only the
fundamental and subharmonic waves and noise in the initial field (figure 3.2h).
When the subharmonic waves are not forced, the pairing mode is weak, as is
also seen in the energy content of the corresponding Fourier mode (1/2, 0) in
figure 3.1. In this case pairing does not occur. On the other hand, when the
subharmonic waves are forced, the pairing mode is stronger and can be seen
as the staggered pattern of the vortex rollers in the outer shear layer. In the
absence of streaks, pairing occurs between rollers in the outer shear layer as
well as in the boundary layer. The pairing originates from the subharmonic
wave displacing one vortex to the low-velocity region and the next to the high-
velocity region. The vortex traveling in the high-velocity region overtakes the
slower vortex in the low-velocity region, and pairing appears. However, in
the presence of streaks, pairing is suppressed and breakdown to turbulence is
enhanced.

3.3. DNS of the asymptotic suction boundary layer

The numerical code does not allow for non-zero mean mass flow through the
lower and upper boundaries. However, the wall-normal suction in the asymp-
totic suction boundary layer can be moved from the boundary condition to the
governing equations. Hence, instead of solving the Navier–Stokes equations for
the wall-normal velocity V with the boundary condition V = −V0, the same
solution can be obtained by solving for V − V0 with the boundary condition
V = 0.

3.3.1. Energy thresholds for periodic disturbances

In the fourth paper, energy thresholds for bypass transition in the asymptotic
suction boundary layer are studied by means of DNS. The growth and break-
down of streaks triggered by streamwise vortices (SV) and oblique waves (OW)
are investigated as well as the development of random noise (N).
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Three transition scenarios are investigated where the disturbances are in-
troduced in the initial field and allowed to evolve temporally. Because the dist-
urbances are assumed to be periodic in the horizontal directions and the base
flow is parallel, the fringe region can be omitted. In scenario (SV), the initial
flow field consists of two counter-rotating streamwise vortices. These vortices
produce streaks by the lift-up effect as time proceeds. Transition can take place
if the streak amplitude becomes sufficiently large for secondary disturbances
to amplify and break down. In scenario (OW), the initial flow field consists of
two superposed oblique waves with equal and opposite angle to the streamwise
direction. The pair of growing waves interact nonlinearly and streamwise vor-
tices are created. This is essentially a different and quicker way of triggering
growth of streaks, which in turn are subjected to secondary instability. The
streamwise vortices and oblique waves are added in the form

u = û(y) exp(iαx+ iβz), (3.1)

where the amplitude function û(y), with given horizontal wavenumbers (α, β),
is optimized over a specified time period (Corbett & Bottaro 2000; Frans-
son & Corbett 2003). In scenario (N), the initial flow field consists of three-
dimensional random noise added to the base flow. The thresholds for transition
are expressed in terms of the energy density of the initial disturbance, thus the
initial disturbance energy E0 divided by the volume � of the computational
box.

The streamwise vortices are optimized for (α, β) = (0, 0.53) over a time
period of 300. The horizontal lengths of the computational box are 2π/β, which
corresponds to one spanwise wavelength of the optimal disturbance. Apart
from the streamwise vortices, the initial condition consists of a small amount
of random noise, which is necessary to set off a secondary instability. The
flow pattern of the simulation for Re = 800 and E0/� = 3 · 10−5 is shown
in figure 3.4(a, b), where the streamwise velocity is visualized in a horizontal
plane (with two box lengths in each direction) at y = 2. As can be seen
in figure 3.4(a) that shows the state at t = 700, a secondary instability has
developed and deforms the streaks in a sinuous manner with a streamwise
wavelength equal to the computational box length. Figure 3.4(b) shows the
breakdown of the streaks at t = 820.

The oblique waves are optimized for (α, β) = (0.265,±0.265) over a time
period of 75. Hence, they are oriented 45◦ to the free-stream direction. The
horizontal lengths of the computational box are twice as large as for scenario
(SV) in order to fit one streamwise and spanwise wavelength of the oblique
waves. The same random noise as for scenario (SV) is added to the initial
field, although it is not necessary for secondary instability to occur. The flow
pattern of the simulation for Re = 800 and E0/� = 1 · 10−5 is shown in
figure 3.4(c, d), where the size of the horizontal plane at y = 2 is equal to the
horizontal size of the computational box. In the initial stage, the pair of oblique
waves interact with each other and streamwise vortices with half the spanwise
wavelength are created. As a result, two spanwise wavelengths of streaks can
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Figure 3.4. Visualization of periodic disturbances in the as-
ymptotic suction boundary layer for Re = 800 in a horizontal
plane at y = 2 of size: 23.71 × 23.71. Dark and light areas
show regions of high and low streamwise velocity, respectively,
and the flow is from left to right. Scenario (SV) at (a) t = 700
and (b) tT = 820. Scenario (OW) at (c) t = 600 and
(d) tT = 731.

be seen in figure 3.4(c) that shows the state at t = 600. In the presence of the
oblique modes, the secondary instability is of the varicose type with horizontal
wavelengths equal to these of the oblique waves, and thus also of the horizontal
dimensions of the computational box. Figure 3.4(d) shows the breakdown of
the streaks at t = 731.

The Reynolds number based on the mean friction velocity, Reτ , provides a
good measure of when transition to turbulence appears. Transition is defined to
appear when the friction velocity Reynolds number exceeds a certain critical
value. This value is chosen to be 26, 38 and 50 for Reynolds number 500,
800 and 1200, respectively. Examples of the evolution of the friction velocity
Reynolds number are shown in figure 3.5(a), which shows one case from each
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Figure 3.5. Scenarios (N) (dotted lines), (SV) (solid lines)
and (OW) (dashed lines) in the asymptotic suction boundary
layer. (a) Friction velocity Reynolds number versus time for
Re = 800 with initial energies E0/� = 3.4 ·10−4 (N), E0/� =
3 · 10−5 (SV) and E0/� = 1 · 10−5 (OW). (b) Transition time
as a function of initial energy for Reynolds number 500 (5),
800 (�) and 1200 (4). (c) Energy threshold versus Reynolds
number. Lines are fits to the DNS data indicated by circles.

scenario for Re = 800. For the undisturbed base flow Reτ =
√
Re, which

is very close to the initial value in the figure. The friction velocity Reynolds
number changes slowly while the flow is laminar, followed by a rapid growth
as the flow break down and transition occurs.

In order to compare the energy thresholds for the three scenarios, the time
of transition tT for each initial energy density of the simulations carried out
are summarized in figure 3.5(b). The lines connecting the data are extrapo-
lated towards tT → ∞ for the lowest obtained energy that leads to breakdown
before t = 2000 of each case. The figure shows how the time of transition
decreases as the initial energy of the primary disturbance increases. This trend
is less significant for scenario (N) where rather high energies are required to
obtain transition. The most competitive initial disturbance in terms of tran-
sition at low energy/short time is the pair of oblique waves. However, the
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Figure 3.6. Contours of wall-normal velocity, at y = 1, of a
localized disturbance consisting of two counter-rotating vortex
pairs with the scales lx = 10, ly = 1.0 and lz = 5.5. Black and
gray lines display positive and negative values, respectively.

obtained energy thresholds must be considered as an upper bound, since only
one disturbance configuration is simulated in each case.

It is difficult to define the energy threshold as a function of Reynolds num-
ber for growing boundary layers as the local Reynolds number changes with the
boundary layer thickness. In parallel flows, however, such as the asymptotic
suction boundary layer, the Reynolds number based on the boundary layer
thickness is constant and therefore the procedure to find the energy thresh-
old is straightforward. The energy thresholds for transition, extracted from
figure 3.5(b) (where the lines approach the time 2000), are plotted for their
respective Reynolds number in figure 3.5(c). The values from the DNS are
displayed by circles and the lines represent least square fits of the formula
E0 ∝ Reγ . The obtained energy thresholds for the three transition scenarios
scale with Reynolds number as Re−2.6 (OW), Re−2.1 (SV) and Re−2.1 (N).

3.3.2. Amplitude thresholds for localized disturbances

In the fifth paper, amplitude thresholds for transition from localized distur-
bances to turbulent spots are studied with DNS. The localized disturbance
is superposed to the asymptotic suction boundary layer in the initial velocity
field. The type of disturbance is centered around a pair of oblique waves, in
the streamwise-spanwise wavenumber plane, consisting of two counter-rotating
vortex pairs, see figure 3.6. In terms of a stream function, it is defined by

ψ = Ax̄ȳ3z̄ exp (−x̄2 − ȳ2 − z̄2), (3.2)
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Figure 3.7. A growing localized disturbance in the asymp-
totic suction boundary layer. Typical vortex structures (green)
are visualized together with their associated velocity normal
to the wall (red indicating upward moving fluid and blue fluid
moving downward). The dark regions at the wall show areas
of increased friction.

where x̄ = x/lx, ȳ = y/ly and z̄ = z/lz. The velocity components are given by
(u, v, w) = (0,−ψz, ψy) and normalized so that the amplitude A is given by the
maximum absolute value of the wall-normal disturbance velocity. This type of
initial disturbance can be experimentally reproduced with the down-up motion
of a membrane at the wall and has been used in earlier studies of transient
growth and transition in channel flows (Henningson et al. 1993) and boundary
layers (Breuer & Haritonidis 1990; Breuer & Landahl 1990; Bech et al. 1998).

The initial disturbance develops into a hairpin vortex aligned with the
streamwise direction. Its legs are close to the wall at the trailing edge of
the disturbance while the head is located higher up and further downstream.
Between the legs, an upward motion is present. On each side of the head,
counter-rotating structures develop. Figure 3.7 shows an instant of a developing
localized disturbance and the friction distribution at the wall (the figure was
originally prepared for the book ‘KTH in Your Pocket 2005’ and appears on its
cover). The head is detached as a result of vortex stretching and a new head is
formed in its place. This head detachment continues as time proceeds. Spiral
vortices appear at the counter-rotating structures on each side. Later, the flow
pattern becomes complex with many hairpin and spiral vortices characterizing
a young turbulent spot.

Amplitude thresholds for transition from a localized disturbance to a tur-
bulent spot is investigated by a numerous of direct numerical simulations. If
the initial amplitude of the disturbance exceeds a certain threshold value, AT ,
transition occurs. Simulations are carried out with varied initial amplitudes of
the localized disturbance at the Reynolds numbers 500, 800 and 1200. When
evaluating whether transition occurs or not, the disturbance energy, extreme
values of velocity and vorticity components and visual examinations of the
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Figure 3.8. (a) Evolution of disturbance energy at Re =
500 and A = 0.046 (solid line), 0.045 (dashed line) and 0.044
(dotted line). (b) Threshold amplitude as function of Reynolds
number. The circles correspond to the lowest amplitudes from
the DNS that lead to transition. The black line is a least square
fit to the data corresponding to AT = 6.36 · 104Re−1.54. The
gray line indicates the critical Reynolds number of 367.

flow field are taken into account. Figure 3.8(a) shows the evolution of the
disturbance energy for three initial amplitudes close to the threshold value at
Re = 500. In this case, transition occurs for the amplitudes A = 0.045 and
0.046 but not for 0.044 for which the disturbance energy and flow extreme
values decay after the initial transient growth.

The circles in figure 3.8(b) summarizes the amplitude thresholds taken
as the lowest amplitudes for which transition is attained in the DNS before
t = 1000 for the three Reynolds numbers. The black line is the least square fit
to the data and for this range of Reynolds numbers, the threshold amplitude is
found to scale asRe−1.5. An attempt of finding the critical Reynolds number for
transition initiated of the localized disturbance is also carried out. Simulations
are performed with an initial amplitude of the localized disturbance of 0.1 and
varied Reynolds numbers. Relaxation of the localized disturbance appears for
Re = 367 or below. This value is indicated in figure 3.8(b) as the thick gray
line.



CHAPTER 4

Turbulence

4.1. The essence of turbulence

As was mentioned in the Introduction, turbulent flow is characterized by a
chaotic, swirly and fluctuating motion, like the white jet of water from the
kitchen tap. Turbulence is unpredictable in its nature, because a very small
difference in the initial conditions, causes a completely different solution at a
later instant. An example of this sensitivity on initial conditions is the Butter-
fly Effect, an expression coined after the work by Lorenz (1963), that the flap
of a butterfly’s wings will create a disturbance that in the chaotic motion of
the atmosphere will become amplified and eventually change the weather. As
a result, it is impossible to predict the weather, one can only compute possi-
ble outcomes of how the weather will be. That is actually what is done, the
meteorological institutes perform one simulation with initial conditions based
on weather observations, then additional simulations are done with slightly
disturbed initial conditions in order to test the sensitivity and thereof the reli-
ability of the forecast.

If we consider the white turbulent flow from the kitchen tap again, and take
a photograph with a very short shutter time, we will see a picture of all the
fluctuations with lots of small bubbles in it. If we take one more photograph, it
will look different. On the other hand, if we take a photograph with a very long
shutter time, we will see a diffusive smooth picture showing the mean behavior
of the jet of water. Now we do not need to take another photograph, because
it will look the same. In applications one is not usually interested in knowing
all the details about the fluctuations of the flow, but rather satisfied with the
influence of the turbulence on the averaged flow. For this purpose we divide
the total flow into an average and a fluctuating component

ui = Ui + u′i, p = P + p′, (4.1)

where Ui denotes the mean velocity and u′i the fluctuation. The index denotes
either one of the three spatial directions. As well as one can take the average
in time, as the photograph taken with a very long shutter time, one can take
the average in either of the spatial directions what ever is convenient for the
particular flow case. In the case of the jet of water, it is convenient to average
in time and in the azimuthal direction, but not in the streamwise or the radial
directions.

35
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By introducing (4.1) into the Navier–Stokes equations and taking the av-
erage, we receive the Reynolds average equations governing the mean flow.
These equations include the effect of the turbulence through the Reynolds
stress u′iu

′
j, where the line denotes average. Because of this additional stress,

the Reynolds average equations involve more unknowns than equations and can
not be solved directly. This closure problem implies that the Reynolds stress
components have to be modeled and thereof be expressed in the mean flow
variables. However, in the present thesis, the total flow is computed by solving
the Navier–Stokes equations and no modeling is needed.

4.2. Spots in the asymptotic suction boundary layer

In the fifth paper, the development of turbulent spots in the asymptotic suction
boundary layer is studied using DNS. In natural transition, the breakdown to
turbulence typically starts in isolated regions initiated by disturbances present
in the laminar flow. These turbulent spots grow in size as they propagate down-
stream and merge together to form a fully developed turbulent flow. Turbulent
spots and their development in channel flows and boundary layers have been
investigated extensively both experimentally (Riley & Gad-el-Hak 1985) and
numerically (Mathew & Das 2000). But, until now, nothing has been reported
on turbulent spots in the asymptotic suction boundary layer. However, numer-
ical simulations of turbulent spots in the asymptotic suction boundary layer are
fruitful as the temporal approach allows us to choose a shorter computational
domain than the distance the spot actually propagates.

The turbulent spot is triggered by a localized disturbance that is introduced
in the initial velocity field in the form of two counter-rotating vortex pairs, see
figure 3.6. When it breaks down, the turbulence spreads in the streamwise
and lateral directions as the spot propagates downstream. The growth of its
height is, however, very small. Figures 4.1 and 4.2 show the turbulent spots
in the asymptotic suction boundary layer at Reynolds number 500 and 800,
respectively. The streamwise disturbance velocity in the wall-parallel plane at
y = 1 and the (x, y)-plane along the centerline are visualized with dark and light
regions displaying high and low values, respectively. The length of the planes
is 300 while the width and height show the entire spanwise and wall-normal
extend of the computational box, respectively. A corresponding visualization
of a turbulent spot for Reynolds number 1200 is shown in figure 4.3, where the
length of the planes is 200.

The turbulent spot takes a bullet-shaped form with a rounded leading
edge and a straight trailing edge. This shape becomes more distinct for higher
Reynolds numbers as the scales within the spot get smaller. The interior of
the spot is occupied of turbulent streaky structures. The side views reveal that
the leading edge develops an overhang over the laminar flow and this is typical
for turbulent spots in boundary layers. Beneath this overhang, long streaks
extend from the turbulent region close to the wall. Behind the trailing edge of
the spot, shorter streaks persist followed by a calm wake with accelerated flow.
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(a) (b)

Figure 4.1. Numerical smoke visualization of a turbulent
spot in the asymptotic suction boundary layer at Re = 500
and t = 1100. Flow is in downward direction and the length
of the planes is 300. Dark and light regions show high and low
streamwise disturbance velocity, respectively. (a) Top view at
y = 1. (b) Side view through the middle of the spot at z = 0.
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(a) (b)

Figure 4.2. Numerical smoke visualization of a turbulent
spot in the asymptotic suction boundary layer at Re = 800
and t = 900. Flow is in downward direction and the length of
the planes is 300. Dark and light regions show high and low
streamwise disturbance velocity, respectively. (a) Top view at
y = 1. (b) Side view through the middle of the spot at z = 0.
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(a)

(b)

Figure 4.3. Numerical smoke visualization of a turbulent
spot in the asymptotic suction boundary layer at Re = 1200
and t = 500. Flow is from left to right and the length of
the planes is 200. Dark and light regions show high and low
streamwise disturbance velocity, respectively. (a) Top view at
y = 1. (b) Side view through the middle of the spot at z = 0.

The fully developed turbulent spot grows linearly both in length and width.
The leading edge propagates at about 85-90% of the free-stream velocity while
the trailing edge velocity decreases from slightly bellow 70% for Re = 500
to slightly bellow 50% for Re = 1200. The half-width angle increases with
increasing Reynolds number from about 2◦ for Re = 500 to about 4◦ for Re =
1200. However, it seems to level off to a constant value at high Reynolds
numbers. At the time of writing this thesis, an ongoing experiment of turbulent
spots in the asymptotic suction boundary layer at Re = 500 is performed in
the MTL wind-tunnel at KTH Mechanics in Stockholm by Jens Fransson. His
preliminary results indicate slightly larger spreading rates.

To summarize, the turbulent spot in the asymptotic suction boundary layer
bears many similarities to spots in other flows. Its shape and spreading rates are
reminiscent of the turbulent spot in boundary layers subjected to a favorable
pressure gradient. In common with spots in plane Couette flow and plane
Poiseuille flow, the spreading rates are dependent of the Reynolds number.

4.3. Turbulence statistics of the Blasius wall jet

In the sixth paper, the early turbulent evolution of the Blasius wall jet is stud-
ied. The investigation is an extension of the simulation presented in paper 3.
The same forcing with two-dimensional waves and streamwise elongated streaks
is done to trigger a natural transition mechanism. However, a four times larger
computational domain is used, allowing the turbulent region of the wall jet to
develop for a longer distance downstream. Statistics of mean flow and turbulent
stresses are sampled for 2200 time units, corresponding to five months of non-
stop simulations. The averaged data is then scaled with appropriate scalings
for the inner boundary layer and the outer shear layer to identify self-similar
behavior.
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Figure 4.4. Mean streamwise velocity at x = 170 (solid line),
200 (dashed line), 250 (dashed-dotted line) and 300 (dotted
line). (a) Outer scaling is used. (b) Inner scaling is used.

For the outer scaling, velocities are scaled with the local maximum veloc-
ity of the wall jet Um and lengths are scaled with the half-width y

1/2
, which is

the distance from the wall where the velocity in the outer region reaches half
the local maximum velocity. The streamwise mean velocity scaled with outer
scaling is shown in figure 4.4(a). The profiles between x = 200 and 300 collapse
reasonably well up to y/y

1/2
= 1. Further away from the wall, the profiles devi-

ate from each other owing to a secondary flow. This secondary flow originates
from a start-up vortex that slowly convects downstream and then remains in
the ambient flow in front of the fringe region, which seems to act like a wall on
such large structures. External flows exist for wall jets in experimental facilities
as well, but as the computational box is not as large as the surrounding space
in an experiment, the problem is more prominent. It is possible to avoid the
vortex by specifying the entrainment velocity at the upper boundary as was
done by Dejoan & Leschziner (2005), who used a boundary condition based on
the laminar free plane jet. However, it is chosen not to constrain the turbulent
wall jet by prescribing an entrainment velocity based on laminar theory.

When using the inner scaling, velocities are scaled with the friction ve-
locity uτ =

√

ν|∂U(y = 0)/∂y| and lengths are scaled with the wall thickness
η = ν/uτ . Quantities scaled with the inner scaling are conventionally denoted
with a plus (e.g. y+ = y/η and uv+ = u′v′/u2

τ). Using this notation, the half-
width corresponds to about 300 plus units, a value that increases with Reynolds
number. Figure 4.4(b) shows the near-wall region of the streamwise mean ve-
locity scaled with inner scaling. Within the viscous sublayer, the profiles follow
a linear law U+ = y+, shown as the gray line, up to about y+ = 4. Further
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Figure 4.5. Profiles of (a) rms of u′, (b) rms of v′, (c) Rey-
nolds shear stress and (d) turbulence kinetic energy. Lines as
in figure 4.4.

away from the wall, the profiles start to deviate from the linear behavior, earlier
than for a turbulent boundary layer that typically start to deviate for values
y+ ≥ 8. Up to about y+ = 20, the profiles at x = 250 and 300 collapse well.

Components of the Reynolds stress and the turbulent kinetic energy scaled
with inner scaling are shown in figure 4.5 for the same streamwise positions as
in figure 4.4. The profiles collapse reasonably well for the streamwise positions
x = 200 to 300 indicating that the flow has started to exhibit a self-similar
behavior. It can be noted that the collapse provided with inner scaling is much
better than with outer scaling. The profile at the position x = 170 is, however,
still close to the transitional region and deviates from the other profiles. The
general shape of the profiles agree well with previous studies (e.g. Eriksson
et al. 1998; Dejoan & Leschziner 2005). However, downstream of the position
x = 300, the vortex present in the end of the computational domain causes the
flow to depart from the self-similar behavior and profiles from this region are
therefore not taken into account.



CHAPTER 5

Conclusions

The work presented in this thesis is motivated by the need of an increased
fundamental understanding of the physics of wall-bounded flows. Investiga-
tions of the stability, transition mechanism and early turbulent evolution of
wall-bounded flows have therefore been carried out. Three base flows have
been considered, the Falkner–Skan boundary layer subjected to favorable, zero
and adverse pressure gradients, boundary layers subjected to wall suction and
the Blasius wall jet. The stability was investigated by means of linear sta-
bility equations valid both for the exponential and algebraic growth scenario.
An adjoint-based optimization technique was used to optimize the algebraic
growth of streaks. The exponential growth of waves was maximized in the
sense that the envelope of the most amplified eigenmode has been calculated.
The transition mechanism and turbulence were studied by direct numerical
simulations.

In the first paper, the stability of the Falkner–Skan boundary layer sub-
jected to favorable, zero and adverse pressure gradients is considered. The
optimization of the algebraic growth was carried out over the initial stream-
wise location as well as the spanwise wavenumber and the angular frequency.
It it found that the initial streamwise location, where the disturbance is in-
troduced in the boundary layer, has a significant impact on the growth. The
optimal location moves downstream with decreased pressure gradient of the
base flow. In both the algebraic and exponential growth scenarios, the growth
is found to increase with increased pressure gradient, although the effect is
much more pronounced for the exponential growth. Furthermore, a unified
transition prediction method incorporating the influences of pressure gradient
and free-stream turbulence is suggested.

In the second paper, the algebraic growth of streaks in boundary layers
subjected to wall suction is considered. It is found that the spatial analysis gives
larger optimal growth in the asymptotic suction boundary layer than temporal
theory. Furthermore, it is found that the optimal growth is larger for the
semi suction boundary layer, where the suction begins a distance downstream
of the leading edge, than for the asymptotic suction boundary layer. The
upstream part of the boundary layer without suction is responsible for this
increase of the growth as well as the decrease of the corresponding wavenumber.
However, when the streamwise interval for which the optimization is carried
out is prolonged, the differences reduce.
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In the third paper, the Blasius wall jet, which was matched to the measured
flow in an experimental wall-jet facility, is considered. Linear stability analysis
with respect to the growth of two-dimensional waves and streamwise streaks
was performed and compared to the experiments. The flow reveals a high in-
stability to two-dimensional waves and non-modal streaks. Furthermore, the
nonlinear interaction of introduced waves and streaks and the flow structures
preceding the flow breakdown were investigated by means of direct numerical
simulations. It is demonstrated that the streaks play an important role in the
breakdown process, where their growth is transformed from algebraic to expo-
nential as they become part of the secondary instability of the two-dimensional
waves. The role of subharmonic waves and pairing of vortex rollers was also
investigated. However, in the presence of streaks, pairing is suppressed and
breakdown to turbulence is enhanced.

In the fourth paper, energy thresholds for transition to turbulence in the
asymptotic suction boundary layer are considered. The development and break-
down of periodic disturbances were studied with direct numerical simulations.
Transition triggered by streamwise vortices, oblique waves and random noise
were investigated. It is found that the lowest energy threshold is provided
by the oblique wave scenario for the considered Reynolds numbers (Re). The
threshold energy is found to scale like Re−2.6 for oblique transition and like
Re−2.1 for transition initiated by streamwise vortices and random noise. This
indicates that oblique transition has the lowest energy threshold also for larger
Reynolds numbers.

In the fifth paper, thresholds for transition of localized disturbances, their
breakdown to turbulence and the development of turbulent spots in the as-
ymptotic suction boundary layer are considered. The localized disturbance
was introduced in the initial base flow and studied using direct numerical sim-
ulations. It is found that the threshold amplitude, defined as the maximum
wall-normal disturbance velocity, scales like Re−1.5 for 500 ≤ Re ≤ 1200. For
Re ≤ 367, the localized disturbance decays after the initial transient growth.
The turbulent spot is found to take a bullet-shaped form with a rounded leading
edge and a straight trailing edge. Long streaks extend upstream evolving from
the disturbed flow in an overhang region. It is found that the spot becomes
more distinct and increases its spreading rate for higher Reynolds number.

In the sixth paper, the early turbulent evolution of the Blasius wall jet is
considered. The direct numerical simulation is an extension of the work pre-
sented in paper 3 but a larger computational domain was used. The averaged
data from turbulence statistics was scaled in both inner and outer scaling in
order to identify self-similar behavior. Despite the low Reynolds number and
the short computational domain, in comparison to available experiments, it
was found that the turbulent flow exhibits a reasonable self-similar behavior,
which is most pronounced with inner scaling in the near-wall region.
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For applications regarding transition prediction, wing design and control of
boundary layers, the fundamental understanding of disturbance growth in the
flat-plate boundary layer is an important issue. In the present work we inves-
tigate the energy growth of eigenmodes and non-modal optimal disturbances.
We present a set of linear governing equations for the parabolic evolution of
wavelike disturbances valid both for the exponential and algebraic growth sce-
nario. The base flow is taken as the Falkner–Skan similarity solution with
favorable, adverse and zero pressure gradients. The optimization is carried
out over the initial streamwise position as well as the spanwise wave number
and frequency. The exponential growth is maximized in the sense that the
envelope of the most amplified eigenmode is calculated. In the case of alge-
braic growth, an adjoint-based optimization technique is used. We find that
the optimal algebraic disturbance introduced at a certain downstream position
gives rise to a larger growth than for the optimal disturbance introduced at
the leading edge. The exponential and algebraic growth is compared and a
unified transition-prediction method based on available experimental data is
suggested.

1. Introduction

Fundamental understanding is important as a basis for engineering applica-
tions. In the aviation industry one wishes to decrease wing drag and lower
operation costs for aircraft. One critical parameter is the streamwise tran-
sition position on the wing from laminar to turbulent flow. The fundamental
understanding of the instabilities in the flat-plate boundary layer serve as a ba-
sis for the generation of tools for transition prediction, wing design and control
of boundary layers.

The prediction of the stability of a given flow and the amplification of
small disturbances have been of interest to the fluid dynamics community for
more than a century. The traditional stability-analysis technique is to solve
the eigenvalue problem of the Orr–Sommerfeld and Squire equations, which
are the linearized stability equations based on the assumption of parallel flow
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with wavelike disturbances. The unstable eigenmodes are historically referred
to as Tollmien–Schlichting (TS) waves, usually taking the form of exponentially
growing two-dimensional waves.

The idea of solving the parabolic evolution of disturbances in non-parallel
boundary layers was first introduced by Floryan & Saric (1979) and later also
by Hall (1983) for steady Görtler vortices. Bertolotti et al. (1992) developed the
method of parabolic evolution of eigenmodes in boundary layers and derived
the parabolized stability equations (PSE). The method is computationally very
fast and has been shown to be in excellent agreement with direct numerical
simulations (DNS) of the Navier–Stokes equations and experiments.

In the transition community, the eN -method is a well known transition-
prediction tool and has been shown to fairly accurately predict transition for
simple flows. It was developed independently by Smith & Gamberoni (1956)
and van Ingen (1956) and empirically correlates the exponentially growing am-
plification of linear eigenmodes with the onset of transition. Transition takes
place when the amplitude of the most amplified disturbance reaches eN times
its initial amplitude. The method does not account for the receptivity pro-
cess. However, they reported, after analyzing data from a large number of
low-disturbance experiments, that the N -factors between 8 and 11 fairly well
described the onset and end of the transition region. They also concluded
that those values decreased with increasing freestream turbulence. A modi-
fication of the eN -method in order to account for freestream turbulence was
proposed by Mack (1977). The freestream-turbulence level Tuwas correlated to
the N -factor by comparing the transition Reynolds number from experimental
flat-plate boundary layer data collected by Dryden (1959) with parallel, linear
stability theory for the Blasius boundary layer. Mack suggested the following
relation for the N -factor at transition

N = −8.43 − 2.4 lnTu, (1)

which he claims is valid in the range 0.1 % < Tu < 2 %. For a freestream-
turbulence level less than 0.1 %, he mentioned that the dominant disturbance
source is thought to be wind-tunnel noise rather than turbulence.

Exponential instability involving unstable eigenmodes is not the only tran-
sition scenario. For a sufficiently large disturbance amplitude, algebraic non-
modal growth can lead to so-called bypass transition, not associated with
exponential instabilities. At a moderate or high lever of freestream turbu-
lence, many experiments have observed streaky structures, taking the form of
elongated streamwise structures with narrow spanwise scales and much larger
streamwise scales. This type of disturbance is historically denoted as the Kle-
banoff mode after the boundary-layer experiments of Klebanoff (1971). More
recent experiments displaying streaky structures in boundary layers, subject
to various levels of freestream turbulence, have been performed by e.g. Westin
et al. (1994) and Matsubara & Alfredsson (2001). Ellingsen & Palm (1975)
performed linear stability analysis of inviscid channel flow. They showed that
finite three-dimensional disturbances without streamwise variation can lead to
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instability, even though the basic velocity does not possess any inflection point.
The instability leads to an increase linearly with time of the streamwise dist-
urbances, producing alternating low and high velocity streaks. Landahl (1980)
demonstrated that all parallel inviscid shear flows can be unstable to three-
dimensional disturbances, which lead to a growth of the disturbance energy at
least as fast as linearly in time. The physical interpretation of the formation
of the streaks is the lift-up effect, i.e. that fluid elements initially retain their
horizontal momentum when displaced in the wall-normal direction, hence caus-
ing a streamwise disturbance. The combination of inviscid, algebraic growth
and viscous dissipation has been known as transient growth (see Hultgren &
Gustavsson 1981; Butler & Farrell 1992; Henningson et al. 1993; Reddy & Hen-
ningson 1993). In those papers, the optimal transient growth and associated
disturbances were computed, in various parallel flows, by optimizing over the
eigenmodes of the Orr–Sommerfeld operator.

Luchini (1996) considered steady spanwise periodic disturbances, with a
spanwise scale much larger than the boundary layer thickness and much smaller
than the streamwise scale. An eigenvalue problem in the Sturm–Liouville form
was formulated for the Blasius boundary layer and it was concluded that there
is a mode that possesses unbounded growth of the streamwise velocity. Tumin
(2001) made an extension of Luchini’s theory to the Falkner–Skan boundary
layer and found that the unbounded growth may be suppressed by a favorable
pressure gradient.

Andersson et al. (1999) and Luchini (2000) adopted an input-output meth-
odology to calculate the optimal disturbance in the Blasius boundary layer,
taking the non-parallel effects into account. The governing equations used are
parabolic in the streamwise direction and were obtained from the linearized
Navier–Stokes equations subject to the boundary-layer scalings. The distur-
bances were assumed to be slowly varying in the streamwise direction and
periodic in the spanwise direction and time. An adjoint-based optimization
technique was used to optimize the input disturbance at the leading edge giving
rise to the largest disturbance energy gain at the final downstream position. By
going to the limit of large Reynolds number (based on the final streamwise po-
sition), Luchini motivated the assumption that the optimal initial disturbance
has a zero streamwise component, while the final downstream disturbance only
consist of the streamwise component. That assumption simplifies the opti-
mization procedure considerably. Andersson et al.and Luchini independently
calculated the spanwise wave number β = 0.45 and a zero frequency for the
optimal disturbance in the large-Reynolds-number limit giving rise to a growth
G = 0.0022Rel. Their results agreed remarkably well with experimental data
produced by Westin et al. (1994), irrespective of the absent optimization pro-
cedure in the experiments. Tumin & Reshotko (2003) made an extension of
the model by Luchini to the case of compressible boundary layers. They also
investigated the effect of different initial positions of the optimal disturbance.
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Corbett & Bottaro (2000) used an direct-adjoint technique similar to the
one used by Andersson et al.and Luchini to calculate optimal disturbances to
the temporal problem for the Falkner–Skan boundary layer. The main advan-
tage of the parallel-flow assumption, in contrast to the spatial approach, is that
it permits the study of oblique disturbances with comparable streamwise and
spanwise scales. It was found that optimal disturbances in flows subject to
adverse pressure gradients experience greater amplifications and those in ac-
celerated flows less amplification in comparison to the Blasius boundary layer.
It was also found, as in the case for the Blasius boundary layer, that the most
amplified disturbances are streamwise elongated structures.

Andersson et al. (1999) made an attempt at prediction of bypass-transition
due to algebraic growth by correlating the transition Reynolds number ReT and
the freestream-turbulence level

√

ReTTu = K, (2)

where K should be constant for freestream-turbulence levels in the range 1 % <
Tu < 5 %. By comparison of different experimental studies the constant was
chosen as K = 12.

Other empirical transition-prediction correlations involving the effects of
freestream turbulence and streamwise pressure gradient have been developed.
van Driest & Blumer (1963) postulated that transition occurs when the maxi-
mum vorticity Reynolds number reaches a critical value, to be correlated with
the pressure gradient and freestream-turbulence level. In the case of zero pres-
sure gradient their formula correlated with experiments agrees well with (2).
Another example is a model by Abu-Ghannam & Shaw (1980), which gives the
Reynolds number based on the momentum thickness θ, at the start and end
of the transition region. The only inputs to the model are the freestream-
turbulence level and the pressure gradient parameter λθ = (θ2/ν)∂U0/∂x.
More advanced transition prediction and studies of the transition phenom-
ena itself can be made by numerical simulations such as the non-linear PSE
technique (e.g. Hein et al. 1999).

In the present paper we first introduce governing equations valid for both
linear exponential instability and algebraic instability analysis. We follow the
work done by Andersson et al. (1999) in the algebraic-instability regime and
calculate optimal disturbances in the large-Reynolds-number limit for flat-plate
boundary layers with favorable, adverse and zero pressure gradients. The op-
timization is carried out over the initial streamwise position as well as the
spanwise wave number and frequency. We present an energy growth for the
optimal disturbance introduced at a certain downstream position, more than
50 % larger than for the optimal disturbance introduced at the leading edge.
Furthermore, we calculate the exponential growth of the most amplified eigen-
modes for the same base flows and Reynolds number. We conclude with com-
paring the two different instability scenarios and assess their impact on the
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Figure 1. Flat-plate boundary layer flow.

transition Reynolds number by using a generalized version of (2) and the as-
sumption that exponentially growing disturbances have a weak receptivity to
freestream turbulence.

2. General Formulation

2.1. Governing equations

In this part we will discuss a set of equations that is valid for both algebraically
and exponentially growing disturbances, even though the problems are asso-
ciated with different scales. The well-known PSE technique (Bertolotti et al.

1992; Herbert 1997) uses the so called PSE-scaling (see table 1), which is suit-
able for exponentially growing eigenmodes. Here we follow the work by An-
dersson et al. (1999) and use a scaling appropriate for algebraically growing
non-modal disturbances.

Consider an incompressible boundary layer over a flat plate as illustrated
in figure 1. The scalings originate from the boundary-layer approximations and
are also summarized in table 1. The streamwise coordinate x is scaled with the
length scale l, which is a fixed distance from the leading edge. The wall-normal
and spanwise coordinates y and z, respectively, are scaled with the boundary-
layer parameter δ =

√

νl/U∞, where ν is the kinematic viscosity of the fluid
and U∞ is the streamwise freestream velocity at the distance l from the leading
edge. The streamwise velocity u is scaled with U∞, while the wall-normal and
spanwise velocities v and w, respectively, are scaled with U∞δ/l. The pressure
p is scaled with ρU2

∞δ
2/l2 and the time t is scaled with l/U∞. The Reynolds

numbers used here are defined as Rel = U∞l/ν and Reδ = U∞δ/ν. It is useful

to note the relations l/δ = Reδ =
√

Rel.

We want to study the linear stability of a high Reynolds number flow.
The non-dimensional Navier–Stokes equations for an incompressible flow are
linearized around a two-dimensional, steady base flow

(

U(x, y), V (x, y), 0
)

to
obtain the stability equations for the spatial evolution of three-dimensional,
time-dependent disturbances

(

u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), p(x, y, z, t)
)

.
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Var. x y, z t û v̂, ŵ p̂ α β ω

BL l δ l/U∞ U∞ U∞δ/l ρU2
∞δ

2/l2 1/δ U∞/l

PSE δ δ δ/U∞ U∞ U∞ ρU2
∞ 1/δ 1/δ U∞/δ

Ratio Reδ 1 Reδ 1 1/Reδ 1/Re2δ 1 1/Reδ

Table 1. The boundary-layer and PSE-scalings of the vari-
ables and their ratio.

The base flow and the disturbances are scaled in the same way. The disturban-
ces are taken to be periodic in the spanwise direction and time, which allows
us to assume solutions of the form

f = f̂(x, y) exp

[

iReδ

∫ x

x
0

α(x) dx + iβz − iωt

]

, (3)

where f represents either one of the disturbances u, v, w or p. The complex
streamwise wave number α captures the fast wavelike variation of the modes
and is therefore scaled with 1/δ. α itself is assumed to vary slowly with x.
Since x is scaled with l, the factor Reδ appears in front of the integral. The

x-dependence in the amplitude function f̂ includes the weak variation of the
disturbances. The real spanwise wave number β and angular frequency ω are
scaled in a consistent way with z and t, respectively. Introducing the assump-
tion (3) in the linearized Navier–Stokes equations and neglecting all third order
terms in 1/Reδ or higher, we arrive at the parabolized stability equations in
boundary-layer scalings

ûx + iReδαû+ v̂y + iβŵ = 0, (4a)

(Ux + iReδαU − iω)û+ Uûx + V ûy + Uy v̂ +
p̂x

Re2δ
+

iαp̂

Reδ

= ûyy − k2û, (4b)

(Vy + iReδαU − iω)v̂ + Uv̂x + Vxû+ V v̂y + p̂y = v̂yy − k2v̂, (4c)

(iReδαU − iω)ŵ + Uŵx + V ŵy + iβp̂ = ŵyy − k2ŵ, (4d)

where k2 = α2 + β2. Since we are considering both algebraically and exponen-
tially growing disturbances, where the appropriate scales differ, the determina-
tion of which terms are of higher order needs a discussion. The boundary-layer
and PSE-scalings of the variables and their ratio are presented in table 1. The
last line in table 1 can also be interpreted as the relative difference in order
between the algebraic and exponential disturbances.

Consider the algebraic instability problem. The order of magnitude of all
amplitude functions, the spanwise wave number and angular frequency are the
same. For algebraically growing disturbances, only weak streamwise variations
are considered, captured by the amplitude functions themselves, so the stream-
wise wave number α is set to zero. After disregarding terms including α there is
only one term of higher order kept in (4). That term is the p̂x/Re

2
δ term in the
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Instability O(1) O(Reδ) O(Re2δ)

algebraic û, v̂, ŵ, p̂, β, ω
exponential û, α, β v̂, ŵ, ω p̂

Table 2. Orders of the variables relative to the boundary-
layer scalings.

streamwise momentum equation (4b). It is needed for the exponential instabil-
ity problem, but is obviously O(1/Re2δ) for the algebraic instability problem.
Note that all the other terms are O(1) and there are no O(1/Reδ) terms left
in the equations.

For the exponential instability problem we need to reconsider the orders of
magnitude of the terms in (4). Note that we will be comparing the relative order
between the terms within each equation and consider the two lowest orders
as important for the problem. Now we include a fast oscillatory streamwise
variation in the disturbances, implying that α is O(1) and ω is O(Reδ), since
ω = αc (c is the complex phase speed). A balance of terms in the continuity
equation implies that v̂ and ŵ is O(Reδ). The total time derivative should
balance the pressure gradient in the normal momentum equation (4c) and p̂
changes to O(Re2δ). The second, third, sixth and eighth term in the streamwise
momentum equation (4b) are O(Reδ), the other terms are O(1). In the normal
momentum equation (4c), the second, third and seventh term are O(Re2δ), the
other terms are O(Reδ) except the Vxû term, which is only O(1). Hence,
that term is negligible for the exponential instability problem. In the spanwise
momentum equation (4d) the first, second and fifth term are O(Re2δ), while the
rest of the terms are O(Reδ).

As a summary, the different orders of magnitude of the amplitude functions,
wave numbers and angular frequency based on the scaling used are presented
in table 2. We can conclude that all the terms in (4) are generally of the first
or the second order except the p̂x/Re

2
δ term, in the streamwise momentum

equation (4b), which is of the third order for the algebraic instability problem
and the Vxû term, in the normal momentum equation (4c), which is of the third
order for the exponential instability problem. Both of those terms, however,
have to be included in a general formulation of the problem. Unfortunately,
the p̂x/Re

2
δ term introduces numerical instability, setting a lower limit on the

streamwise step size.

We are interested in solutions to (4) subject to no-slip conditions at the
plate and vanishing at the wall-normal position ymax well outside the bound-
ary layer. The boundary conditions in the wall-normal direction can then be
written

û = v̂ = ŵ = 0 at y = 0,
û = v̂ = ŵ = 0 at y = ymax.

(5)
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The set of equations (4) is nearly parabolic in the streamwise coordinate
and are marched forward from an initial position x0 to a final position x1.
Given the initial conditions

û = û0(y), v̂ = v̂0(y), ŵ = ŵ0(y) at x = x0, (6)

the wave number β and the angular frequency ω, the initial-boundary-value
problem (4–6) can be solved from x0 to x1 to obtain the downstream develop-
ment of the disturbance. In addition, an additional equation for the streamwise
wave number α is needed in the exponential instability problem, see Section
4.1

2.2. Mathematical characteristics

The large computational gain of the PSE technique is a result of the assump-
tion that the disturbance can be decomposed into a rapidly varying wavelike
component and a slowly varying amplitude function. The equations governing
the evolution of the amplitude functions are parabolized and can be solved eco-
nomically using a marching procedure. However, although there are no second
streamwise derivatives left in the stability equations (4), still some ellipticity
remains causing numerical stability problems. This is demonstrated by a rapid
oscillation of the solution when the streamwise marching step becomes too
small. The sources of ellipticity arise from the upstream propagation of acous-
tic waves and viscous diffusion. Haj-Hariri (1994) suggested the suppression of
the upstream propagation of acoustic waves by either removing the streamwise
derivative of the pressure or the streamwise velocity amplitude function in the
streamwise momentum or continuity equation after analysis of disturbances
with a fixed angular frequency in a parallel boundary layer. Li & Malik (1994,
1996) showed that numerical stability in the marching procedure is achieved
by putting a requirement of the step size to be

∆x >
1

Reδ|αr|
, (7)

where the Reynolds number appears here due to the present difference in scaling
of x and α. They also mentioned that dropping of p̂x relaxes the step-size
restriction. Andersson et al. (1998) made the equations well-posed and removed
the step-size restriction by adding a term proportional to the truncation error
to the first-order backward Euler scheme. They performed several numerical
examples and showed a stable marching procedure for arbitrarily small step
sizes. However, they pointed out, if the streamwise variation of the amplitude
function becomes rapid, the error from the added term may become significant.
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2.3. Energy norm

In investigations of spatial growth a commonly used measure of the disturbance
energy at a specific streamwise position is defined by

E(x) =

∫ ymax

0

(Rel|û|2 + |v̂|2 + |ŵ|2) dy exp

[

−2Reδ

∫ x

x
0

αi dx

]

. (8)

In order to cancel the influence of the difference in scaling and obtain simi-
lar weighting of the velocity components, the streamwise term in the energy
is scaled with Rel. Consequently, the streamwise term is O(Rel) while the
wall-normal and spanwise terms are O(1) for the algebraic instability problem,
while they are of the same order for the exponential instability problem. The
disturbance growth is defined by

G(x0, x1, β, ω,Rel) =
E(x1)

E(x0)
. (9)

In order to compare the growth of the both instability problems in a convenient
way and discuss transition prediction we need to introduce the N -factor defined
as

N = ln
√
G = ln

√

E(x1)

E(x0)
. (10)

3. Algebraic Instability

3.1. Linear scaling with Reynolds number

As we will see in the next section, the spatial transient growth scales linearly
with the Reynolds number in the large-Reynolds-number limit. This allows us
to derive a transformation between the growth obtained for different parameter
combinations. Let us define a Reynolds number independent growth as

G(x0, x1, β, ω) = lim
Re

l
→∞

G(x0, x1, β, ω,Rel)

Rel

. (11)

Consider the same physical problem scaled with two different length scales l and
l′ and the corresponding freestream velocities U∞ = U∞(l) and U ′

∞ = U∞(l′).
The dimensional quantities, denoted with a star, and the Reynolds numbers
associated with the different scales can then be expressed as

x∗ = xl = x′l′, β∗ = β

√

U∞

νl
= β′

√

U ′
∞

νl′
,

ω∗ = ω
U∞

l
= ω′U

′
∞

l′
, Rel =

U∞l

ν
, Rel′ =

U ′
∞l

′

ν
.

(12)

Since the growth is independent of how we choose to scale the problem we have

G(x0, x1, β, ω,Rel) = G(x′0, x
′
1, β

′, ω′, Rel′). (13)
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Introducing the scale ratios c2 = l/l′ and d2 = U∞/U
′
∞ and rewriting the

right-hand side of (13) in the unprimed quantities using the relations in (12)
yields

G(x0, x1, β, ω,Rel) = G(c2x0, c
2x1,

d

c
β,
d2

c2
ω,

1

c2d2
Rel). (14)

Multiplying both sides of (14) by c2d2/Rel and letting Reynolds number tend to
infinity we obtain a transformation formula for the Reynolds-number-indepen-
dent growth

c2d2G(x0, x1, β, ω) = G(c2x0, c
2x1,

d

c
β,
d2

c2
ω). (15)

Looking at the x-dependence in the growth, it is obvious that such a transfor-
mation is only possible when keeping the ratio x0/x1 constant.

3.2. Optimal disturbances

Now we consider solutions to (4) giving rise to disturbances with weak stream-
wise variations and α is set to zero. We are interested in maximizing the energy
of the disturbance, given by (8), in the downstream position x1 by optimizing
the initial disturbance at x0 with given initial energy. That is, we want to
maximize the spatial transient growth defined by (9). Clearly, in the large-
Reynolds-number limit, the maximum growth will, because of the difference
in order between the terms, be obtained for initial disturbances with a zero
streamwise component. Furthermore, provided that û1 is non-zero, even here
because of the difference in order, v̂1 and ŵ1 are neglected and the Reynolds-
number-independent growth (11) can be simplified to

G = lim
Re

l
→∞

G

Rel

=

∫ ymax

0

|û1|2 dy
∫ ymax

0

(|v̂0|2 + |ŵ0|2) dy

. (16)

Obviously, in the large-Reynolds-number limit, the optimal initial disturbance
becomes independent of Rel, which only appears as a proportional factor in
the growth. If we introduce the norms

‖û1‖2 = (û1, û1) =

∫ ymax

0

|û1|2 dy, (17)

‖q‖2 = (q, q) =

∫ ymax

0

(|v̂0|2 + |ŵ0|2) dy, (18)

where q = (v̂0, ŵ0)
T , the Reynolds-number-independent growth can be written

as

G =
‖û1‖2

‖q‖2
. (19)

Since the initial-boundary-value problem (4) is linear and homogeneous, we
may adopt an input-output formulation

û1 = Aq, (20)
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where A is a linear operator. The maximum Reynolds-number-independent
growth may then be written

Gmax = max
q 6=0

‖û1‖2

‖q‖2
= max

q 6=0

(A∗Aq, q)

(q, q)
. (21)

Here A∗ denotes the adjoint operator to A with respect to the chosen inner
product. The maximum of (A∗Aq, q)/(q, q) is attained for some vector q. In
view of some basic facts from operator theory, that vector is the eigenvector
corresponding to the largest eigenvalue of the eigenvalue problem

A∗Aq = λq, (22)

and Gmax is the maximum eigenvalue λmax, necessarily real and non-negative.
The most natural attempt to calculate the optimal initial disturbance and its
associated maximum Reynolds-number-independent growth is by power itera-
tions

qn+1 = A∗Aqn, (23)

where the initial disturbance is scaled to the given initial energy in each itera-
tion.

3.3. Adjoint equations

In order to perform the power iterations we need to know the action of the ad-
joint operator A∗ on some function ψ1(y). By definition of the adjoint operator
A∗, we have

(ψ1,Aq) = (A∗ψ1, q). (24)

If we denote A∗ψ1 = φ =
(

φ2(y), φ3(y)
)T

, the inner products can explicitly be
written

(ψ1,Aq) =

∫ ymax

0

ψ1û1 dy, (25)

(A∗ψ1, q) =

∫ ymax

0

(φ2v̂0 + φ3ŵ0) dy, (26)

where the bar denotes complex conjugate. The following adjoint system is
derived in the appendix

−v∗y + iβw∗ = 0,
−iωu∗ − Uu∗x − Vyu

∗ − V u∗y + Vxv
∗ − p∗x = u∗yy − β2u∗,

−iωv∗ − Uv∗x − Uxv
∗ − V v∗y + Uyu

∗ − p∗y = v∗yy − β2v∗,
−iωw∗ − Uw∗

x − V w∗
y + iβp∗ = w∗

yy − β2w∗,

(27)

where p∗(x, y), u∗(x, y), v∗(x, y) and w∗(x, y) are the adjoint variables with
boundary conditions

u∗ = v∗ = w∗ = 0 at y = 0,
u∗ = w∗ = p∗ + 2V v∗ = 0 at y = ymax.

(28)

The individual values of p∗ and v∗ do not matter as long as the combination
p∗ + 2V v∗ = 0 is fulfilled. The x-derivative in the parabolic set of equations
(27) has opposite sign compared to (4) and is to be solved in the backward
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direction from the final position x1 to the initial position x0. Therefore the
initial conditions are specified at x1

U1u
∗
1 + p∗1 = ψ1(y) at x = x1,

v∗1 = w∗
1 = 0 at x = x1.

(29)

The action of the adjoint operator is then given by

φ2 = U0(y)v
∗
0(y) at x = x0,

φ3 = U0(y)w
∗
0(y) at x = x0.

(30)

3.4. Optimization algorithm

The adjoint-based optimization algorithm is very efficient and converges often
within three or four iterations, indicating the existence of a well-separated
dominating mode. The optimization problem in the large-Reynolds-number
limit is defined by (21) and concerns the optimization of the initial disturbance
q for given values of x0, x1, β and ω. It may be solved with the power iteration
(23) and involves the following three steps:

1. Given a current guess of the initial condition (v̂n
0 , ŵ

n
0 ), initially arbitrary,

solve equations (4) subject to the boundary conditions (5) and the initial
conditions (6) with û0 = 0, v̂0 = v̂n

0 and ŵ0 = ŵn
0 .

2. Solve the adjoint equations (27) subject to the boundary conditions (28)
and the initial conditions (29) with ψ1 = ûn

1 obtained from step 1.
3. Assign the new initial disturbance as the action of the adjoint operator

(30) with v∗0 and w∗
0 obtained from step 2 and where φ2 = v̂n+1

0 and

φ3 = ŵn+1
0 . After scaling the initial disturbance, making (18) to a given

value, insert it into step 1 for the next iteration.

Terminate the iterations when (Gn+1−Gn)/Gn+1 falls below a small prescribed
value.

The initial position can then be optimized with a simple polynomial opti-
mization technique. Initially the optimal disturbances with associated growth
are calculated for three initial positions. A second order polynomial is fitted
to the points and the next guess of the optimal initial position is attained from
the maximum of the polynomial. A new polynomial is fitted to the last three
points and the procedure is proceeded until requested accuracy is achieved.

The numerical method solving the forward problem (4–6) and the backward
problem (27–29) is based on a spectral collocation method involving Chebyshev
polynomials. Details about the numerical scheme can be found in Andersson
et al. (1999) and Hanifi et al. (1996). The numerical code is developed from
the linear PSE code used by Pralits et al. (2002).

4. Exponential Instability

4.1. Normalization condition

Here we consider solutions to (4) giving rise to disturbances with strong stream-
wise variations and no terms are disregarded. As both the amplitude and phase
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function depend on x, one more equation is required. We also wish to satisfy
the assumption that both the amplitude function and the wave number change
slowly in the streamwise direction. We achieve this by specifying a normaliza-
tion condition on the amplitude function

∫ ymax

0

(Relûûx + v̂v̂x + ŵŵx) dy = 0, (31)

where the bar again denotes complex conjugate. Other normalizations are
possible and are presented in Bertolotti et al. (1992). The normalization con-
dition specifies how much growth and sinusoidal variation is represented by the
amplitude and phase function, respectively. The stability problem (4–6) and
the normalization condition (31) have to be solved iteratively in each stream-
wise step. As mentioned in the previous section, details about the numerical
scheme can be found in Andersson et al. (1999) and Hanifi et al. (1996) and
the numerical code is developed from the linear PSE code used by Pralits et al.

(2002). The initial conditions (6) are taken from the local theory as the least
stable eigenfunction of Orr–Sommerfeld & Squire equations with corresponding
eigenvalue α(x0). Since the initial conditions then do not capture non-parallel
effects there will be a region in the beginning of the domain that includes some
errors. The size of those errors and the length of that region are dependent of
how non-parallel the base flow is and will of course increase for lower Reynolds
numbers.

Note that no optimization is made over the initial conditions as was done
for the algebraically growing disturbances. Rather, the exponential growth is
maximized in the sense that the envelope of the most amplified eigenmode is
calculated. Within the PSE approximation it is difficult to incorporate the
influence of mode non-normality. However an assessment of these effects for
exponentially growing disturbances can be made by comparing to the work of
Corbett & Bottaro (2000). They show that there is at most an additional factor
of 10 contribution to the energy growth from those effects. This may add a
value of one to our N -factor (10). However, the non-modal growth of TS-waves
are due to the so called Orr-mechanism (Farrell 1988), which is based on initial
conditions not too likely to occur in boundary layers in applications.

5. Results

5.1. Base flow

The linear stability analysis is done with the Falkner–Skan boundary layer as
the base flow. Falkner–Skan similarity equation reads

f ′′′ + ff ′′ + βH(1 − f ′2) = 0, (32)

subject to the boundary conditions

f(0) = f ′(0) = 0, f ′(∞) = 1, (33)

where f is the non-dimensional stream function and the prime denotes deriva-
tives with respect to the similarity variable η. The base flow can then be
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Figure 2. Base flow velocities from the Falkner–Skan simi-
larity solution. Solid line: βH = 0.1. Dashed line: βH = 0.
Dotted line: βH = −0.1. (a) Streamwise velocity. (b) Wall-
normal velocity.

written

U = Uef
′, V =

1

g

(

(1 − βH)ηf ′ − f
)

, (34)

associated with the non-dimensional coordinates in the following way

y = gη, Ue = x
βH

2−βH , (35)

where Ue = Ue(x) is the freestream velocity and

g =

√

(2 − βH)
x

Ue

. (36)

The Hartree parameter βH describes the freestream acceleration, as seen in
(35), driven by the pressure gradient. In this work we have used three base
flows with favorable, adverse and zero pressure gradients. The Hartree param-
eters are βH = 0.1, βH = −0.1 and βH = 0, respectively. The streamwise and
wall-normal base-flow velocities are shown in figure 2. Throughout this pa-
per, figures showing results comparing the base flows have the same line type,
with solid lines for the favorable pressure gradient, dotted lines for the adverse
pressure gradient and dashed lines for the zero pressure gradient.

5.2. Optimal disturbances and streaks

We study the optimal algebraic growth (9) of disturbances in the large-Reynolds-
number limit, and its dependence of the initial position x0, spanwise wave
number β and angular frequency ω. The final position is set to x1 = 1, thus
the dimensional final position is l and the Reynolds number there is set to
Rel = 106. When presenting results of the β and ω-dependency, the optimal
initial position is used and the growth is represented in the N -factor (10).

Andersson et al. (1999) and Luchini (2000) used the leading edge as the
initial position in their calculations. However, in base flows with non-zero
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Figure 3. Energy growth along the plate in the Blasius
boundary layer at Rel = 106 for different initial positions,
optimal case (dotted line). (a) β = 0.5 and ω = 0. (b) β = 1
and ω = 5.

pressure gradients it is not possible to perform accurate calculations starting
very close to the leading edge due to the behavior of the similarity solution.
Besides that problem we wish to investigate the impact of different x0 on the
growth. Figure 3(a) shows the energy growth along the plate for different
initial positions for optimal disturbances with β = 0.5 and ω = 0 in the Blasius
boundary layer. The dotted line shows the optimal growth originating from
the optimal initial position x0 = 0.36. Disturbances introduced closer to the
leading edge grow in a slower rate. On the other hand, disturbances introduced
further downstream do not have distance enough to grow as much before the
final position. An interpretation of the slower growth rate for disturbances
introduced close to the leading edge is the influence of the boundary layer
thickness on the lift-up effect. Upstream of the optimal initial position the
boundary layer is not thick enough for the optimal distortion of fluid elements.
Furthermore, the optimal disturbance introduced upstream will not have the
optimal shape at a position further downstream. The growth rate seems to
increase for disturbances introduced further downstream where the boundary
layer is thicker.

Figure 3(b) again shows the energy growth in the Blasius boundary layer
for different initial positions but for optimal disturbances with β = 1 and ω = 5.
Here it is seen that the viscous dissipation is more dominat and the energy soon
starts to decay. The dotted line showing the optimal growth originates in this
case from the initial position x0 = 0.72. Since the adjoint-based optimization
technique optimizes the initial disturbance with respect to the disturbance
energy in the final position and we are interested in the maximum energy in
the domain, the true optimum only results when the maximum energy appears
in the final position. The optimization of the initial position not only gives
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Figure 4. (a) N -factor vs x0 at Rel = 106 with β = 0.5
and ω = 0. Lines as in figure 2. (b) Contours of constant
N -factor (solid lines) with values, from right to left, 3 to 4
with contour spacing 0.2 and contours of constant optimum x0

(dashed lines) with values, from left to right, 0.3 to 0.8 with
contour spacing 0.1, for optimal disturbances in the Blasius
boundary layer. Rel = 106.

the optimal growth, it also ensures that the maximum energy is reached at the
final position.

Figure 4(a) shows the x0-dependence of the N -factor for optimal distur-
bances with β = 0.5 and ω = 0 in the different base flows. The optimal initial
position moves downstream with decreased pressure gradient. The particular
values in this case are x0 = 0.29 for the adverse-pressure-gradient base flow and
x0 = 0.42 for the favorable-pressure-gradient base flow. Contours of constant
N -factor (solid lines) and constant optimal initial position (dashed lines) for
optimal disturbances in the Blasius boundary layer can be seen in figure 4(b).
The optimal initial position moves downstream with increasing spanwise wave
number and angular frequency.

From now on the optimized initial position will be used and we turn our
attention to the β and ω-dependency. First we investigate how the N -factor
depends on β for the different base flows and the results are presented in fig-
ure 5(a). The optimal angular frequency ω = 0 is used. The optimal β in-
creases with decreased pressure gradient and the particular values are β = 0.47,
β = 0.53 and β = 0.58. Secondly, figure 5(b) shows how the N -factors in the
different base flows depend on ω. Here the optimal β-value for the respective
flow case is used.

The results in figures 4(a) and 5(a) also show the effect of streamwise pres-
sure gradient. The algebraic energy growth increases with increased streamwise
pressure gradient of the base flow. That is consistent with the work by Tumin
(2001), which used a slightly different spatial model, and the temporal stability
analysis by Corbett & Bottaro (2000).
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Figure 5. Lines as in figure 2. Rel = 106. (a) N -factor vs β.
ω = 0. (b) N -factor vs ω. β = 0.47, 0.53, 0.58.

βH x0 β ω N G
0.1 0.45 0.58 0 3.9 0.0024Rel

0 0.37 0.53 0 4.1 0.0034Rel

−0.1 0.28 0.47 0 4.3 0.0057Rel

Table 3. Optimal parameters for algebraically growing dist-
urbances in the three base flows at Rel = 106.
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|û1|

y

0 0.2 0.4
0

2

4

6

8

10

0 0.02 0.04
0

2

4

6

8

10

Figure 6. Lines as in figure 2. Rel = 106. Parameters as in
table 3. (a) Optimal initial disturbances. (b) Final distur-
bance.

The optimal x0, β and ω and their corresponding growth in terms of N and
G for the three base flows are summarized in table 3. The associated optimal
initial disturbances are shown in figure 6(a) and when the spanwise periodic
dependence is incorporated they take the form of vortices in the crossflow



70 O. Levin & D. S. Henningson

Reδ

F

10
2

10
3

10
1

10
2

10
3

Figure 7. Lines as in figure 2. Neutral curves in the Reδ −F
plane for β = 0.

plane. Their shape, especially the normal scale, is rather insensitive to the
change of pressure gradient in the base flow. The downstream response of
the optimal disturbances, shown in figure 6(b), take the form of streamwise
elongated streaks when the spanwise periodic dependence is incorporated.

5.3. Tollmien–Schlichting waves

We study the exponential growth (9) of modal disturbances, historically re-
ferred to as Tollmien–Schlichting waves, and its dependence of the spanwise
wave number β and angular frequency ω. The Reynolds number is Rel = 106.
In the case of optimal disturbances we studied the dependence of the initial po-
sition of the disturbance. Here, the growth is maximized in the sense that the
most amplified eigenmode is calculated within the unstable region of x ∈ [0, 1].
That means that x0 is chosen as the lower-branch neutral point and x1 is either
equal to 1 or the upper-branch neutral point, if it appears for a lower value.
However, since the initial condition does not capture non-parallel effects and
introduces a region of errors, the equations are solved from an initial position
sufficiently upstream of x0 in order to remove those errors.

The disturbance is said to be unstable if the physical growth rate defined
as

σ =
1

Reδ

1
√

Ê

∂
√

Ê

∂x
− αi, (37)

where Ê is the amplitude function energy, is greater than zero and the neutral
point is defined as the location where σ = 0. Figure 7 shows the neutral curves
in the Reδ−F plane, where F = 106ω/Rel is the reduced frequency. The critical
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Figure 8. N -factor as function of ω (solid lines) and β
(dashed lines) atRel = 106. (a) Blasius boundary layer. N(β):
ω = 59, N(ω): β = 0 (b) Adverse-pressure-gradient base flow.
N(β): ω = 66, N(ω): β = 0.

βH x0 β ω N
0 0.31 0 59 3.9

−0.1 0.11 0 66 13.6

Table 4. Optimal parameters for exponentially growing dist-
urbances for the zero and adverse-pressure-gradient base flows
at Rel = 106.

Reynolds numbers for the favorable, zero and adverse-pressure-gradient base
flows are Reδ = 889, Reδ = 275 and Reδ = 82, respectively.

Since the favorable-pressure-gradient base flow is quite stable for exponen-
tially growing disturbances, we will not investigate it further in this section.
Instead we turn our attention to the β and ω-dependency of the two other base
flows. Figures 8(a) and 8(b) show the results for the zero and adverse-pressure-
gradient base flow, respectively. The solid lines show the N -factor as a function
of ω and the optimal wave number β = 0 is used. The ω-labels are shown on
the lower axis. The dashed lines show the N -factor as function of β and the
optimal angular frequencies ω = 59 and ω = 66 in respective case are used.
The β-labels are shown on the upper axis.

The optimal β and ω and their corresponding N -factors and lower-branch
neutral points are summarized in table 4. The associated streamwise amplitude
functions at x0 and x1, which is equal to 1 for the optimal cases, are shown in
figures 9(a) and 9(b), respectively.
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Figure 9. Lines as in figure 2. Rel = 106. Parameters as in
table 4. The most amplified streamwise amplitude functions
at (a) x0 and (b) x1.

5.4. Comparison of algebraic and exponential growth

Now that we have studied the two different growth scenarios we compare the
growth of optimal and modal disturbances. Figure 10(a) shows the envelope
curves of the maximal algebraic and exponential N -factors vs Rel. The al-
gebraic growth in the large-Reynolds-number limit is proportional to Rel and
thus represented as the straight lines.

Figures 10(b), 10(c) and 10(d) show contours of constant N -factor in the ω-
β plane at Rel = 106 for the favorable, zero and adverse-pressure-gradient base
flow, respectively. The locations of the peak values are indicated by crosses
(×) in the figures. In the case of the favorable-pressure-gradient base flow,
only the algebraic growth appears, whereas for the Blasius boundary layer, the
algebraic and exponential growth are comparable. For the adverse-pressure-
gradient base flow on the other hand, the exponential growth is dominating.
The parameters for the maximum growth of optimal and modal disturbances
are summarized in tables 3 and 4, respectively.

5.5. Transition prediction

So far we have compared the growth of the disturbances and not their ac-
tual energy value. To draw any conclusions about when transition occurs, one
has to know the initial disturbance energy, and thus know the receptivity pro-
cess. Typical sources from which disturbances can enter the boundary layer
are freestream turbulence, surface roughness, acoustic waves and vibrations.
At low disturbance levels transition occurs at a N -factor between 8 and 11,
depending of the definition of transition. At higher disturbance levels that
number decreases. TS-wave receptivities to surface roughness, acoustic waves
and vibrations are stronger than the receptivity to freestream turbulence, while
streaks mainly are created through receptivity to freestream turbulence. Here
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Figure 10. (a) Envelope curves of the maximal algebraic and
exponential growth. Lines as in figure 2. Rel = 106. (b) Con-
tours of constant N -factor for the favorable-pressure-gradient
base flow with contour spacing 0.1. The maximum growth
has N = 3.9 at β = 0.58 and ω = 0. (c) Blasius bound-
ary layer with contour spacing 0.2. The maximum algebraic
growth has N = 4.1 at β = 0.53 and ω = 0 and the maxi-
mum exponential growth has N = 3.9 at β = 0 and ω = 59.
(d) Adverse-pressure-gradient base flow with contour spacing
1. The maximum algebraic growth has N = 4.3 at β = 0.47
and ω = 0 and the maximum exponential growth has N = 13.6
at β = 0 and ω = 66. Rel = 106. Crosses (×) indicate the
locations of the peak values.

we will concern ourself with receptivity to freestream turbulence. As is usual
in linear transition prediction we incorporate the receptivity in the N -factor at
transition.

Mack (1977) proposed a receptivity model (1) for the N -factor at transition
associated with exponentially growing disturbances. The model is based on par-
allel, linear stability analysis for exponentially growing TS-waves in the Blasius
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Figure 11. (a) Predicted N -factor at transition vs Tu given
in percent for algebraic (solid line) and exponential (dashed
line) growth. Dotted line: Model by Mack (1977). (b) Lines
as in figure 2. Predicted transition contour in the ReT -Tu
plane. Tu is given in percent. The straight part of the lines
corresponds to transition due to modal growth and the curved
part to bypass transition. Experimental data for the Blasius
boundary layer from Matsubara & Alfredsson (2001) (∗) and
Roach & Brierley (1992) (◦). Numerical data from Yang &
Voke (1991) (+).

boundary layer, correlated with experiments collected by Dryden (1959). The
model, shown as the dotted line in figure 11(a), is misleading, however, since
the transition process in these experiments most likely is a result of bypass
transition of streaky structures, not TS-waves. A more appropriate model is
that of Andersson et al. (1999). That model, equation (2), correlates the tran-
sition Reynolds number associated with bypass transition due to streamwise
streaks, based on the maximum algebraic growth of optimal disturbances in
the Blasius boundary layer. It is shown as the solid line in figure 11(a). Note
that the model of Mack gives a lower N -value for transition than the model
based on transient growth, something not supported by available experimental
data. We will complement the transition model of Andersson et al. (1999) with
the addition of base flows with various pressure gradients. The model is based
on three assumptions.

1. We assume that the initial disturbance energy is proportional to the
freestream-turbulence energy

E(x0) = Tu2, (38)

for isotropic turbulence with the freestream-turbulence level defined as

Tu =
√

u′2/U∞. Here u′ is the fluctuating streamwise velocity in the
freestream and the overbar denotes the temporal mean.
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2. We assume that the initial disturbance grows with the optimal rate

E(x1) = GE(x0) = GRelE(x0). (39)

3. We assume that transition occurs when the final energy reaches a specific
value ET , regardless of the pressure gradient of the base flow

E(x1) = ET . (40)

Combining assumptions (38–40) yields the transition model

√

ReTTu =
k√
G
, (41)

where k should be constant. Using the same correlation as Andersson et al.

(1999) and the optimal Reynolds-number-independent growth in the Blasius
boundary layer gives k = 0.70. Note that our model differs in the sense that
we have used the growth from the optimal initial position and not the leading
edge.

The influence of freestream turbulence on the generation of TS-waves is
not conclusive. In fact, Boiko et al. (1994) made experiments on the behavior
of controlled TS-waves, introduced by means of a vibrating ribbon, in a bound-
ary layer subjected to Tu = 1.5 %. The measured amplification rates for the
waves in the presence of the turbulence generating grid were smaller that for
regular TS-waves, and damping set in further upstream than in the absence
of the turbulence generating grid. Thus we make the simple assumption that
transition resulting from exponentially growing disturbances occurs at N = 8,
the dashed line in figure 11(a), irrespective of the freestream turbulence level.

Figure 11(b) shows the transition Reynolds number based on the results
from the linear stability analysis and the transition model discussed above for
freestream turbulence. The straight part of the lines represents the transition
Reynolds number for exponentially growing modal disturbances and the curved
part represents bypass transition. For high freestream turbulence levels, tran-
sition occurs as a result of the breakdown of streaky structures and for low
freestream turbulence levels as a result of exponentially growing disturbances.
The cross-over point occurs where the bypass transition model predicts a higher
transition Reynolds number than for the exponentially growing disturbances.
According to the model, bypass transition occurs in the Blasius boundary layer
(dashed lines) for a freestream-turbulence level higher than 0.76 %. Similar
results has been found in experiments. Suder et al. (1988) found in their ex-
periment that the bypass mechanism prevailed for freestream-turbulence levels
of 0.65 % and higher. Kosorygin & Polyakov (1990) suggested that TS-waves
and streaks can co-exist and interact for freestream-turbulence levels up to ap-
proximately 0.7 %. However, our model does not account for the interaction
between TS-waves and streaks.
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6. Conclusions

The energy growth of eigenmodes and non-modal optimal disturbances has been
investigated, by means of linear equations valid both for the exponential and
algebraic growth scenarios, in the Falkner–Skan boundary layer with favorable,
adverse and zero pressure gradients.

First, the algebraic growth of optimal disturbances in the large-Reynolds-
number limit was studied. It was found that the initial streamwise position,
where the disturbance is introduced in the boundary layer, has a significant
impact on the growth. The optimal initial position moves downstream with
increasing wave number and angular frequency of the disturbance and with
decreasing pressure gradient of the base flow. Furthermore, the optimal span-
wise wave number increases with decreased pressure gradient while the optimal
angular frequency is equal to zero.

Second, the exponential growth of modal disturbances within the unstable
region was studied. It was found that the optimal angular frequency increases
with decreasing pressure gradient while the optimal spanwise wave number is
equal to zero, as expected.

In both the algebraic and exponential growth scenarios, the growth in-
creases with increasing pressure gradient, although the effect is much more
pronounced for the exponential growth. Therefore, in a comparison of the two
different growth scenarios at Rel = 106, the algebraic growth is much larger for
the favorable-pressure-gradient base flow and the exponential growth is much
larger for the adverse-pressure-gradient base flow, while they are comparable
for the Blasius boundary layer.

Finally, a unified transition-prediction method incorporating the influence
of freestream turbulence was presented. It was shown that bypass transition
due to streamwise streaks occurs for flows with a moderate to high level of
freestream turbulence. The freestream-turbulence level for which bypass tran-
sition occurs decreases with decreased pressure gradient of the base flow.

Appendix: Derivation of the Adjoint Equations

In order to derive the adjoint equations for the algebraic optimization prob-
lem, we disregard terms including α and the p̂x/Re

2
δ term in the streamwise

momentum equation. We rewrite the forward equations (4) in matrix form

Af + Bfy + Cfyy + Dfx = 0, (42)

where the state vector f = (û, v̂, ŵ, p̂)T and

A =









0 0 iβ 0
Ux + β2 − iω Uy 0 0

Vx Vy + β2 − iω 0 0
0 0 β2 − iω iβ









,
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B =









0 1 0 0
V 0 0 0
0 V 0 1
0 0 V 0









,

C =









0 0 0 0
−1 0 0 0
0 −1 0 0
0 0 −1 0









,

D =









1 0 0 0
U 0 0 0
0 U 0 0
0 0 U 0









.

Let us define an inner product between two vectors u and v as follows

(u,v) =

∫ x
1

x
0

∫ ymax

0

u∗v dy dx, (43)

and the adjoint-state vector g = (p∗, u∗, v∗, w∗)T . The star on the adjoint-state
variables is just traditional notation while a star on a vector or matrix denotes
the conjugate transpose. Now we take the inner product between g and the
left-hand side of the forward equation system (42) and move the derivatives
from f to g by integration by parts

(g,Af + Bfy + Cfyy + Dfx) =
(

(A∗ − B
∗
y − D∗

x)g − B∗gy + C∗gyy − D∗gx,f
)

+
∫ x

1

x
0

〈B∗g,f〉






ymax

0
dx+

∫ x
1

x
0

〈C∗g,fy〉






ymax

0
dx−

∫ x
1

x
0

〈C∗gy,f〉






ymax

0
dx+

∫ ymax

0

〈B∗g,f〉






x
1

x
0

dy. (44)

Since the left-hand side of the derivation (44) is equal to zero due to the state
equations, the right-hand side also has to be zero. By setting each boundary
term to zero we are ending up with a set of equations for the adjoint-state
variables

(A∗ − B
∗
y − D∗

x)g − B∗gy + C∗gyy − D∗gx = 0, (45)

and the boundary terms can explicitly be written
∫ x

1

x
0

〈B∗g,f 〉






ymax

0
dx =

∫ x
1

x
0

(

V u∗û+ (p∗ + V v∗)v̂ + V w∗ŵ + v∗p̂
)







ymax

0
dx = 0, (46)

∫ x
1

x
0

〈C∗g,fy〉






ymax

0
dx =

∫ x
1

x
0

(−u∗ûy − v∗v̂y − w∗ŵy)






ymax

0
dx = 0, (47)

∫ x
1

x
0

〈C∗gy,f〉






ymax

0
dx = (−u∗yû− v∗y v̂ − w∗

yŵ)






ymax

0
dx = 0, (48)
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∫ ymax

0

〈D∗g,f〉






x
1

x
0

dy =

∫ ymax

0

(

(p∗ + Uu∗)û+ Uv∗v̂ + Uw∗ŵ
)







x
1

x
0

dy = 0. (49)

The necessary boundary conditions can be determined by the three first bound-
ary terms (46–48)

u∗ = v∗ = w∗ = 0 at y = 0,
u∗ = w∗ = p∗ + 2V v∗ = 0 at y = ymax.

(50)

Moreover, by identifying ψ1 and Φ in the last boundary term (49) the initial
conditions and the action of the adjoint operator can be stated

U1u
∗
1 + p∗1 = ψ1,

v∗1 = w∗
1 = 0,

(51)

φ2 = U0v
∗
0,

φ3 = U0w
∗
0.

(52)
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Optimal disturbances in suction boundary

layers

By Martin G. Byström, Ori Levin and Dan S. Henningson

Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden

A well known optimization procedure is used to find the optimal disturbances in
two different suction boundary layers within the spatial framework. The max-
imum algebraic growth in the asymptotic suction boundary layer is presented
and compared to previous temporal results. Furthermore, the spatial approach
allows a study of a developing boundary layer in which a region at the leading
edge is left free from suction. This new flow, which emulates the base flow of
a recent wind-tunnel experiment, is herein denoted a semi suction boundary
layer. It is found that the optimal disturbances for these two suction boundary
layers consist of streamwise vortices that develop into streamwise streaks, as
previously found for a number of shear flows. For the semi suction boundary
layer it is shown that the optimal spanwise scale is set in the suction-free region
at the leading edge.

1. Introduction

The transition from laminar to turbulent flow is a critical process in any engi-
neering application where the minimization of friction drag is a design objec-
tive. Transition prediction has traditionally been carried out by considering the
unstable eigenmodes of the Orr–Sommerfeld equations, i.e. the exponentially
growing Tollmien–Schlichting waves. However, under certain circumstances
other transition scenarios are more likely. It is well known that elongated,
streamwise-oriented structures of alternating low and high velocity develop in
boundary layers subjected to high or moderate levels of free-stream turbulence.
These structures are commonly referred to as streaks or Klebanoff modes after
the experiments of Klebanoff (1971). Since then, a number of experimental
studies have shown that these streaks grow algebraically in the downstream di-
rection (Westin et al. 1994; Matsubara & Alfredsson 2001; Fransson et al. 2005).
Due to secondary instabilities, they break down to turbulence when their am-
plitude reach a critical level (Andersson et al. 2001; Brandt & Henningson
2002; Hœpffner et al. 2005). The physical mechanism behind the formation of
streaks was first explained by Landahl (1975, 1980). He argued that when a
fluid element is lifted up in the wall-normal direction it will initially maintain
its horizontal momentum. Hence, small perturbations in the wall-normal direc-
tion can cause large disturbances in the streamwise direction. This mechanism

83
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is commonly referred to as the lift-up effect. Ellingsen & Palm (1975) showed
theoretically that three-dimensional disturbances can grow linearly with time
in an inviscid flow without inflection point.

Among the first to calculate optimal perturbations numerically were Butler
& Farrell (1992) and Reddy & Henningson (1993). Butler & Farrell (1992)
considered the temporal development of linear, three-dimensional perturbations
in a number of shear flows. They used a variational method to find the optimal
perturbations, i.e. the perturbations that gain the most energy in a given time
period. It was found that these perturbations resemble streamwise vortices that
give rise to streamwise streaks. Corbett & Bottaro (2000, 2001b) calculated
the optimal perturbation of the Falkner–Skan boundary layer and later the
Falkner–Skan–Cooke boundary layer within the temporal framework.

The spatial framework is however more physically relevant than the tem-
poral, it has also the advantage of allowing studies of non-parallel flows such as
the developing Blasius boundary layer (BBL). Andersson et al. (1999) and Lu-
chini (2000) separately calculated the optimal disturbance in the non-parallel
BBL. The disturbance was introduced at the leading edge and it was found that
the optimal disturbance consists of streamwise aligned vortex pairs developing
into streaks. Levin & Henningson (2003) extended the work of Andersson et al.

(1999) to the Falkner–Skan boundary layer. The disturbance was however not
initiated at the leading edge, but at a downstream position optimized to give
the highest possible growth.

One method to delay transition is to apply suction through the surface
which the boundary layer develops over. The suction can be optimized to min-
imize the growth of different types of disturbances (Balakumar & Hall 1999;
Pralits et al. 2002; Zuccher et al. 2004). Herein we will however study the
algebraic disturbance growth in boundary layers where uniform suction is ap-
plied. When uniform suction is applied over a flat plate, the boundary layer
will asymptotically approach the asymptotic suction boundary layer (ASBL),
as outlined in Schlichting (1979). Fransson & Alfredsson (2003) made an exper-
imental study on the algebraic growth of disturbances induced by free-stream
turbulence in the ASBL. A small region at the leading edge was however free
from suction, allowing a BBL to develop up to the point where the suction
set in. Downstream of this point the flow evolved into the ASBL, which was
reached within the upstream half of the measurement interval. In the present
paper, we will denote this type of boundary layer, where suction is applied
only over the downstream part of the interval, a semi suction boundary layer
(SSBL). Fransson & Alfredsson (2003) compared the disturbance growth in
the BBL and the SSBL. The disturbance energy was found to grow linearly
in the downstream direction, but when suction was applied the growth ceased
so that the present amplitude level was kept essentially constant. The suction
also resulted in a twofold reduction of the boundary-layer thickness, despite of
this the spanwise scale of the streaks was maintained. Fransson & Alfredsson
(2003) argue that the initial spanwise scale is decided in the receptivity process,
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this would explain the similarity of scales since a BBL is present at the leading
edge of the SSBL. Yoshioka et al. (2004) extended the work of Fransson &
Alfredsson (2003) to a number of suction rates and free-stream turbulence lev-
els. It was concluded that the wall suction suppresses the disturbance growth,
for high suction rates the disturbance energy may even decay. The spanwise
scale of the streaks decreases with increasing free-stream turbulence level but
remains nearly constant in the downstream direction. Yoshioka et al. (2004)
concluded that the disturbances initiated at the leading edge become mainly
passive and are convected downstream by the flow. Fransson & Corbett (2003)
used an adjoint-based optimization procedure (Corbett & Bottaro 2001b) to
calculate the optimal perturbation in the ASBL within the temporal frame-
work. The optimal velocity perturbation was found to be in good agreement
with experimental data from Fransson & Alfredsson (2003), but there was
some discrepancy between the optimal wavenumber and those experimentally
observed.

In the present paper we calculate the optimal disturbances in the ASBL
and the SSBL within the spatial context. The calculations are carried out with
an adjoint-based optimization procedure implemented by Levin & Henningson
(2003), valid in the large Reynolds-number limit for a viscous, incompressible
flow. Furthermore, the spanwise wavenumber and angular frequency of the dis-
turbance as well as the streamwise interval length are optimized. The current
study was motivated by the wind-tunnel experiment by Fransson & Alfredsson
(2003). Results from this experiment have previously been compared with the
temporal study of the ASBL by Fransson & Corbett (2003). This comparison
exposed some discrepancy with respect to the spanwise scale of the disturban-
ces. The spatial approach used herein allows us to simulate the actual base flow
of the experiments, i.e. the SSBL. A comparison of the optimal disturbances
in the ASBL and the SSBL is then carried out to establish the effect of the
differences between these two suction boundary layers.

2. General formulation

We study the algebraic growth in a flat plate boundary layer where suction
is applied at the wall. As seen in figure 1, we denote the streamwise, wall-
normal and spanwise coordinates x, y and z and the corresponding velocities
u, v and w, respectively. The time is denoted t, the pressure p, the spanwise
wavenumber and the angular frequency are denoted β and ω. The kinematic
viscosity and the density of the fluid are denoted ν and ρ.

The base flow of the ASBL is given by a simple analytic expression, first
derived by Griffith & Meredith (1936)

U = U∞

(

1 − exp

[

Vw

ν
y

])

, V = Vw, (1)

where U∞ is the free-stream velocity and Vw is the suction velocity at the wall,
which assumes a negative value when suction is applied. This velocity profile is
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Figure 1. The semi suction boundary layer (SSBL).

an exact solution to both the full Navier–Stokes equations and the boundary-
layer equations. The displacement thickness of the ASBL is constant since the
base flow does not vary in the streamwise direction. The Reynolds number
based on this constant displacement thickness can also be written as the ratio
between the free-stream velocity and the suction velocity, from here on we will
refer to this as the suction Reynolds number Re

δ1 = − ν

Vw

, Re =
U∞δ1
ν

= −U∞

Vw

. (2)

Herein we will use a scaling based on the constant displacement thickness of the
ASBL to scale both mean flow and disturbances. This scaling, summarized in
table 1, will be referred to as the ASBL scalings. From here on we will use the
superscript * to distinguish non-scaled, physical quantities from those scaled in
accordance with table 1. Using scaled quantities we may rewrite equation (1)

U =
U∗

U∞

= 1 − exp

[

−y
∗

δ1

]

= 1 − exp [−y] , V =
V ∗

w

U∞

Re = Vw. (3)

The base flow of the SSBL can be divided into two regions. In the first
region, from the leading edge to the suction start, the base flow was obtained
by solving the Blasius similarity equation. In the second region, downstream
of the suction start, the base flow was obtained by numerically solving the
boundary-layer equations. The streamwise velocity is subjected to homoge-
neous boundary conditions at the wall, the boundary condition for the wall-
normal component is given by the suction velocity Vw . We scale the SSBL with
the ASBL scalings given by table 1. The Reynolds number Re = −U∞/Vw is
however not physically relevant in the upstream part of the interval where no
suction is applied. The BBL of this region has previously been studied by An-
dersson et al. (1999), Luchini (2000) and Levin & Henningson (2003). They
used boundary-layer scalings and defined a Reynolds number Rel = U∞l/ν,
where l is a fixed streamwise distance that is also used to scale x. In the SSBL,
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variable: x y, z t u v, w p β ω

scaling: δ1Re δ1
δ1Re

U∞

U∞

U∞

Re

ρU2
∞

Re2
1

δ1

U∞

δ1Re

Table 1. The ASBL scalings

the natural choice for l is the distance between the leading edge and the point
where the suction starts. Writing the starting position of the suction, xs, with
the ASBL scalings from table 1

xs =
x∗s
δ1Re

=
l

δ1Re
=
Rel

Re2
, (4)

we find that changing the starting position of the suction is equivalent to chang-
ing Rel, given that Re is kept constant. In the study of the SSBL presented in
§ 3.1 we set xs to unity in order to comply with the experiments by Fransson
& Alfredsson (2003). Setting xs to unity is equivalent to setting Rel = Re2,
this is beneficiary since it means that quantities scaled with the ASBL scalings
can be directly compared to quantities scaled with the boundary-layer scalings
and vice versa. Further details on the base flow of the SSBL will be given in
§ 3.1.1.

For these two-dimensional steady base flows, the SSBL and the ASBL, we
consider three-dimensional and time-dependent disturbances. The disturban-
ces are taken to be periodic in the spanwise direction and in time. We consider
algebraically growing disturbances with weak streamwise variation, the stream-
wise wavenumber is thus set to zero. Either one of the disturbances u, v, w or
p can then be assumed to be of the form

f = f̂(x, y) exp [iβz − iωt] . (5)

Introducing this assumption in the non-dimensional, linearized Navier–Stokes
equations and neglecting terms of low order yields a parabolic set of distur-
bance equations as outlined in Levin & Henningson (2003). The disturbance is
subjected to no-slip boundary conditions at the wall, the wall-normal distur-
bance can be set to zero since we consider suction through a material of low
permeability. Together with boundary and initial conditions, the disturbance
equations form an initial boundary-value problem that can be solved through
downstream marching for a disturbance with given spanwise wavenumber and
angular frequency.

The aim is to optimize the initial disturbance (û0, v̂0, ŵ0) at x0, the begin-
ning of the interval, in order to achieve maximum possible amplification of the
disturbance energy at x1, the end of the interval. We define the growth G over
the interval x0 ≤ x ≤ x1 as the ratio between the disturbance energy E at the
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end and beginning of the interval.

G(x0, xs, x1, β, ω,Re) =
E(x1)

E(x0)
. (6)

Observe that the growth in the ASBL will not depend on the suction start xs

since we assume that it is located sufficiently far upstream so that the ASBL
has been reached at the start of the interval. The energy norm E is defined in
the same way as stated in Andersson et al. (1999), Luchini (2000) and Levin
& Henningson (2003). As outlined in these papers, in a high Reynolds-number
flow the highest possible growth is achieved for an initial disturbance with a
zero streamwise component, due to the difference in order between the stream-
wise component and the wall-normal and spanwise components. This differ-
ence in order also makes it possible to neglect the wall-normal and spanwise
components at the end of the interval. It then follows that the growth scales
quadratically with Re in the large Reynolds-number limit (Andersson et al.

1999; Luchini 2000; Levin & Henningson 2003).

Since the initial boundary-value problem is linear and homogeneous an
input-output formulation can be adopted, such that the disturbance at the
final position is a linear function of the initial disturbance. By introducing the
adjoint equations, the optimal initial disturbance and the associated growth
can be calculated through power iterations. The optimization procedure used
herein to calculate the optimal disturbances in the SSBL and the ASBL was
implemented by Levin & Henningson (2003). It is similar to the procedures
that were used by Andersson et al. (1999) and Luchini (2000). A detailed
description of this procedure can also be found in the textbook by Schmid &
Henningson (2001).

3. Results

All results presented in this section have been subjected to convergence tests
in order to ensure their accuracy. Furthermore, the height of the calculation
box ymax was varied between 40 and 60 to make sure that the whole initial
disturbance was captured.

3.1. The semi suction boundary layer

3.1.1. Base flow

In this section we study the SSBL in which a BBL develops from the leading
edge to the point where the suction starts. Downstream of this point a uniform
suction is applied, in this evolution region the flow evolves towards the ASBL.
The streamwise distance needed for the flow to reach the ASBL is decided by
the strength of the suction and the thickness of the BBL at the suction start.
The SSBL emulates the base flow of an experiment carried out by Fransson &
Alfredsson (2003). In this experiment, the boundary layer developed over a flat
plate made of porous material so that suction could be applied. The leading
edge was however made of an impermeable material, leaving this region free
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Figure 2. The displacement thickness δ1(x) of the SSBL at
Re = 347, scaled with the constant displacement thickness of
the ASBL. Discontinuous flow (dashed line) and approximated
continuous flow with smoothly applied suction (solid line).
Experimental data from Fransson & Alfredsson (2003) (dots).

from suction. Fransson & Alfredsson (2003) set the suction Reynolds number
to Re = 347 and started the suction 360mm downstream of the leading edge,
equivalent to setting xs = x∗s/(δ1Re) to unity. As outlined in § 2, this allows
us to make direct comparisons with quantities scaled with the boundary-layer
scalings. Herein we study the SSBL over nine streamwise intervals, all starting
at x0 = 0 and with suction from xs = 1 to the end of the interval. The length
of the interval is varied by changing the end position from x1 = 2 to x1 = 10
in steps of one.

Fransson & Alfredsson (2003) used a non-dimensional evolution equation
to calculate the base flow of the evolution region between the BBL and the
ASBL. The exact agreement with their results validated the numerical solver
of the boundary-layer equations that was used in the present implementation.
A small modification of the base flow was however made since the SSBL is
discontinuous at xs = 1 where the suction starts. In order to remove this
discontinuity, we employ a strategy previously used by Zuccher et al. (2004)
and Corbett & Bottaro (2001a), using a step function to smoothly increase the
suction from zero at x = 0.9 to full suction at x = 1.1. The used step function
(Berlin & Henningson 1999) has continuous derivatives of all orders and gives
the same mass flux through the wall as the discontinuous flow. Figure 2 shows
a comparison of the displacement thickness of the discontinuous flow and the
modified continuous flow with smoothly applied suction. Despite the smooth
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Figure 3. The growthG in the SSBL at Re = 347 as function
of β for nine streamwise intervals ranging from 0 ≤ x ≤ 2 to
0 ≤ x ≤ 10 in steps of one.

application of the suction, the flow undergoes a significant transformation over
a short streamwise distance, a finer grid was therefore used in the region where
the suction starts. Experimental data from Fransson & Alfredsson (2003) is
also included in figure 2, good agreement can be seen between the calculated
and measured displacement thickness.

Another approximation was done in the treatment of the leading edge. The
limit of the normal velocity of the BBL is infinity when x tends towards zero.
However, here we follow the work of Andersson et al. (1999) and set the normal
velocity to zero and the streamwise velocity to unity at the initial point of the
calculation interval.

3.1.2. Optimal disturbances

The influence of the spanwise wavenumber β and the angular frequency ω on
the energy growth in the SSBL was studied for the nine streamwise intervals
defined in § 3.1.1. Apart from when the ω-dependence is studied, ω is set to
zero for all calculations presented in this section.

Figure 3 shows the growth as function of β for all nine streamwise intervals.
We gather that the optimal growth occurs at different β for each respective in-
terval, i.e. for each streamwise interval there is an optimal β that gives the
largest possible growth at the end of that interval. This optimal β and the cor-
responding optimal growth decrease as the interval is prolonged. The optimal
spanwise wavenumbers and the corresponding optimal growth are summarized
in table 2, § 3.2.
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Figure 4. Contours of constant growth G in the SSBL at
Re = 347 in the (ω, β)-plane for the streamwise interval
0 ≤ x ≤ 6.

The ω-dependence is exposed in figure 4, which shows contours of constant
growth in the (ω, β)-plane for the streamwise interval 0 ≤ x ≤ 6. From the
figure we conclude that the optimal ω is zero, this conclusion was found to be
true for all the streamwise intervals studied here. This is in agreement with
what has been found for the BBL by Luchini (2000) and the Falkner–Skan
boundary layer by Levin & Henningson (2003).

The growth as function of the streamwise coordinate x is shown in figure 5
for all nine streamwise intervals. The optimal β of each respective interval was
used in these calculations and ω was set to zero. The optimization procedure
used herein optimizes the growth at the end of the streamwise interval. The
optimal growth is thus the largest possible growth at the end of the streamwise
interval but does not necessarily constitute the largest growth in the interval.
As seen in figure 5 each curve has a maximum upstream of their respective end
position and these maxima exceed the optimal growth for all intervals. The
maxima are located in the suction part of the SSBL, except for the shortest
interval (0 ≤ x ≤ 2), which has the maximum located at the starting point
of the suction, i.e. at the end of the BBL. When the endpoint of the interval
was moved further upstream, towards the starting point of the suction, it was
found that the maximum remains located at this point. Due to the smooth
application of the suction (see § 3.1.1), the maximum growth is reached slightly
upstream of xs = 1. It is however reasonable to assume that the maximum
growth will be reached at exactly xs = 1 in the discontinuous flow. The optimal
interval for the SSBL thus ends at the point where the suction starts. In this
interval, where no suction is applied, the base flow is simply the BBL for which
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Figure 5. The growthG in the SSBL at Re = 347 as function
of x for nine streamwise intervals ranging from 0 ≤ x ≤ 2 to
0 ≤ x ≤ 10 in steps of one. The optimal β of each respective
interval was used, ω was set to zero.

it is well known that the optimal spanwise wavenumber is β = 0.45 (Andersson
et al. 1999; Luchini 2000).

Figure 6 shows the optimal disturbances in the SSBL for the streamwise
intervals 0 ≤ x ≤ 2 (solid line), 0 ≤ x ≤ 6 (dashed line) and 0 ≤ x ≤ 10 (dotted
line). For each respective interval the optimal β was used and ω was set to
zero. Figures 6(a–b) show the optimal disturbance while figure 6(c) shows the
downstream response of the optimal disturbance at the final position. The
downstream response takes the form of a streamwise elongated streak when
the spanwise periodic dependence is considered. The amplitude of the streak
is larger for short intervals than for long, but the shape of the streak remains
similar and the profile maximum is located at about the same wall-normal
distance from the wall, where the SSBL reaches approximately three quarters
of the free-stream velocity. From this we conclude that there is an optimal
shape, a streak located at a certain wall-normal position, that gives the highest
disturbance energy at the end of the interval.

The optimal disturbance, i.e. the wall-normal and spanwise components
shown in figures 6(a–b), takes the form of streamwise aligned vortex pairs when
the spanwise periodic dependence is considered. We also observe that the profile
maxima move upward when the streamwise interval is prolonged. Thus, the
vortex cores of the initial disturbance move upward and the vortices grow in
size, as seen in figure 7. An explanation for this is that the suction will draw
the disturbance towards the wall as it evolves downstream. From figure 6(c)
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Figure 6. The optimal disturbance in the SSBL at Re = 347
and for the streamwise intervals 0 ≤ x ≤ 2 (solid line), 0 ≤
x ≤ 6 (dashed line) and 0 ≤ x ≤ 10 (dotted line). (a–b) The
wall-normal component v̂0 and the spanwise component ŵ0 of
the optimal disturbance. (c) The downstream response of the
optimal disturbance, streamwise component û1. Observe that
the scaling of û differs a factor Re from the scaling of v̂ and
ŵ, see § 2. The grey line shows the ASBL, scaled down to
fit the figure. The ASBL has been reached (within graphical
accuracy) at the end of the streamwise intervals examined here.

we saw that the downstream response of the optimal disturbance is a streak
located at a certain optimal wall-normal position. The cores of the vortices,
i.e. the optimal disturbance, must be located some distance higher in the wall-
normal direction in order to allow the suction to draw the disturbance down
to this optimal wall-normal position as it evolves over the interval. This effect
is stronger for longer streamwise intervals where the suction will act on the
disturbance over a longer distance. The vortex cores must therefore be located
higher for a long interval than for a short in order for the disturbance to reach
the optimal wall-normal coordinate at the end of the interval.

3.2. A comparison with the asymptotic suction boundary layer

In this section we study the energy growth of the optimal disturbance in the
ASBL and make a comparison between the SSBL and the ASBL. We study the
ASBL over the same streamwise intervals that were used for the SSBL, although
the suction is here applied over the whole interval. Since the base flow of the
ASBL does not vary in the streamwise direction (see § 2), it is however arbitrary
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Figure 7. The optimal disturbance in the SSBL at Re = 347
for the streamwise intervals 0 ≤ x ≤ 2 (upper row), 0 ≤ x ≤ 6
(middle row) and 0 ≤ x ≤ 10 (bottom row).

which interval we study as long as we keep the length constant. The Reynolds
number Re was set to 347, as in the study of the SSBL.

The optimal disturbance in the ASBL takes the form of streamwise aligned
vortex pairs that give rise to streamwise elongated streaks. This is in agreement
with the results from the temporal study of the ASBL by Fransson & Corbett
(2003). The dependence on the spanwise wavenumber β resembles that found
for the SSBL (see table 2) and the optimal angular frequency ω was found
to be zero irrespective of the interval length. Figure 8 shows the growth as
function of the streamwise coordinate for all nine streamwise intervals, the
optimal β for each respective interval was used in these calculations and ω was
set to zero. For all the intervals the optimal growth is exceeded by maxima
upstream of the endpoints. An optimization of the endpoint of the streamwise
interval was therefore carried out, it was found that the largest possible growth
of G = 0.11 · 10−2Re2 occurs when x1 = 0.89 and β = 0.52, the dashed line in
figure 8. This result can be compared with the temporal study of the ASBL
by Fransson & Corbett (2003). They found that the optimal disturbance, with
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Figure 8. The growth G in the ASBL as function of x at
Re = 347 for nine streamwise intervals ranging from 0 ≤ x ≤ 2
to 0 ≤ x ≤ 10 in steps of one (solid lines) and for the optimal
interval 0 ≤ x ≤ 0.89 (dashed line). The optimal β of each
respective interval was used in these calculations and ω was
set to zero.

β = 0.53, gives rise to a growth of G = 0.99·10−3Re2 over the optimal temporal
interval. The spatial growth presented here is 16% higher than this temporal
result. Biau & Bottaro (2004), who carried out a study on optimal disturbances
in the plane Poiseuille flow, also found that spatial analysis gives higher growth
than the temporal analysis. The plane Poiseuille flow was implemented herein
and the growth calculated for the optimal wavenumber and interval given by
Biau & Bottaro (2004). The result matched that of Biau & Bottaro (2004) and
thus validated the used optimization procedure.

It is interesting to compare the optimal disturbance in the SSBL with that
in the ASBL since it will expose how the differences in the base flow at the
beginning of the interval affect the disturbance as it evolves downstream. One
would expect that the differences between the disturbances will go towards
zero as the streamwise interval is prolonged since the base flow of the SSBL
approaches that of the ASBL.

The left column of figure 9 shows the growth as function of the spanwise
wavenumber β for both the SSBL (solid line) and the ASBL (dashed line) while
the right column shows the growth as function of the streamwise coordinate x.
The angular frequency ω was set to zero and the optimal β was used when the
growth as function of x was calculated. Three different streamwise intervals
were used, 0 ≤ x ≤ 2, 0 ≤ x ≤ 6 and 0 ≤ x ≤ 10. For the shortest interval,
shown in the upper row, the SSBL gives a 30% higher optimal growth than the
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Figure 9. Left column: the growth G as function of β. Right
column: the growth of the disturbance with optimal β as func-
tion of x. The SSBL (solid line) and the ASBL (dashed line)
at Re = 347. The upper, middle and bottom row shows the
growth in the streamwise intervals 0 ≤ x ≤ 2, 0 ≤ x ≤ 6 and
0 ≤ x ≤ 10, respectively.

ASBL. The optimal growth also occurs at a lower spanwise wavenumber for the
SSBL than for the ASBL. Studying the growth as function of x, we gather that
the reason for the large difference in growth is the contribution from the BBL
at the beginning of the SSBL. The middle row shows the interval 0 ≤ x ≤ 6,
for this interval the curves lie much closer, but the SSBL still gives a slightly
higher optimal growth than the ASBL. The optimal spanwise wavenumber is
however the same. The contribution from the BBL is also much smaller, this
explains why the optimal growth in the SSBL ends up so much closer to that in
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x1 2 3 4 5 6 7 8 9 10
βASBL 0.38 0.32 0.29 0.26 0.24 0.23 0.21 0.20 0.19
βSSBL 0.35 0.31 0.28 0.26 0.24 0.23 0.21 0.20 0.19

GASBL/Re
2 · 102 0.096 0.075 0.059 0.048 0.039 0.033 0.028 0.024 0.021

GSSBL/Re
2 · 102 0.12 0.088 0.065 0.050 0.040 0.033 0.028 0.024 0.021

Table 2. The optimal growth and spanwise wavenumber in
the ASBL and the SSBL at Re = 347 for nine streamwise
intervals of different length.
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|ŵ0|

|v̂0|

|ŵ0|
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Figure 10. The optimal disturbance in the SSBL (solid line)
and the ASBL (dashed line) at Re = 347. The upper and
bottom row shows respectively the wall-normal component v̂0
and the spanwise component ŵ0.

the ASBL. Finally we examine the long streamwise interval 0 ≤ x ≤ 10, shown
in the bottom row of figure 9. The curves collapse when we study the growth as
function of the spanwise wavenumber, but a small difference can still be seen at
the beginning of the streamwise interval. A more detailed comparison is done
in table 2, which states the optimal spanwise wavenumber and corresponding
optimal growth for all streamwise intervals. We conclude that the optimal
growth and spanwise wavenumber in the SSBL go towards those in the ASBL
when the streamwise interval is prolonged.

In figure 10 we compare the optimal disturbance in the SSBL (solid lines)
and the ASBL (dashed lines). The upper row shows the wall-normal component
v̂0 while the bottom row shows the spanwise component ŵ0. The left, middle
and right columns show the disturbances in the streamwise intervals 0 ≤ x ≤ 2,
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Figure 11. The downstream response û1 of the optimal dis-
turbance in the SSBL (solid line) and the ASBL (dashed line)
at Re = 347.

0 ≤ x ≤ 6 and 0 ≤ x ≤ 10, respectively. This figure reveals that there
are significant differences between the optimal disturbance in the SSBL and
the optimal disturbance in the ASBL. For the shortest streamwise interval,
the shapes of the disturbance profiles differ, especially for the ŵ component
which is larger close to the wall in the SSBL than in the ASBL. For the longer
intervals, the disturbances assume more or less the same shape, but the profile
maxima are still located slightly higher in the ASBL than in the SSBL. This is
due to the fact that the suction acts on the disturbance over a longer distance
in the ASBL where the suction is applied over the whole interval. When the
v̂ and ŵ components in the longest interval are plotted at x = 1 (not shown
here), the disturbances in the ASBL and the SSBL almost collapse.

The optimal disturbance evolves downstream to the final position of the
interval, shown in figure 11. The differences are now much smaller and only
clearly visible for the shortest interval. There is no significant difference in
the wall-normal distribution or shape of the disturbances, we conclude that for
long intervals the downstream response of the optimal disturbance in the SSBL
and the ASBL have the same shape and wall-normal distribution.

3.3. Comparison with experimental results

As previously mentioned, Fransson & Alfredsson (2003) made an experimental
study on the development and growth of disturbances induced into the SSBL by
free-stream turbulence. The suction Reynolds numbers was Re = 347, the same
Reynolds number has been used for the calculation of optimal disturbances
in the present work. Fransson & Alfredsson (2003) found that the spanwise
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wavenumber of the streaks depends on the level of the free-stream turbulence.
Three grids were used to achieve different levels of turbulence; 1.4%, 2.2%
and 4.0%. For these turbulence levels the measured spanwise wavenumbers
were β = 0.33, β = 0.41 and β = 0.47, respectively. In comparison, the
optimal wavenumber in the ASBL is β = 0.53 (Fransson & Corbett 2003) with
temporal analysis and β = 0.52 with the spatial analysis presented herein.
Fransson & Corbett (2003) argue that the experimentally measured spanwise
wavenumber approach the optimal wavenumber as the free-stream turbulence
level is increased. Their reasoning is that a high level of free-stream turbulence
will provide enough energy over the whole range of scales to allow the boundary
layer to amplify the disturbance with a wavenumber close to that of the optimal
disturbance. There is however a discrepancy between the optimal and the
measured wavenumber, even for the highest turbulence level.

Fransson & Alfredsson (2003) furthermore report that the spanwise scale
of the streaks is maintained when suction is applied compared with the no-
suction case. According to Fransson & Alfredsson (2003), the initial spanwise
scale is probably set by the receptivity process in the BBL at the leading
edge of the SSBL. Yoshioka et al. (2004) found that the spanwise scale of the
streaks remains nearly constant in the downstream direction and concluded
that the disturbances initiated at the leading edge become mainly passive and
are convected downstream by the flow. To summarize, the experimental find-
ings seem to indicate that the spanwise scale is set at the leading edge of the
SSBL, where the base flow is unaffected by the suction. The results presented
herein strengthen this hypothesis, since they show that the maximum distur-
bance growth in the SSBL is achieved over the BBL at the leading edge. The
optimal spanwise wavenumber in the SSBL is therefore the same as that in
the BBL, β = 0.45 (Andersson et al. 1999; Luchini 2000). This is quite close
to the experimentally observed wavenumber at the highest turbulence level,
β = 0.47 (Fransson & Alfredsson 2003). The downstream response to the
optimal disturbance, shown in figure 11, was also compared to experimental
data from Fransson & Alfredsson (2003). Good agreement was found, as pre-
viously reported by Fransson & Corbett (2003). There are however important
differences between the calculation of optimal disturbances presented herein
and the experimental conditions. In the calculation of the optimal disturbance
we assume that the disturbance enter the boundary layer at the initial point
of the streamwise interval and then evolves downstream without any influence
from the outside disturbance environment. In the experiment the boundary
layer is subjected to continuous forcing from the free-stream turbulence over
the entire streamwise interval. It is also possible that non-linear effects that
are not accounted for in the calculation of the optimal disturbances occur in
the receptivity process.
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4. Conclusions

The energy growth of optimal disturbances was studied by means of linearized
equations for the semi suction boundary layer (SSBL) and the asymptotic suc-
tion boundary layer (ASBL). The suction Reynolds number was set to 347.

First the algebraic growth in the SSBL was studied. It was found that the
optimal disturbance consists of streamwise aligned vortex pairs that give rise to
streamwise streaks. This disturbance gives rise to the highest possible growth
when the streamwise interval ends at the point where the suction starts. The
base flow of this optimal interval is the BBL, the optimal spanwise wavenumber
in the SSBL is therefore the same as that in the BBL, β = 0.45 (Andersson et al.

1999; Luchini 2000). When the interval is prolonged beyond the starting point
of the suction, the optimal spanwise wavenumber decreases, the optimal angular
frequency is however zero irrespective of the interval length. Furthermore, it
was found that the vortices, i.e. the optimal disturbance, grow as the interval
is prolonged and that the cores of the vortices move upward in the wall-normal
direction. This effect is due to the suction which draws the disturbance down
towards the wall. The vortex cores must therefore be located higher initially
in a long interval where the suction will act on the disturbance over a longer
distance.

Second, the optimal disturbance in the ASBL was studied and a compar-
ison with the SSBL was made. The optimal disturbance in the ASBL closely
resembles that in the SSBL. The cores of the vortices, i.e. the optimal distur-
bance, are however located higher in the ASBL due to the fact that the suction
acts on the disturbance over the whole streamwise interval. This difference van-
ishes as the disturbance evolves in the streamwise direction, the downstream
response is therefore the same over long intervals. Furthermore, it was found
that for short intervals the SSBL gives a significantly higher growth due to
the contribution from the BBL. The optimal spanwise wavenumber was also
lower for the SSBL than for the ASBL for these intervals. As the streamwise
interval was prolonged the optimal growth and spanwise wavenumber in the
SSBL approached those in the ASBL.

Finally, a comparison was made with experimental results from Fransson
& Alfredsson (2003) and Yoshioka et al. (2004). This comparison showed that
both the experimental findings and the results presented herein support the
theory that the spanwise scale of the disturbances is set in the BBL at the
leading edge of the SSBL.
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A plane wall-jet flow is numerically investigated and compared to experiments.
The measured base flow is matched to a boundary-layer solution developing
from a coupled Blasius boundary layer and Blasius shear layer. Linear stabil-
ity analysis is performed, revealing high instability of two-dimensional eigen-
modes and non-modal streaks. The nonlinear stage of laminar-flow breakdown
is studied with three-dimensional direct numerical simulations and experimen-
tally visualized. In the direct numerical simulation, an investigation of the
nonlinear interaction between two-dimensional waves and streaks is made. The
role of subharmonic waves and pairing of vortex rollers is also investigated. It
is demonstrated that the streaks play an important role in the breakdown pro-
cess, where their growth is transformed from algebraic to exponential as they
become part of the secondary instability of the two-dimensional waves. In
the presence of streaks, pairing is suppressed and breakdown to turbulence is
enhanced.

1. Introduction

1.1. The wall jet

A wall jet may generally be considered as a flow field that is produced by
the injection of a high-velocity fluid in a thin layer close to a surface. The
ambient fluid may be either quiescent or moving at a certain velocity, which
typically is lower than the velocity of the injected jet. Such flows are of great
interest to engineers, for instance in film cooling of gas turbine blades and
combustion chambers, in defrosters for automobiles, and in boundary-layer
control of airfoils and flaps. Fundamentally, a wall jet may, in principle, be
treated as a two-layer flow with an inner region that reaches, in the normal
direction, up to the point of maximum velocity and an outer region above.
The inner region is most similar to a wall boundary layer and the outer region
has a flow pattern that is closely related to a free shear layer. The major
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characteristics of these layers are different, and in a wall jet, the interaction
between these regions forms a complex flow field.

Two-dimensional wall jets have been considered since the mid 1950s and
in a classical work by Glauert (1956), it was found that a similarity solution
exists for the laminar wall jet. This solution was obtained explicitly and is valid
far downstream from the position of the fluid injection. Glauert’s solution has
provided a good basis for a number of subsequent stability investigations.

1.2. Two-dimensional behaviour

The temporal linear stability of the Glauert wall jet was examined theoretically
by Chun & Schwarz (1967) by solving the Orr–Sommerfeld equation. Bajura
& Szewczyk (1970) performed hot-wire measurements in an air wall jet and
confirmed the existence of the Glauert wall jet. Furthermore, the stability
of the flow to natural disturbances was studied and the streamwise velocity
fluctuation was found to exhibit two large peaks, one peak on each side of the
wall jet core. The amplification rate of the outer peak was found to be larger,
and hence, the instability of the wall jet is controlled by the outer region. The
results are in qualitative agreement with the linear stability theory by Chun &
Schwarz (1967). The dominance of the outer region was also reported by Bajura
& Catalano (1975), who investigated the whole transition process of a water
wall jet. By using flow visualization, they observed the following five stages
in natural transition: (i) formation of discrete vortices in the outer region; (ii)
vortex pairing in the outer region, resulting in a doubling of the disturbance
wavelength, coupled with the possible pairing of vortex-like motions in the
inner region; (iii) lift-off of the wall jet into the ambient fluid; (iv) onset of
turbulent motion; (v) re-laminarization of the upstream flow, until the next
vortex pairing.

By solving the Orr–Sommerfeld equation, Mele et al. (1986) clarified the
existence of two unstable modes in the wall jet. One mode, unstable at low dis-
turbance frequencies, shows the highest amplitude close to the inflection point
in the outer region of the wall jet, while the other mode, unstable at higher fre-
quencies, attains the highest amplitude close to the wall. They concluded that
the inviscid instability in the outer region governs the large-scale disturbances
while the viscous instability governs the small-scale disturbances close to the
wall. Tumin & Aizatulin (1997) numerically investigated the instability and
receptivity of a laminar wall jet and concluded that the high-frequency viscous
mode can be exited more easily by periodic blowing and suction through the
wall than the low-frequency inviscid mode. Cohen et al. (1992) found a new
family of laminar self-similar solutions describing the mean flow of an incom-
pressible two-dimensional wall jet subjected to steady wall blowing or suction.
By applying linear stability theory in the temporal framework for the family of
solutions, it was shown that blowing stabilizes the inviscid mode while destabi-
lizing the viscous one. The opposite effect was found when suction is applied.
These self-similar profiles were later confirmed experimentally by Amitay &
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Cohen (1993). Amitay & Cohen (1997) investigated the interaction of the two
different modes in the wall jet subject to steady wall blowing or suction.

In a low-disturbance environment, the initial stage of the transition process
is indeed defined by two-dimensional eigenmodes growing in the outer layer.
Two-dimensional direct numerical simulations (DNS) have been successfully
employed and the transitional process has been studied (e.g. Gogineni et al.

1999; Seidel & Fasel 2001) for forced laminar wall jets. The simulations demon-
strate good agreement with the supporting experiments, at least for the initial
stages of transition, where the three-dimensional activity was relatively weak.
Seidel & Fasel (2001) adopted a two-dimensional DNS-solver to analyse the
effect of periodical forcing by a blowing and suction slot on a laminar wall
jet over a heated flat plate. For very low disturbance amplitudes, the simu-
lations show a good agreement with linear stability theory. For an increased
amplitude, a strong nonlinear distortion of the mean flow was observed. In
particular, the skin friction is reduced markedly, the local maximum velocity is
decreased and the wall heat transfer is increased. It was shown that the large
structures, generated by the forcing, are the main cause for the strong mean
flow distortion of both velocity and temperature. The wall heat transfer was
found to increase as large structures entrain cold fluid from the ambient fluid
and hot fluid is convected away from the wall.

1.3. Three-dimensional behaviour

Gogineni et al. (1993, 1999) and Gogineni & Shih (1997) investigated a lam-
inar wall jet undergoing transition using particle image velocimetry (PIV).
Their results show that the transition process is dominated by formation and
development of discrete vortices in both the inner and outer regions and the
interaction between them. Three-dimensionality initiated in the outer region
spreads to the inner region and the emergence of large three-dimensional struc-
tures inside the shear layer triggers the complete breakdown of the flow. The
importance of the three-dimensional effects on the transition process has also
been numerically demonstrated. Wernz & Fasel (1996, 1997) performed DNS
to study the transition process of the wall jet both for two-dimensional and
three-dimensional disturbances and found that when forcing of high-amplitude
disturbances is introduced, mushroom-shaped structures are ejected from the
wall jet into the ambient fluid. Visbal et al. (1998) investigated the breakdown
process in a finite-aspect-ratio wall jet by means of DNS and high-resolution
experimental measurements. In the simulation, the experimental base flow was
matched to a parabolic profile at the nozzle outlet. In the spanwise direction,
an incoming sidewall boundary layer was simulated using a hyperbolic tan-
gent distribution. Two-dimensional forcing was applied by varying the whole
base-flow amplitude. They observed a rapid spanwise breakdown of the two-
dimensional rollers into streamwise vortices and streaks that start near the
sidewalls and propagate toward the midspan of the wall jet.
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The primary instability in inflectional base flows such as free shear layers
and wall jets is a strong inviscid exponential instability resulting in the roll-
up of waves into strong spanwise vortices. These two-dimensional vortices can
experience two different types of secondary instability. For low initial three-
dimensional excitation, the secondary instability is subharmonic and associated
with vortex pairing, like that observed by Bajura & Catalano (1975). If the ini-
tial three-dimensional excitation is large enough, a three-dimensional secondary
instability is predominant, which changes the path to turbulence.

It is well-known that in a free shear layer, the development of two-dimen-
sional motion is coupled with secondary streamwise coherent structures, see
Ho & Huerre (1984), Bernal & Roshko (1986) and Lasheras et al. (1986). The
three-dimensional instabilities manifest themselves mainly as counter-rotating
streamwise vortices and are formed in the braids between the coherent two-
dimensional rollers. Numerical studies support these results, see Metcalfe et al.

(1987) and Balaras et al. (2001). The location of the formation of the three-
dimensionalities is strongly dependent on the location of the origin and the
magnitude of the upstream three-dimensional perturbations. In fact, the ob-
served three-dimensional small scales may destroy the two-dimensional large-
scale structures for the case of a high level of random initial disturbances, as is
clearly shown by Balaras et al. (2001).

1.4. Outline of the paper

The wall jet constitutes an excellent flow case for studying how a free shear
layer and a wall-bounded flow interacts through a detailed investigation of the
interplay between two- and three-dimensional structures in the flow breakdown
to turbulence. For stability investigations of a high-Reynolds-number wall jet,
a description of the laminar base flow is required, and here this flow is analysed
using the boundary-layer equations. For the case of a non-interacting boundary
layer and top shear layer, a simple solution exists that consists of a coupling of
the Blasius boundary layer and the Blasius shear layer. Hereinafter, a wall jet
of this type and its downstream development is referred to as a Blasius wall

jet.

In this work, we perform linear stability calculations and highly resolved
three-dimensional DNS of the Blasius wall jet and compare the results to ex-
periments. It is discovered that in the experimental wall jet, apart from the
two-dimensional waves, almost stationary streaks occur. The streaks interact
with the waves and seed the secondary instability. As a result, the breakdown
process happens fast, resulting in a short laminar part of the wall jet. Such lon-
gitudinal structures are likely to exist in various applications, especially when
the wall jet is created through contractions where vorticity is amplified. In § 2,
the equipment and methodology of the experiment are described. In § 3, the
numerical techniques used are presented and in § 4, the results obtained are
presented. Firstly, the measured base flow is matched to the boundary-layer
solution. Results from the linear stability calculations for both eigenmodes and
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non-modal streaks are presented and compared with the experiment. Finally,
the nonlinear breakdown process is highlighted by the experiment and exam-
ined more closely by analysing the DNS data. The role of subharmonic waves
and pairing is also investigated.

2. Experimental methods

2.1. Experimental set-up

All experiments were conducted at Chalmers University of Technology in a wall-
jet facility, which is schematically shown in figure 1. The wall jet is formed by
the injection of air through a slot and develops over a large horizontal flat
plate of 2.1 m in length and 3.2 m in width. This plate is made of wood and
coated with a thin plastic laminate. The height of the slot used is 3 mm and
the width is 500 mm. A coordinate system is defined in figure 1 with the x-axis
streamwise, y-axis normal to the wall and the z-axis in the spanwise direction.
Equipped with a vertical back wall of 1.2 m height, located just above the inlet
and sidewalls of the same height, the current wall jet can be considered to
operate in quiescent surroundings, since the facility is located in a large hall
(15 × 15 × 8 m3) with negligible room draught.

Air is supplied by a centrifugal fan to the settling chamber, which is
equipped with flow straightening devices; namely, a baffle, perforated plate,
honeycombs and screens. After the settling chamber, the flow enters two
smooth contractions of total ratio 36:1. The measured turbulence level of the
outlet flow is sufficiently low, less than 0.05 % in the frequency range from 10 Hz
to 10 kHz. During the measurements, the velocity in the middle of the nozzle,
U0, is checked by a Pitot–Prandtl tube. The manometer used, FSO510, is also
equipped with sensors for temperature and absolute pressure readings.

The streamwise velocity component of the wall-jet flow field is measured by
a hot wire, which is monitored by a DANTEC constant-temperature anemome-
ter. A tungsten single-wire boundary-layer probe with a wire diameter and
length of 5µm and 0.7 mm, respectively, is operated at an overheat ratio of 1:8.
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The hot wire is calibrated in the jet outlet versus the Prandtl tube. Details
on the experimental procedure as well as on the measurement equipment used
can be found in Chernoray et al. (2005). Typically, the calibration resulted in
an error of less than 0.5 % for all points in the calibration range. The hot-wire
position traversing mechanism is computer controlled and can be completely
automated for long experimental runs through the definition of a geometrical
mesh of measurement points. Equipped with servo-motors it can sustain an
absolute coordinate system with an accuracy of 10µm in the horizontal direc-
tions, and 5µm in the wall-normal direction. The acquisition system is the
IOTech Wavebook 516 sampling module with expansion unit, enabling 16 bit
1 MHz sample and hold with full analogue and digital triggering options. The
software used to control the sampling and saving of data files is linked into a
program for automated, triggered flow measurements using the traverse sys-
tem and a pre-defined mesh of sampling points. The distance between the hot
wire and the wall is measured using an ‘electro-optical’ method and is checked
before every experimental run. To employ this method, a strip of electrically
conductive foil is glued onto the surface and when one probe prong touches
the surface an electric circuit is closed. The distance between the wire and the
wall when the prong touches the surface is measured optically in this position.
It should be pointed out that the wall-distance measurements are performed
before the hot-wire calibration.

2.2. Artificial disturbances

To use the advantages of a controlled experiment and to study the develop-
ment of two-dimensional waves and stationary longitudinal streaks in detail,
disturbances are introduced in the flow artificially.

Time-periodic two-dimensional waves are excited by a loudspeaker situ-
ated about two metres downstream of the nozzle outlet. The signal for the
loudspeaker of controlled frequency and amplitude is generated by an analogue
output board in a computer and an external amplifier unit. The frequency of
the artificial disturbances is chosen to be 1221 Hz, which is close to the natural
flow frequency and detuned off 50 Hz of the power network. The measurement
of the linear instability waves is performed in a region starting at about one
hydrodynamic wavelength downstream of the nozzle outlet and prior to the
downstream distance where significant nonlinear interactions occur. Such rec-
ommendations can be found in the review by Ho & Huerre (1984) for shear lay-
ers and are based mostly on the fact that instability waves are influenced by the
solid edge in a near-field region. It is also recommended that the acoustic wave-
length should be large enough for the assurance of the wave two-dimensionality,
and this length is about 0.3 m for the mentioned frequency of 1221 Hz. Before
the experiment, the two-dimensionality of the base flow and that of the excited
waves is carefully checked through measurements and visualizations. To ob-
tain the amplitude and phase information of the signal, fast Fourier transform
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(FFT) is applied to the velocity time traces, see Chernoray et al. (2005) for
details.

Stationary longitudinal streaks are introduced in the flow by fine roughness
elements of controlled geometry and a typical height of 40µm. The roughness
elements are positioned at the orifice of the wall jet onto the inner surface of
the top lip of the nozzle. To introduce a streaky pattern of a single spanwise
scale, typically an array of five uniformly distributed roughness elements is
used. It is decided to introduce five different streak scales, and accordingly five
groups of humps are positioned on the nozzle. As a result, nearly sinusoidal
mean flow modulation is obtained after a short distance downstream of the
nozzle outlet. The evaluation of the streaks is performed by measurements of
(y, z)-velocity planes of two or three spanwise wavelengths. A cross-sectional
plane for each scale is taken with constant steps in the y-direction of 0.15 mm
and 0.5 mm in the z-direction, and the corresponding number of points for each
plane is 20 in the wall-normal extent and from 12 to 30 in the spanwise extent,
depending on the spanwise streak scale. Subsequently, the undisturbed base
flow is subtracted and the remaining stationary disturbance is decomposed into
spanwise modes using FFT.

During the measurements, the output signal from the anemometer is ampli-
fied and digitized; post-processing is done using the software package Matlab.

3. Numerical solution methods

3.1. Scaling

Consider an incompressible wall jet over a flat plate as illustrated in figure 2.
Through a slot with height b∗, fluid with exit velocity U0 is blown tangentially
along a wall. The scalings are originating from the boundary-layer approxi-
mations. The streamwise coordinate x is scaled with the length scale l, which
is a fixed distance from the slot. The wall-normal and spanwise coordinates y
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and z, respectively, are scaled with the boundary-layer parameter δ =
√

νl/U0,
where ν is the kinematic viscosity of the fluid. The streamwise velocity U is
scaled with U0, while the wall-normal and spanwise velocities V and W , respec-
tively, are scaled with U0δ/l. The pressure P is scaled with ρU2

0 δ
2/l2, where

ρ is the density of the fluid, and the time t is scaled with l/U0. The Reynolds
numbers used here are defined as Rel = U0l/ν and Reδ = U0δ/ν. It is useful

to note the relations l/δ = Reδ =
√

Rel.

3.2. Linear disturbance equations

The well-known technique based on the parabolized stability equations (PSE)
(Bertolotti et al. 1992; Herbert 1997) deals with the spatial evolution of ex-
ponentially growing eigenmodes. These equations are scaled with a suitable
scaling for modal waves, e.g. the streamwise and normal disturbance velocities
are assumed to be of the same order. However, in the last decade there has been
an increasing interest in the algebraically growing non-modal Klebanoff modes
(Klebanoff 1971; Westin et al. 1994; Andersson et al. 1999; Luchini 2000). The
two growth scenarios are associated with different scales. The governing equa-
tions for non-modal disturbances are scaled with the boundary-layer scalings
(see Andersson et al. 1999). Here we summarize a set of stability equations
valid for both algebraically and exponentially growing disturbances, given by
Levin & Henningson (2003). For further details, see that investigation.

We want to study the linear stability of a high-Reynolds-number flow.
The non-dimensional Navier–Stokes equations for an incompressible flow are
linearized around a two-dimensional, steady base flow (U(x, y), V (x, y), 0) to
obtain the stability equations for the spatial evolution of three-dimensional
time-dependent disturbances (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), p(x, y, z, t)).
The disturbances, that are scaled as the base flow, are taken to be periodic in
the spanwise direction and time. This allows us to assume solutions of the form

f = f̂(x, y) exp

(

iReδ

∫ x

x
0

α(x) dx + iβz − iωt

)

, (1)

where f represents either one of the disturbances u, v, w or p. The complex
streamwise wavenumber α captures the fast wavelike variation of the modes
and is therefore scaled with 1/δ, but α itself is assumed to vary slowly with x.

The x-dependence in the amplitude function f̂ includes the weak variation of
the disturbances. The real spanwise wavenumber β and the real disturbance
angular frequency ω are scaled in a consistent way with z and t, respectively.
Introducing (1) in the linearized Navier–Stokes equations and neglecting third-
order terms in 1/Reδ or higher, we arrive at the parabolized stability equations
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in boundary-layer scalings

ûx + iReδαû+ v̂y + iβŵ = 0, (2a)

(Ux + iReδαU − iω)û+ Uûx + V ûy + Uy v̂ +
p̂x

Re2δ
+

iαp̂

Reδ

= ûyy − k2û, (2b)

(Vy + iReδαU − iω)v̂ + Uv̂x + Vxû+ V v̂y + p̂y = v̂yy − k2v̂, (2c)

(iReδαU − iω)ŵ + Uŵx + V ŵy + iβp̂ = ŵyy − k2ŵ, (2d)

where k2 = α2 +β2. All the terms are generally of the first or the second order
except the p̂x/Re

2
δ-term, in (2b), which is of the third order for the algebraic

instability problem and the Vxû-term, in (2c), which is of the third order for
the exponential instability problem. Both of these terms, however, have to be
included in a general formulation of the problem. Unfortunately, the p̂x/Re

2
δ-

term introduces numerical instability, setting a lower limit of the streamwise
step size (Li & Malik 1994), as is the case for all PSE-formulations.

We are interested in solutions subject to no-slip conditions at the plate
and vanishing at the wall-normal position ymax well outside the wall jet. The
boundary conditions in the wall-normal direction can then be written

û = v̂ = ŵ = 0 at y = 0,
û = v̂ = ŵ = 0 at y = ymax.

}

(3)

The set of equations is nearly parabolic in the streamwise coordinate and is
marched forward from an initial position x0 to a final position x1. Given the
initial conditions

û = û0(y), v̂ = v̂0(y), ŵ = ŵ0(y) at x = x0, (4)

the wavenumber β and the angular frequency ω, the initial-boundary-value
problem is solved from x0 to x1 to obtain the downstream development of the
disturbance.

The disturbance growth is generally measured by the average change in
the kinetic energy of the fluid. In spatially evolving investigations, a commonly
used quantity to represent this change is the disturbance energy defined as

E(x, β, ω,Rel) =

∫ ymax

0

(Rel|u|2 + |v|2 + |w|2) dy = Êeθ, (5)

where

Ê =

∫ ymax

0

(Rel|û|2 + |v̂|2 + |ŵ|2) dy, θ = −2Reδ

∫ x

x
0

αi dx. (6)

3.2.1. Exponential growth

Here we consider solutions to (2)–(4) associated with wavelike disturbances,
i.e. where α in the phase function in (6) is order unity. As both the amplitude
and phase functions depend on x, one more equation is required. We require
that both the amplitude function and the wavenumber α change slowly in the
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streamwise direction, and specify a normalization condition on the amplitude
function

∫ ymax

0

(Relûûx + v̂v̂x + ŵŵx) dy = 0, (7)

where the bar denotes complex conjugate. Other conditions are possible and
are presented in the paper by Bertolotti et al. (1992). The normalization con-
dition specifies how much growth and sinusoidal variation are represented by
the amplitude and phase function, respectively. The stability problem (2)–(4)
and (7) have to be solved iteratively in each streamwise step. The numerical
method solving the stability equations is based on a spectral collocation method
involving Chebyshev polynomials. Details about the numerical scheme can be
found in Andersson et al. (1999) and Hanifi et al. (1996). The initial condition
(4) is taken as the least stable eigenfunction of Orr–Sommerfeld and Squire
equations with corresponding eigenvalue α(x0). Since the initial condition do
not capture non-parallel effects there will be a region in the beginning of the
domain that includes some errors (e.g. see figure 9). The size of these errors
and the length of this region are dependent of the type of base flow and how
non-parallel it is.

3.2.2. Optimal disturbances

Now we consider solutions to (2)–(4) with α = 0, giving rise to disturbances
with weak streamwise variations. We are interested in maximizing the dis-
turbance energy (5), at the downstream position x1, by optimizing the initial
disturbance at x0 with given initial energy. That is, we want to maximize the
disturbance growth defined by

G(x0, x1, β, ω,Rel) =
E(x1)

E(x0)
. (8)

When going to the limit of large Reynolds number, the maximum growth will,
because of the difference in order between the terms in the disturbance energy
(5), be obtained for initial disturbances with a zero streamwise velocity com-
ponent. Furthermore, provided that û1 is non-zero, v̂1 and ŵ1 can be neglected
and the Reynolds-number-independent growth can be simplified to

G = lim
Re

l
→∞

G

Rel

=

∫ ymax

0

|û1|2 dy
∫ ymax

0

(|v̂0|2 + |ŵ0|2) dy

=
(û1, û1)u

(q, q)q

. (9)

The last identity defines the appropriate inner products, where q = (v̂0, ŵ0)
T .

The optimization problem in the large-Reynolds-number limit is defined by
maximizing (9) and concerns the optimization of the initial disturbance q for
given values of x0, x1, β and ω. Details about the derivation of the optimization
procedure can be found in the Appendix and in Levin & Henningson (2003)
and details about the numerical scheme is given in Andersson et al. (1999)
and Hanifi et al. (1996). The numerical method solving the forward problem
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(2)–(4) and the backward problem (30)–(32) is based on a spectral collocation
method involving Chebyshev polynomials.

3.3. DNS techniques

3.3.1. Numerical methods

The numerical code (see Lundbladh et al. 1999) uses spectral methods to solve
the three-dimensional time-dependent incompressible Navier–Stokes equations.
The discretization in the streamwise and spanwise directions make use of Fourier
series expansions, which enforces periodic solutions. The discretization in the
normal direction is represented with Chebyshev polynomial series. A pseu-
dospectral treatment of the nonlinear terms is used. The time advancement
used is a second-order Crank–Nicolson method for the linear terms and a four-
step low-storage third-order Runge–Kutta method for the nonlinear terms.
Aliasing errors arising from the evaluation of the pseudospectrally convective
terms are removed by dealiasing by padding and truncation using the 3/2-rule
when the FFTs are calculated in the wall-parallel planes. In the normal direc-
tion, it has been found that increasing the resolution is more efficient than the
use of dealiasing.

Flows such as boundary layers and wall jets are spatially growing and to
fulfil the necessary periodic boundary condition in the streamwise direction,
required by the spectral discretization, a fringe region (see Nordström et al.

1999) is added in the downstream end of the computational domain. In this
region, the function λ(x) is smoothly raised from zero and the flow is forced to
a desired solution v in the following manner

∂u

∂t
= NS(u) + λ(x)(v − u) + g, (10)

∇·u = 0, (11)

where u is the solution vector and NS(u) the right-hand side of the (un-
forced) momentum equations. Both g, which is a disturbance forcing, and v

may depend on the three spatial coordinates and time. The forcing vector
v is smoothly changed (blended) from the undisturbed wall-jet solution of the
boundary-layer equations at the beginning of the fringe region to the prescribed
inflow velocity vector, which is the Blasius wall jet shown in figure 3(a). In the
case of forcing a disturbance in the flow, it is also added to the forcing vector
in the end of the fringe region. The fringe function is conveniently written as

λ(x) = λmax

[

S

(

x− xstart

∆rise

)

− S

(

x− xend

∆fall

+ 1

)]

, (12)

where λmax is the maximum strength of the damping, xstart and xend are the
start and end of the fringe region, respectively, and ∆rise and ∆fall are the rise

and fall distance of the damping function. S(ξ) is a smooth step function with
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Figure 3. Streamwise development of the Blasius wall jet cal-
culated with the boundary-layer equations. (a) x = 1, (b) 3.14,
(c) 20. Far downstream, the solution approaches a Glauert
similarity solution evolving from a different virtual origin. The
Glauert solution (− −−) is shown for comparison in (c).

continuous derivatives of all orders defined by

S(ξ) =















0, ξ 6 0,

1

/[

1 + exp

(

1

ξ − 1
+

1

ξ

)]

, 0 < ξ < 1,

1, ξ > 1.

(13)

This method damps disturbances flowing out of the physical region and smooth-
ly transforms the flow to the desired inflow state, with a minimal upstream
influence (Nordström et al. 1999).

At the wall, a no-slip boundary condition is set and at the free-stream
position ymax, the generalized boundary condition is applied in Fourier space
with different coefficients for each wavenumber. It is non-local in physical space
and takes the form

∂û

∂y
+ kû =

∂v̂0

∂y
+ kv̂0, (14)

where û is the Fourier transform of u. Here, v0 denotes the blended wall-jet
solution of the boundary-layer equations taken as the initial condition and v̂0

its Fourier transform. In the spanwise direction, periodic boundary condition
is set.
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3.3.2. Disturbance generation and numerical parameters

The present numerical implementation provides several possibilities for dis-
turbance generation. Disturbances can be included in the desired solution v,
thereby forcing them in the fringe region, by a body force g and by blowing
and suction at the wall through non-homogeneous boundary conditions.

To study the instability and interaction of time-periodic two-dimensional
waves vw and stationary longitudinal streaks vs, the velocity fields are added
to the blended Blasius wall-jet solution v0 to give a forcing vector of the form
v = v0 + vw + vs. The waves and streaks can then be forced in the fringe
region. The two-dimensional waves vw = (u, v, 0) are taken from solutions of
the parabolized stability equations (2) with β = 0. The vector, which can be
derived from (1) takes the form

vw = f c cosωt+ fs sinωt, (15)

where

fc = (f̂ r cos ar − f̂ i sin ar)e
−a

i , fs = (f̂ r sinar + f̂ i cos ar)e
−a

i (16)

and

ar =

∫ x

x
0

αr dx, ai =

∫ x

x
0

αi dx, (17)

where the subscripts r and i denote real and imaginary part, respectively. The
spanwise periodic streaks are taken from optimized solutions of the stability
equations (2) with ω = 0 and α = 0. The forcing vector takes the form

vs = (ûr cosβz, v̂r cosβz, −ŵi sinβz). (18)

The size of the computational box used for the simulations presented in
this paper is (xl × yl × zl) = (3.09 × 206 × 29.8). The width of the box is set
to fit one spanwise wavelength of the forced streaks. The Reynolds number
at the initial location of the box where x = 1 is Reδ = 173. The resolution is
(nx×ny×nz) = (540×541×64), which is about 18.7 million points. Dealiasing
is activated in the streamwise and spanwise directions. This increases the
computational resolution in the simulation with a factor of 2.25 (1.5 in each
direction). A shared memory parallelization is implemented in the numerical
code. The current study uses 16 nodes, each with two processors. With a wall
clock time of 60 h, a typical simulation calculates about one time unit. The
parameters for the fringe region are xstart = 3.49, xend = 4.09, ∆rise = 0.199,
∆fall = 0.0996 and λmax = 1.0.

The waves and streaks are forced in the fringe region in a similar manner as
done by Brandt & Henningson (2002), who made use of the same spectral code
to study the transition of streamwise streaks in the Blasius boundary layer.
The forcing is turned on smoothly in both space and time. The steamwise
amplitudes of the waves and streaks are prescribed at the end of the fringe
region to 0.001 and 0.03, respectively.

When only two-dimensional waves are forced in the fringe region, random
noise is added to the initial field in order to introduce three-dimensionality
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to the flow. The noise is in the form of Stokes modes, i.e. eigenmodes of the
flow operator without the convective term. These modes fulfil the equation of
continuity and the boundary condition of vanishing velocity at the wall. While
the simulation is running, no more forcing of three-dimensional noise is required
since a small level of noise passes through the fringe region. However, the fringe
region damps incoming disturbances to an energy level below about 10−7.

4. Results

4.1. Matching the base flow

Most of the numerical studies of wall jets have concerned the similarity solution
of Glauert (1956), which is an asymptotic solution. However, a consideration
of the near field of the wall jet in this investigation shows that the flow has not
achieved the self-similar Glauert profile. To investigate the flow close to the
slot at a rather high Reynolds number, it is necessary to find another base flow
more suitable to match with the experiment.

Consider a top-hat profile through a slot with height b located at x = 0,
see figure 2. Immediately downstream of the slot, a boundary layer develops
at the wall and a shear layer develops in the upper part of the top-hat pro-
file, independently of each other. Further downstream, the boundary layer
and the shear layer begin interacting and the local maximum velocity slows
down. Our solution consists of a coupling of the Blasius boundary layer and
the Blasius shear layer as an initial condition to the boundary-layer equations.
The two solutions, which are both similarity solutions to the Blasius equation
with different boundary conditions, are discussed in Schlichting (1979). In the
boundary-layer scalings, Blasius similarity equation reads

2f ′′′ + ff ′′ = 0, (19)

where f(η) is the non-dimensional streamfunction and the prime denotes deriva-
tives with respect to the similarity variable η. The base flow can then be written

U = f ′, V = 1

2
(ηf ′ − f). (20)

For the boundary layer, the similarity variable ηb relates to the non-dimensional
coordinates as y =

√
xηb and the boundary conditions read

ηb = 0 : f = 0, f ′ = 0; ηb → +∞ : f ′ = 1. (21)

The shear layer has the displaced similarity variable ηs = ηb − b and is subject
to the boundary conditions

ηs → −∞ : f = ηs − 2Vb, f ′ = 1; ηs → +∞ : f ′ = 0, (22)

where Vb denotes the normal component of the free-stream velocity taken from
the boundary-layer similarity solution, to fulfil continuity in the normal ve-
locity throughout the wall jet. The two similarity solutions are connected to
each other at the location x = 1 and form the boundary-layer and shear-layer
regions in the Blasius wall jet. The downstream development is computed
with the boundary-layer equations. Figure 3 shows the Blasius wall jet and
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Figure 4. Comparison of the computed base flow (—) for
Reδ = 173 with experimental results at 1 mm (◦), 6 mm (�),
11 mm (M) and 16 mm (♦) downstream of the nozzle outlet.
The experimental data are scaled with the local boundary-
layer parameter δ and local maximum velocity Um and fitted
to the computed similarity solutions with l = 29 mm and b∗ =
2.06 mm. (a) Boundary-layer region. (b) Shear-layer region.

its streamwise development calculated with the boundary-layer equations. The
location in figure 3(a) corresponds to the initial condition at x = 1. Figure 3(b)
shows the location x = 3.14, where the interaction of the boundary layer and
the shear layer has just begun and the maximum velocity is Um = 0.99U0. Far
downstream at the location x = 20 (figure 3c), the flow approaches the Glauert
(1956) solution shown as the dashed line.

In the experiment, thin boundary layers are already formed in the nozzle.
Therefore, the virtual slot is placed a distance l upstream of the nozzle outlet
with a virtual slot height b∗, different from the height of the experimental noz-
zle opening. In order to match the theoretical base flow to the experiment, l,
which is taken as the streamwise scale, and b∗ have to be chosen. To do so, the
boundary-layer and shear-layer regions of the measured wall jet are scaled with
local scalings and compared to the Blasius boundary and shear-layer similarity
solutions, see figure 4. The experimental data are taken from 1 mm, 6 mm,
11 mm and 16 mm downstream of the nozzle outlet. The streamwise locations
and their corresponding dimensional distances downstream of the experimental
nozzle outlet used for the measurements are summarized in table 1. The maxi-
mum outlet velocity is U0 = 15.4 m s−1, corresponding to the Reynolds number
Reδ = 173. The best matching is achieved for l = 29 mm and b∗ = 2.06 mm
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x: 1.0 1.03 1.21 1.38 1.55 2.0 3.14 20.0
x∗ − l (mm): 0 1 6 11 16 29 62 551

Table 1. Streamwise locations with the corresponding dimen-
sional distances downstream of the experimental nozzle outlet.

corresponding to the non-dimensional virtual slot height b = 12.3. The normal
scale is δ =

√

νl/U0 = 0.168 mm.

The Blasius wall jet can be made independent of the slot height b, down-
stream of the point of interaction of the shear layer and the boundary layer,
by introducing the coordinates

ζ =
y

b
, ξ =

x

b2
. (23)

If we rescale the downstream distance measured from the experimental nozzle
opening with the virtual slot height, locations downstream of the point of
interaction may be written

x∗ − l

b∗
= Reδ

(

bξ − 1

b

)

, (24)

where the star denotes dimensional variables. Inserting the value of the slot
height used for our Blasius wall jet, the value of the right-hand side of (24) is
1.55Reδ at the location shown in figure 3(c). Hence, given the top-hat profile
blowing out from a slot, the Glauert wall jet is reachable only many slot height
distances downstream of the slot in the case when the flow Reynolds number is
high. As the flow Reynolds number decreases, the distance required to approach
this solution also decreases. However, given a different initial condition at the
slot such as a plane Poiseuille flow, the Glauert wall jet may be reached earlier.
Bajura & Szewczyk (1970) experimentally obtain a very good agreement to
the Glauert wall jet 18 slot heights downstream of the nozzle outlet for a jet-
exit Reynolds number of 377 based on the slot height. Similar results were
obtained by Cohen et al. (1992) 30 slot heights downstream of the nozzle for a
Reynolds number of 725. For comparison, the Reynolds number Reδ = 173 in
this investigation corresponds to 2120 based on the virtual slot height b∗, and
3080 based on the height of the experimental nozzle opening.

It can be seen in figure 4 that the agreement between the experiment and
the theory in the lower part of the boundary-layer region, shown in figure 4(a),
and in particular the upper part of the shear-layer region, shown in figure 4(b),
is not perfect. The experimental data are however, approaching the theoreti-
cal solution further downstream. A slight difference in the upper part of the
boundary-layer region remains as the flow evolves downstream. The agreement
between the experiment and the theory near the jet core in the shear-layer
region is excellent. The main reason for the disagreement in the upper part of
the wall jet is the influence of the nozzle. A jump of the boundary condition
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Figure 5. Comparison of the computed base flow (—) for
Reδ = 173 with experimental results (◦). The graphs show
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spectively.

occurs on the top lip of the nozzle as the flow leaves and a kink in the exper-
imental velocity data can be observed. With increased downstream distance,
the influence of the nozzle disappears and the agreement becomes better.

Figures 5(a) and 5(b) show the streamwise development of the upper and
lower jet half-widths δu

0.5 and δl
0.5, respectively, which are the distances from

the wall where the velocity reaches half the local maximum velocity. The
experimental data are measured with 1 mm steps to 17 mm downstream of the
nozzle outlet. The whole scaled flow is shown in figure 6 for four downstream
locations x = 1.03, 1.21, 1.38, 1.55 and the measured upper and lower jet half-
widths are indicated with crosses.

4.2. Linear stability analysis

In this section, the stability of the computed base flow at Reδ = 173 is inves-
tigated by means of the linear parabolized stability equations and the results
are compared with the measurements. The instability with respect to two-
dimensional eigenmodes and non-modal streaks is investigated.

4.2.1. Two-dimensional waves

The natural spectra of the streamwise velocity component measured in the
position of maximum disturbance in the wall-normal direction is shown, at
x = 1.38 (− − −) and x = 1.55 (—), in figure 7(a). The reduced frequency
is defined as F = 106ω/Rel. It is clear that under natural conditions, the
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Figure 6. Comparison of the computed base flow (—) for
Reδ = 173 with experimental results (◦) at 1 mm, 6 mm,
11 mm and 16 mm downstream of the nozzle outlet (the non-
dimensional locations are indicated in the figure). ×, upper
and lower jet half-widths.

wall jet operates in unforced mode and a broad band of frequencies amplifies.
The root mean square of the broadband disturbance amplitude at x = 1.55
is approximately 0.5 % of the jet exit velocity. This allows us to consider the
flow to be laminar down to this location under natural conditions. Figure 7(b)
shows the computed physical growth rate, defined as

σ(x) =
1

Reδ

1
√

Ê

∂
√

Ê

∂x
− αi, (25)

versus the reduced frequency. It is clearly visible that in the stability calcu-
lations, as well as in the experiment, the most amplified frequency decreases
with increased streamwise location. The most amplified frequency of the Bla-
sius shear layer predicted with inviscid stability theory by Monkewitz & Huerre
(1982) is about 480, which is very close to the peak observed for the location
x = 1 in figure 7(b). This suggests that the wall jet operates in the shear-layer
mode.

Subsequently, the flow is artificially forced in the experiment and charac-
teristics of the instability waves under controlled conditions are studied. The
frequency of the artificial disturbances is 1221 Hz corresponding to ω = 14.4,
or F = 482. This is close to the natural dominating flow frequency, leading to
breakdown. In figure 7(c), the forced spectrum, for a relatively large forcing
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Figure 7. Frequency spectra at x = 1.38 (− − −) and
x = 1.55 (—) for natural case (a) and forced by a loud-
speaker at 1221 Hz (F = 482) with amplitude 4 % at x = 1.55
(c). (b) Computed growth rates σ for Reδ = 173 at different
streamwise locations corresponding to 0 mm, 6 mm, 11 mm and
16 mm downstream of the nozzle outlet (the non-dimensional
locations are indicated in the figure).

amplitude (4 % at x = 1.55) is shown for the same streamwise locations as
the natural spectrum. At the location x = 1.55, nonlinear effects start to be
apparent and peaks of higher harmonics of the main frequency can be seen in
the spectra. The first superharmonic has about 10 % of the main harmonic am-
plitude. The forcing of the flow leads to a strong coherence of the disturbance
around the excitation frequency, as can also be seen for free shear layers.

Since the Blasius wall jet is a composition of both a boundary layer and
a free shear layer, we should expect the possibility of two co-existing unstable
eigenmodes, one associated with the viscous instability of the boundary layer in
the inner region and the other with the inviscid instability of the shear layer in
the outer region. Mele et al. (1986), among others, elaborated the role of these
two instability modes of the Glauert wall jet. For the low Reynolds number
specified in the current investigation, the PSE-approach does not detect the
inner mode, instead it converges to the outer mode. In order to study the
inner mode, the Orr–Sommerfeld equation is solved. Thereby, a comparison of
the PSE-technique with the parallel theory can also be done. Such comparisons
have been made by Bertolotti et al. (1992) for the Blasius boundary layer.

Figure 8 shows the streamwise component of Orr–Sommerfeld eigenfunc-
tions at x = 1 for F = 482 and Reδ = 173. The inner mode is shown as the
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Figure 8. Streamwise component of Orr–Sommerfeld eigen-
functions at x = 1 for F = 482 and Reδ = 173. The grey line
shows the Blasius wall jet. (a) Inner mode (—) compared with
the corresponding mode of the Blasius boundary layer (−−−).
(b) Outer mode (—) compared with the corresponding mode
of the Blasius shear layer (− −−).

solid line in figure 8(a) while the dashed line shows the corresponding mode of
the Blasius boundary layer. As expected, the agreement between the profiles
of the two modes is perfect in the inner region close to the wall, whereas two
additional small peaks persist in the outer region of the wall-jet mode. In fig-
ure 8(b), the comparison between the outer mode and the corresponding mode
of the Blasius shear layer is shown. Here, as expected, the profiles of the modes
agree perfectly in the outer region, whereas the wall-jet mode has a small peak
in the inner region. However, the agreement between the inner and outer modes
of the Blasius wall jet with the corresponding modes of the Blasius boundary
layer and Blasius shear layer, respectively, decreases further downstream as the
boundary-layer region and the shear-layer region of the Blasius wall jet begin
to interact.

At the given Reynolds number and frequency, the outer mode is the only
unstable mode of the Blasius wall jet. The critical Reynolds number for the
Blasius wall jet is 2.15, this is when the outer mode becomes unstable at F =
23 000. The corresponding critical Reynolds number for the Blasius shear layer
is zero. The inner mode becomes unstable at a significantly higher Reynolds
number of 272 at F = 260. The corresponding critical Reynolds number for
the Blasius boundary layer is 302 at F = 230. As a comparison, it can be
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Figure 9. Imaginary part of Orr–Sommerfeld eigenvalues for
Reδ = 173. (a, c) Streamwise dependency for F = 482.
The dotted line in (c) shows a comparison with the PSE-
solution. A comparison with the Orr–Sommerfeld solution of
the interpolated experimental base flow is also made (◦) for
x = 1.21, 1.38, 1.55. (b, d) Frequency dependency at x = 1
(black lines) and x = 1.38 (grey lines). (a, b) Inner mode (—)
compared with the corresponding mode of the Blasius bound-
ary layer (− −−). (c, d) Outer mode (—) compared with the
corresponding mode of the Blasius shear layer (−−−).

mentioned that the critical Reynolds number for the Glauert wall jet is 13.6 at
F = 9600.

Figure 9 shows the imaginary part of Orr–Sommerfeld eigenvalues for
Reδ = 173. The inner and outer modes of the Blasius wall jet are shown as solid
lines while dashed lines show the corresponding modes of the Blasius boundary
layer and the Blasius shear layer, respectively. The streamwise dependency for
F = 482 is shown in figure 9(a, c). The inner mode of the Blasius wall jet,
shown in figure 9(a), is stable, but not as stable as the corresponding mode of
the Blasius boundary layer. The outer mode, shown in figure 9(c), is unstable,
but the corresponding mode of the Blasius shear layer is slightly more unstable.
In both cases, the difference increases downstream. In figure 9(c), a comparison
with the PSE-solution is made. The dots represent each streamwise step of the
computation, which is seen to converge at about x = 0.7. Downstream of this
location the agreement with parallel theory is excellent, indicating that non-
parallel effects are small. The local theory seems to slightly under predict the
amplification rate. In order to elaborate the effect of the base-flow disagreement
on the stability characteristics, the Orr–Sommerfeld equation is solved for the
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Figure 10. Comparison of the computed (—) u-velocity am-
plitude, normalized with its maximum value, and phase dis-
tribution θu, for Reδ = 173 and F = 482 with experimental
results at x = 1.21, 1.38, 1.55. The disturbances are triggered
by a loudspeaker at 1221 Hz and have the amplitudes 0.3 %
(◦), 1.1 % (�) and 1.7 % (M) at x = 1.55. The grey line shows
the computed Blasius wall jet.

experimental base flow. First, the experimental base flow is interpolated and
extrapolated with continuous first and second derivatives. The imaginary part
of the streamwise wavenumber at x = 1.21, 1.38, 1.55, from these calculations,
is shown as the circles in figure 9(c). It reveals a large difference in amplifi-
cation rate which is due to the disagreement between the shear-layer regions
in the measured and the theoretical base flows. The frequency dependency at
x = 1 (black lines) and x = 1.38 (grey lines) of the inner and outer modes is
shown in figure 9(b) and 9(d), respectively.

Figure 10 shows the amplitude and phase distribution at three downstream
locations x = 1.21, 1.38, 1.55 for the three different forcing amplitudes 0.3 % (◦),
1.1 % (�) and 1.7 % (M) compared with the computed PSE-results (—). The
three experimental amplitude values are measured at the streamwise location
x = 1.55. It can be noted that the agreement between the experiment and
the linear stability computation is acceptable apart from the upper part of the
shear-layer region. The deviation there is most probably because the waves in
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Figure 11. Comparison of the computed (—) maximum u-
velocity amplitude (a) and phase (b) amplification for Reδ =
173 and F = 482 with experimental results. The disturban-
ces are triggered by a loudspeaker at 1221 Hz and have the
amplitudes 0.3 % (◦), 1.1 % (�) and 1.7 % (M) at x = 1.55.
The grey line shows the amplification calculated with the Orr–
Sommerfeld equation applied to the interpolated experimental
base flow.

the experiment are not fully developed eigenmodes this close to the nozzle out-
let. Solving the Orr–Sommerfeld equations for the interpolated experimental
base flow reveals that the difference in the base flow does not affect the shape of
the eigenmodes much. However, the agreement between the outer part of the
measured and computed amplitude distributions improves downstream. The
disturbance has a typical shape and the peak in the shear-layer region is in
antiphase to the peak near the wall in the boundary-layer region.

The downstream development of the disturbances is demonstrated in fig-
ure 11(a) and 11(b), where the maximum u-velocity amplitude and phase, re-
spectively, are shown versus the streamwise coordinate. The three cases of
forcing are compared with the computation and the same symbols are used as
in figure 10. The demonstrated amplitude data is normalized with the am-
plitude at the location x = 1.21, and the disturbance phase θu is shown in
radians. The agreement in the results between the different forcing amplitudes
in figures 10 and 11 indicates the linearity of the disturbance. Both the dis-
turbance distribution and the amplification agree very well for the different
forcing amplitudes. An indication of the nonlinear effects appear just after
the location x = 1.55 where it shows up as lower amplification for the larger
forcing amplitudes. The agreement of the amplification between the measured
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data and the PSE-results showed as the black solid line in figure 11(a) is not
satisfactory. This difference of the slopes of the amplitude curves implies a
40 % higher growth rate in the experiment, approximately. To investigate how
the base flow difference affects the amplification, the Orr–Sommerfeld equation
is applied to the interpolated experimental base flow. The amplification, inter-
polated from the eigenvalues at x = 1.03, 1.21, 1.38, 1.55, is shown as the grey
line in figure 11(a) and the agreement to the measured data is very good. This
clearly shows that the difference between the computed and experimental base
flow is responsible for the disagreement in amplification between the measured
data and the stability calculations.

4.2.2. Stationary longitudinal streaks

The exponentially growing disturbances studied in the previous section are the
dominating instabilities of flows having a point of inflection. This is true for
wall jets as well as for free shear layers operated in a low-disturbance envi-
ronment. On the other hand, numerous studies of wall-bounded shear flows
show that three-dimensional disturbances of a different type may dominate in
the breakdown process, especially when the flow is highly disturbed, see e.g.
Westin et al. (1994). The dominating role of the longitudinal disturbances has
been clarified recently by Balaras et al. (2001) for highly disturbed free shear
layers. As was mentioned in § 1, intermediate states when both two- and three-
dimensional disturbances exist are also possible for free shear layers. A similar
behaviour is expected for wall jets. In the current experiment, streaks appear
naturally from existing irregularities and amplification of vorticity in the con-
traction. Since such longitudinal structures are also likely to exist in various
applications, this is a motivation to study the growth of streamwise streaks.

In the experiment, stationary longitudinal streaks are introduced in the
flow by periodically distributed roughness elements that are positioned on the
top lip of the orifice. In separate runs, five spanwise scales are generated corre-
sponding to β from 0.175 to 0.574 by the roughness elements of corresponding
width from 3 to 1 mm. In figure 12(a), the spectral decomposition of the max-
imum streak amplitude for the three largest spanwise scales, β = 0.264 (◦),
β = 0.218 (�) and β = 0.176 (M), at the streamwise location x = 1.55, is
shown. The other two smallest scales are decaying in the experiment. One
of the introduced scales, β = 0.218, leads to the disturbance with the largest
amplitude and is optimal in this sense. Streaks of approximately this scale are
also visible for roughness-unforced flow in the nonlinear stage (see figure 14).
These streaks are, however, not stationary, contrary to the forced streaks, they
move slowly back and forth.

An idea of how the steady perturbations are selected in the wall-jet flow is
directly obtained by considering a plot of the maximized disturbance growth
Gmax versus the streamwise wavenumber. In figure 12(b), the computed op-
timal growth for ω = 0, x0 = 0.403 and x1 = 1.55 is shown as a function of
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Figure 12. (a) FFT of three spanwise wavelengths behind
arrays of evenly distributed roughness elements with width
(half wavelength) 3 mm (◦), 2.5 mm (�) and 2 mm (M) from
measured streamwise disturbances at x1 = 1.55. (b) Computed
optimal growth for ω = 0, x0 = 0.403 and x1 = 1.55. Rel =
1732 is used as the scale factor.

the spanwise wavenumber. The spanwise scale that grows the most is approxi-
mately β = 0.29. In calculations with fixed x1, the optimal spanwise wavenum-
ber decreases with decreased x0. However, for practical reasons, to obtain an
initial disturbance in the subsequently described DNS, the initial position is
set equal to the starting position of the fringe region. From the comparison of
the computed and experimental optimal spanwise scales in figure 12, it can be
observed that the computed scale is somewhat smaller, however, it is close to
that one observed in the experiment.

The optimal disturbance consists of streamwise vortices developing into
streamwise streaks. The resulting disturbance from the computation at x = 1,
for β = 0.211, ω = 0, x0 = 0.403 and x1 = 1.55, is shown to the left-hand side
in figure 13, where one spanwise wavelength of the disturbance is depicted. In
figure 13(a), the cross-flow velocity components are represented with arrows,
and in figure 13(b) the streamwise velocity is shown as contours. Positive values
of disturbance velocity are shown by solid lines and the dashed lines represent
negative values. At the spanwise location z = 0, high-momentum fluid is moved
up from the jet core, producing a high-velocity streak in the shear-layer region.
An opposite motion is observed at the edges of the plot, half a wavelength
away, where low-momentum fluid is moved down from the upper velocity field
and low-velocity streaks are formed in the shear-layer region. Additionally,
in the boundary-layer region, a weak low-velocity streak is formed below the
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Figure 13. Downstream response of the computed optimal
disturbance for β = 0.211, ω = 0, x0 = 0.403 and x1 = 1.55.
(a, b) The cross-flow plane at x = 1. Arrows represent cross-
flow velocity components (a) and contours show constant
positive (—) and negative (− − −) streamwise velocity (b).
(c) Computed final streamwise amplitude velocity distribu-
tion (—), normalized with its maximum value, compared with
experimental results for β = 0.176 (◦), β = 0.218 (�) and
β = 0.264 (M).

high-velocity streak at z = 0, since the upward motion of fluid there carries
low-momentum fluid from the wall region. In a similar way, weak high-velocity
streaks are formed in the boundary-layer region on the sides. Thus, the more
complicated overall character of the disturbance as compared to, for example,
the flat-plate boundary layer is explained by rather simple mechanisms, which
in general are similar in the single-shear flow of the flat plate and in the wall
jet studied here. In figure 13(c), the computed normalized streamwise ampli-
tude distribution at x1 = 1.55 is compared with the measured results. The
downstream response at the location x1 is insensitive to the choice of span-
wise wavenumber and initial position. The similarity between the amplitude
functions for the three largest scales in the experiment is also evident in fig-
ure 13(c). Since the initial condition in the experiment is not the optimal one,
we cannot expect to find the calculated disturbance amplitude. However, as
long as the initial streamwise vortex in the experiment has a projection on the
optimal disturbance, we can expect the final computed velocity disturbance
to agree with the measured one, as is shown in figure 13(c). This agreement
and the fact that the computation contains an optimization procedure while
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the experiment does not, indicate that a fundamental mode is triggered in the
flow. This has also been observed by, for example, Andersson et al. (1999) and
Westin et al. (1994) in the flat-plate boundary layer. These non-modal growth
mechanisms are referred to as algebraic growth. In the present work, distur-
bances are triggered by the surface roughness, however, free-stream turbulence
is also a possible triggering mechanism, see, for example, Westin et al. (1994)
for the flat-plate boundary layer results.

4.3. Towards transition to turbulence

In this section, the transition process of the wall jet is studied. Two-dimensional
eigenmodes with the fundamental frequency and non-modal streaks are forced
into the flow.

4.3.1. Overview of the transition process

The importance of the three-dimensional effects during flow breakdown is
clearly demonstrated by the performed flow visualizations, which are shown
in figure 14. Two-dimensional waves are excited by the loudspeaker and can
be observed to develop parallel to the nozzle edge. A laser sheet is pulsing,
synchronized with the wave frequency while smoke is provided into the inlet
of the facility driving fan. With this technique, the flow modulation can be
visualized only in the top shear layer, where the difference in the smoke con-
centration is clear. No special forcing is applied to generate three-dimensional
disturbances, as they appear naturally from existing irregularities. Neverthe-
less, well-defined and nearly uniform streamwise vortices and streaks are visibly,
forming in the flow. As can be seen in figure 14(a), initially the waves are dom-
inating, while the streaks are rather weak. Further downstream, the streaky
structures become dominating. In figure 14(b), the braid region of the wave
is shown, which corresponds approximately to the mid streamwise location in
figure 14(a). In the braids, the streaks are well pronounced and they attain
a typical mushroom shape. Also, moving the visualization plane further from
the wall, regions can be reached where streak tips exist, while waves do not. In
fact, the current visualization demonstrates a very similar phenomenon as was
observed by Bernal & Roshko (1986) and Lasheras et al. (1986) in free shear
layers. The streaks in the present case are generated by irregularities in the
facility. It is clear that disturbances associated with the streaks are amplified
from their upstream origin as the flow develops.

4.3.2. Spectral analysis

In the previous section, we saw that the role of the initial conditions for the
development of the wall jet is essential. To investigate the process of the break-
down in this flow carefully and understand the nonlinear interactions involved,
a direct numerical simulation is necessary. A numerical study conducted in a
highly controlled environment is free from various uncontrollable parameters,
which make the numerical results more straightforward to interpret than these
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Figure 14. Visualization of the nonlinear structures in the
wall jet. (a) Light sheet is placed parallel to the wall at about
5 mm from it (y = 30). The flow direction is down. (b) Light
sheet is perpendicular to the flow and placed at about 40 mm
(x = 2.3) downstream of the nozzle outlet.

obtained from the experiment. Two instability modes, the two-dimensional
waves and the streamwise streaks are observed to trigger the breakdown of
the wall jet to turbulence. These disturbances are excited in the DNS in a
controlled manner, as described in § 3.3.2, and the forcing functions are taken
from the previously obtained linear stability calculations (see figures 10 and
13). The amplitudes of the waves and streaks are prescribed in the beginning
of the computational box to 0.1 % and 3 % of the wall-jet core velocity, respec-
tively. The amplitudes are chosen to obtain a similar transition scenario as in
the experimental wall jet seen in figure 14.

The streamwise development of the initially generated modes and the there-
after exited modes of nonlinear interaction can be seen by looking at the de-
velopment of the Fourier components shown in figure 15. For the Fourier
transform, 16 evenly distributed velocity fields in time, within two fundamen-
tal time periods, starting from t = 10.95 are used. Eight modes are used in
the spanwise direction. The velocity fields are Fourier transformed in time and
in the spanwise direction and the notation (ω1, β1), where ω1 and β1 are the
frequency and spanwise wavenumber, each normalized with the correspond-
ing fundamental frequency and wavenumber, is used. Thus, the waves and
the streaks are represented by (1, 0) and (0, 1), respectively, and are shown as
black solid lines in figure 15. Without nonlinear interactions, the instability
modes should amplify in agreement with the linear theory and this is observed
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Figure 15. Energy in different Fourier modes (ω1, β1) from
the DNS. The initially excited modes (waves and streaks) are
shown by black solid lines, the nonlinearly generated modes are
shown by dashed and dotted lines. The modes are indicated in
the figure. The pairing mode grows up from numerical noise
and is displayed by the thick grey line. Results from the PSE
(◦) are shown for comparison.

in the beginning of the computational box, where the waves grow exponentially
and the streaks have an algebraic growth. The results from the PSE (◦) are
shown for comparison and the agreement is excellent. The waves grow accord-
ing to the linear theory for surprisingly large amplitudes while the nonlinear
interactions for the streaks are encountered earlier. It is evident that close to
the slot, the two-dimensional effects are dominating over the stronger forced
stationary streaks. At about x = 1.3 to x = 1.4, nonlinear effects start to
be apparent when energy is transferred to the modes (1, 1), (2, 0) and (2, 1).
Further downstream, the streak mode (0, 1) is decaying and a dip in the energy
can be observed at approximately x = 1.55. At this location, the time-periodic
mode (1, 0) starts to saturate and an abrupt change of the breakdown process
happens, namely, an exponential growth of the streak mode.

There are two possible secondary instabilities on two-dimensional vortices
generated by inflectional shear-flow instabilities, a subharmonic one leading to
vortex pairing, and a three-dimensional one leading to spanwise modulation of
the vortices (see e.g. Metcalfe et al. 1987). In low-disturbance environments,
the predominant secondary instability is associated with vortex pairing. If
the initial three-dimensional excitation is large enough, the three-dimensional
secondary instability is predominant, resulting in the growth of a spanwise
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modulation of the vortices. This results in a suppression of the vortex pairing,
and is what can be observed in the current numerical simulation. We have
seen that the exponentially growing two-dimensional waves break down owing
to what appears to be a three-dimensional secondary instability triggered by
the presence of the streaks. In order to asses whether the pairing mode (1/2, 0)
is present in the simulation, the energy content in this subharmonic frequency
is evaluated and shown as the grey line in figure 15. However, since this mode
is not forced (in the fringe region), but only grows out of numerical noise, its
amplitude is small. Upstream of the location where nonlinear interactions set
in, the amplification rate of the subharmonic mode is about half of the fun-
damental one. This is consistent with linear theory (see figure 9d), indicating
that an eigenmode with the subharmonic frequency F = 241 is born. At about
x = 1.55, the amplification rate doubles as a result of nonlinear effects. How-
ever, the energy content in this mode stays at least one magnitude below the
exponentially growing streak mode.

4.3.3. Flow structures

From the performed numerical simulation, structures appearing in the flow can
be visualized and contribute to an increased understanding of the transition
process, complementing the above discussion. In figure 16, positive isosurfaces
of the instantaneous streamwise and normal velocity are displayed in light and
medium grey, respectively, at t = 12.70. Vortical structures can be identified
in the flow by plotting regions where the second largest eigenvalue λ2 of the
Hessian of the pressure assumes negative values (Jeong et al. 1997). The vor-
tical structures in figure 16 are represented by dark grey isosurfaces displaying
a constant negative value of λ2. At the instantaneous moment shown in the
figure, the waves are most pronounced in the beginning of the box, where the
waves have already started to saturate. Counterclockwise rotating rollers are
moving with the wave troughs in the outer shear layer, of which one is visible
at about x = 1.7. Slightly downstream of each shear-layer roll-up, clockwise
rotating rollers in the boundary layer exist, one of these is visible at about
x = 1.8. Associated with the boundary-layer rollers are small regions of sep-
arated flow. Between the rollers in the outer shear layer and in the boundary
layer, inclined regions of upward flow feed the next downstream wave crest.
The presence of the streaks deforms the rollers in the spanwise direction. (This
is also visualized in figure 20, where only the vortical structures are shown
for different instants within one fundamental period.) At about x = 1.9, in
figure 16, the high-velocity streak becomes dominant and is lifted up from the
shear-layer region forming a mushroom-shaped structure. Such structures were
also observed by, for example, Wernz & Fasel (1996, 1997) and Gogineni & Shih
(1997).

Figure 17 shows six cross-flow slices from the instantaneous flow field pre-
sented in figure 16. The arrows represent the cross-flow velocity while the black
solid lines show contours of positive streamwise velocity. Contours of negative
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Figure 16. Isosurfaces of streamwise velocity (light grey),
normal velocity (medium grey) and λ2 (dark grey) at an in-
stant of t = 12.70. The waves and streaks are forced with
initial amplitudes 0.1 % and 3 %, respectively, in the Blasius
wall jet for Reδ = 173. The levels of the isosurfaces are 0.1,
0.1 and −0.015, respectively.

or zero streamwise velocity are shown by dotted lines. The thick grey lines
show the core of vortical structures at the same level of λ2 as in figure 16.
The first slice, shown in figure 17(a), is a cut through the boundary-layer roller
at x = 1.8 and the region of inclined upward flow. A small region of sepa-
rated flow exists close to the wall. The streak is visible in the outer shear
layer where it shows up as a bump in the streamwise velocity contours. This
bump is more pronounced in the next slice, depicted in figure 17(b), which
shows a cut through the downward flow at x = 1.9. In the slice at x = 2.0,
shown in figure 17(c), most of the flow is moving upward and the lift-up of the
streak in the ambient flow results in a mushroom-shaped structure. Another
small separation bubble can be seen at the wall. The mushroom leg, where the
upward motion is strongest, is formed by the combined effect of the upward
wave motion and the high-velocity streak. In the top of the upward motion, a
vortex pair is forming the mushroom hat. The vortex pair in the mushroom
hat separates from its leg and continues upwards through the otherwise mainly
downward motion in figure 17(d), which shows the slice at x = 2.1. The break-
down to turbulence is associated with this upper vortex pair. In the slice at
x = 2.2, shown in figure 17(e), it can be seen that the outer part of the wall jet
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Figure 17. Cross-flow planes from the instantaneous data
shown in figure 16. Arrows represent the cross-flow velocity
while the streamwise velocity is displayed by contours with
line increment 0.1. Positive values are displayed by solid lines
and negative or zero values by dotted lines. Thick grey lines
show the core of vortical structures where λ2 = −0.015.

is turbulent while the inner part remains organized. However, the turbulence
spreads towards the wall further downstream and the flow undergoes transition
to a fully turbulent wall jet. Figure 17(f) shows the slice at x = 2.3 where the
flow is almost fully turbulent.
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Figure 18. Contours of streamwise vorticity in cross-flow
planes from the instantaneous data shown in figure 16. The
streamwise positions are indicated in the figure. Black lines
show positive values and grey lines negative values, the line
increment is 0.1, but the zero contour is not displayed.

Figure 18 allows us to follow the streamwise vorticity in the instantaneous
flow field, shown in figure 16, through 12 cross-flow slices. The slices are evenly
distributed in space from x = 1.9 to x = 2.35 and black solid lines show contours
of positive streamwise vorticity while contours of negative values are displayed
by grey solid lines. The line increment is 0.1, but the zero contour is not
shown. In figure 18(c), the streamwise vorticity associated with the mushroom-
shaped structure in figure 17(c) can be seen. The hat and the leg of the
mushroom-shaped structure are indicated in the figure. Further downstream,
in figure 18(e), the hat can be found in the upper part, while the leg splits
up and moves with the downward flow towards the edges of the slice. In the
slice, shown in figure 18(f), the first signs of breakdown to turbulence can
be seen above the mushroom hat. In the slices, shown in figures 18(g)–18(j),
the turbulence spreads downward. However, the flow close to the wall is still
organized. Through these slides a Λ-structure in the boundary layer at the
wall can be identified and is indicated with Λ in figure 18(i). Such structures
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Figure 19. Contours of streamwise vorticity in the horizontal
plane at y = 20 from the instantaneous data shown in figure 16.
Black lines show positive values and grey lines negative values,
the line increment is 0.1, but the zero contour is not displayed.

are typical for Klebanoff transition in boundary layers (e.g. Bake et al. 2002).
Figure 19 shows the streamwise vorticity in a slice parallel to the wall at y = 20.
It covers a longer region and further demonstrates the three-dimensional flow
behaviour and the breakdown to turbulence.

Figure 20 shows the time development of the vortical structures in one fun-
damental disturbance period starting from t = 13.31. The vortex visualization
uses instantaneous data from the DNS at six evenly distributed instants. Vor-
tex rollers are moving downstream in the outer shear layer and in the boundary
layer. The high-velocity streak in the outer shear layer deforms the roll-up and
gives it a bent shape. The corresponding low-velocity streak in the boundary
layer induces a bent shape in the opposite direction to the vortex roller in the
boundary layer. The interaction between these counter-rotating rollers con-
tributes to the three-dimensional modification of the boundary-layer roller. At
the left-hand side of figure 20(b), the curved rollers can be seen. Between the
rollers, the flow is pushed upward and forward and inclined rib vortices are
created. The rib vortices extend from above the shear-layer roller to beneath
the previous one, see figure 20(c). Such rib vortices have been observed in
many experimental and computational studies of mixing layers (e.g. Bernal &
Roshko 1986; Lasheras et al. 1986; Metcalfe et al. 1987; Schoppa et al. 1995).
The rib vortices are close together at the tails and wider apart at the tips.
At about x = 2.0, in figure 20(d), the upward flow is pushing the rib vortices
upward, where they are forming the hat of the mushroom-shaped structure.
The tails of the rib vortices, at about x = 1.9, keep the normal position. The
tails of the previous rib vortices separate around the upcoming rib vortices.
Figure 20(d) shows the instant exactly two fundamental periods after the in-
stantaneous data shown in figures 16–19. The separated legs of the previous
rib vortices forms a Ω -shaped vortex ring around the upcoming rib vortices,
see figure 20(e). In front of this vortex ring another counter-rotating vortex
ring is created (at about x = 2.1 in figure 20f). The vortex ring formation
precedes the breakdown to turbulence. In the end of the lower part of the box,
in figure 20(c), where the flow is not yet turbulent, the Λ-structure between
the wall and the roller in the boundary layer can be seen.
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Figure 20. Vortex visualization (isosurfaces of λ2 = −0.015)
using instantaneous data from the DNS at six instants within
one fundamental disturbance period T : (a) t = 0, (b) t = 0.2T ,
(c) t = 0.4T , (d) t = 0.6T , (e) t = 0.8T , (f) t = T .

The coincidence of the numerical visualization with the experimental visu-
alizations of figure 14 is clear; namely, it is seen that in the outer region of the
wall jet, the large-amplitude streak structures dominate the late stage of flow
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breakdown. Both in the computations and in the experiments, a staggered for-
mation of streaks can be observed. The strong three-dimensionality is formed
only a certain distance from the nozzle outlet.

4.4. Subharmonic waves and pairing

In this section, the role of the subharmonic waves is investigated. Two addi-
tional simulations are performed, one with the streaks, the fundamental and
subharmonic waves forced in the flow and the other with only the fundamental
and subharmonic waves and noise in the initial field.

Free mixing layers are known to undergo pairing of the fundamental vor-
tex rollers preceding the breakdown to turbulence (Ho & Huerre 1984; Met-
calfe et al. 1987; Moser & Rogers 1993; Rogers & Moser 1993; Schoppa et al.

1995). Further downstream in the turbulent flow region, spanwise coherent
structures may also be observed, where they coexist with fine-scale motion
(Konrad 1976). The pairing originates from a subharmonic wave displacing
one vortex to the low-velocity region and the next to the high-velocity region.
The vortex travelling in the high-velocity region overtakes the slower-moving
vortex in the low-velocity region, and pairing appears. The relative phasing
of the fundamental and subharmonic disturbances influences the development
of the pairing. The three-dimensional modification of the spanwise rollers has
been studied numerically by Moser & Rogers (1993), Rogers & Moser (1993)
and Schoppa et al. (1995) and experimentally by Tung & Kleis (1996). Pairing
is found to inhibit the growth of infinitesimal three-dimensional disturbances,
and to trigger the transition to turbulence in highly three-dimensional flows.
If the amplitude of the initial three-dimensional disturbances is large enough,
transition occurs before the pairing takes place. Vortex pairing has also been
observed in wall jets (e.g. Bajura & Catalano 1975; Wernz & Fasel 1996).

In order to determine the role of pairing in the Blasius wall jet, the sub-
harmonic disturbance is studied. The Orr–Sommerfeld mode with half the
frequency of the fundamental one is forced in the DNS, as described in § 3.3.2.
Figure 21 shows the spanwise vorticity in the (x, y)-plane at z = 14.9 from
instantaneous data at t = 12.70 for three different forcing cases. Black solid
lines show contours of positive spanwise vorticity while contours of negative
values are displayed by grey solid lines. The line increment is 0.1, but the zero
contour is not shown. In Case 1, shown in figure 21(a), streaks and fundamen-
tal waves are forced (the simulation described in § 4.3). In Case 2, shown in
figure 21(b), subharmonic waves are forced in addition to the streaks and the
fundamental waves. In Case 3, shown in figure 21(c), only fundamental and
subharmonic waves are forced. In the absence of the three-dimensional streak,
a low level of noise is added to the initial field to introduce three-dimensionality
to the flow. The pairing mode is weak in Case 1, as is also seen in the energy
content of the corresponding Fourier mode (1/2, 0) in figure 15. In this case
pairing does not occur. In Case 2 and 3, the pairing mode is stronger and
can be seen as the staggered pattern of the vortex rollers in the outer shear
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Figure 21. Contours of spanwise vorticity in the (x, y)-plane
at z = 14.9. Black lines show positive values and grey lines
negative values, the line increment is 0.1, but the zero con-
tour is not displayed. (a) Streaks and fundamental waves are
forced, same instantaneous data as in figure 16. (b) Streaks,
fundamental and subharmonic waves are forced. (c) Funda-
mental and subharmonic waves are forced.

layer. However, in Case 2, pairing does not occur before the breakdown to tur-
bulence. In Case 3, pairing occurs between rollers in the outer shear layer as
well as in the boundary layer. Signs of breakdown are first seen in the vortex
pair close to the wall in the very end of the box. It can be noted that the
vorticity is stronger and breakdown to turbulence is enhanced in the presence
of the streak. Figure 22(a–c) shows the spanwise vorticity in a cross-flow slice
at x = 2.1 for the corresponding flow cases. From this figure the difference in
the three-dimensional modification becomes clear.

5. Summary and conclusion

The dynamics of a plane wall jet is studied using both calculations and exper-
iments. It is found that a laminar wall jet can be successfully described by the
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Figure 22. Contours of spanwise vorticity in the cross-flow
plane at x = 2.1 from the instantaneous data shown in fig-
ure 21. Black lines show positive values and grey lines negative
values, the line increment is 0.1, but the zero contour is not
displayed. (a) Streaks and fundamental waves are forced. (b)
Streaks, fundamental and subharmonic waves are forced. (c)
Fundamental and subharmonic waves are forced.

solution of the boundary-layer equations. The so-called Blasius wall jet, which
is matched to the experimental data, is valid in the region just downstream of
the nozzle in contrast to the well-known Glauert similarity solution valid further
downstream. Comparison of the results of linear stability calculations with ex-
periments shows that the theory is able to predict the most amplified frequency
of the periodical waves and the most amplified scale of the streaks. However,
the difference in the upper part of the base flow causes an underprediction of
the calculated modal amplification. Orr–Sommerfeld calculations demonstrate
that the interaction of the two layers of the Blasius wall jet is affecting the
stability of both layers. Because of this interaction, the shear-layer part of the
jet is stabilized and the boundary-layer part is destabilized. Critical Reynolds
numbers are affected in the same manner. The stabilization effect increases
with increased interaction between the layers. The local stability approach is
shown to work rather well.

In the experiment, streamwise streaks appear naturally in the flow. Linear
stability analysis demonstrates a rather large growth of non-modal streaks and
this mechanism is responsible for the generation of initial three-dimensionality
of the wall jet. Additional support of this conclusion is the excellent agreement
between the calculated and measured amplitude functions of the streak. An
optimal, most amplified scale exists for the stationary streaks both in the calcu-
lations and in the experiment. The calculations indicate that the optimal dis-
turbance represents streamwise vortices, which cause the formation of streaks
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by the so-called lift-up effect. The mechanism of non-modal growth may affect
the selection of scales in the secondary instability of spanwise vortex rollers
and thereby the three-dimensional modification preceding flow breakdown.

The nonlinear stage of the laminar flow breakdown is studied with DNS
and is experimentally visualized. Three-dimensional simulations with coherent
forcing are performed and they clearly demonstrate that growing streaks are
important for the breakdown process. It is found that the forcing of streamwise
streaks feed into the three-dimensional secondary instability preceding the flow
breakdown. As a result, the three-dimensionalities in the flow are enhanced and
the other possible secondary instability of the flow, namely the subharmonic
pairing of the spanwise vortices, is suppressed. The transition mechanisms can
be described by the following stages. (i) Spanwise rollers are formed in the wave
troughs in the outer shear layer and move downstream. In the boundary layer
close to the wall beneath the wave crests, counter-rotating rollers are formed.
(ii) In the presence of streaks, the shear-layer rollers are sinuously modified in
the spanwise direction with the boundary-layer rollers deforming in the opposite
direction. (iii) Vortex ribs are formed in the braids of the waves, extending
from the top of the shear-layer roller to the bottom of the previous one. (iv)
The vortex ribs follow the upward flow between two neighbouring shear-layer
rollers and are associated with mushroom-shaped structures ejected from the
wall jet into the ambient flow. (v) The tail legs of the vortex ribs, generated
one fundamental period earlier, separate and form a vortex ring around the
upcoming vortex ribs and additional counter-rotating vortex rings are created
preceding breakdown to turbulence.

Both the experiment and the DNS reveal that the flow history is extremely
important for the transition scenario. In the experiment, the flow is subjected
to disturbances already in the apparatus (settling chamber, contraction and
nozzle). In the simulations, different forcings of the upstream disturbances
lead to different transition scenarios. In order to determine the role of pairing
in the Blasius wall jet, the subharmonic disturbance is studied. In total three
different forced simulations are performed. (i) Streaks and fundamental waves.
(ii) Streaks, fundamental and subharmonic waves. (iii) Fundamental and sub-
harmonic waves and noise. When the subharmonic disturbance is not forced in
the flow, the pairing mode is weak and pairing does not occur. When the sub-
harmonic disturbance is forced, the pairing mode is stronger and can be seen
as the staggered pattern of the vortex rollers in the outer shear layer. However,
pairing does not occur before the breakdown to turbulence in the presence of
streaks. It can also be concluded that vorticity is stronger and breakdown to
turbulence is enhanced in the presence of streaks.

This work was funded by the Swedish Energy Agency (Energimyndigheten).
The direct numerical simulations was performed at the Center for Parallel Com-
puters at KTH. Many thanks to Mattias Chevalier for the help with various
modifications of the spectral code and to Professor Victor Kozlov for the help
with the smoke visualizations and for the loan of the laser. Maria Litvinenko
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Appendix. Optimization procedure

In this Appendix, the optimization procedure for the optimal disturbances
in the algebraic instability problem is derived. We adopt an input–output
formulation of the initial-boundary-value problem (2)–(4)

û1 = Aq, (26)

where A is a linear operator. The maximum Reynolds-number-independent
growth may then be written

Gmax = max
q 6=0

(û1, û1)u

(q, q)q

= max
q 6=0

(A∗Aq, q)q

(q, q)q

. (27)

Here, A∗ denotes the adjoint operator to A with respect to the chosen inner
product. The maximum of (A∗Aq, q)/(q, q) is attained for some vector q,
which is the eigenvector corresponding to the largest eigenvalue of the eigen-
value problem

A∗Aq = λq, (28)

whereGmax is the maximum eigenvalue λmax, necessarily real and non-negative.
The most natural attempt to calculate the optimal initial disturbance and its
associated maximum Reynolds-number-independent growth is by power itera-
tions

qn+1 = A∗Aqn, (29)

where the initial disturbance is scaled to the given initial energy in each itera-
tion. To be able to perform the power iterations, we need to know the action of
the adjoint operator on û1. The following adjoint system can be derived from
(2)–(4) with α = 0 and p̂x = 0, by integration by parts

−v∗y + iβw∗ = 0, (30a)

−iωu∗ − Uu∗x − Vyu
∗ − V u∗y + Vxv

∗ − p∗x = u∗yy − β2u∗, (30b)

−iωv∗ − Uv∗x − Uxv
∗ − V v∗y + Uyu

∗ − p∗y = v∗yy − β2v∗, (30c)

−iωw∗ − Uw∗
x − V w∗

y + iβp∗ = w∗
yy − β2w∗, (30d)

where p∗(x, y), u∗(x, y), v∗(x, y) and w∗(x, y) are the adjoint variables with
boundary conditions

u∗ = v∗ = w∗ = 0 at y = 0,
u∗ = w∗ = p∗ + 2V v∗ = 0 at y = ymax.

}

(31)

The x-derivative in the parabolic set of equations (30) has opposite sign com-
pared to (2) and the problem has to be solved in the backward direction from
the final position x1 to the initial position x0. Therefore, the initial condition
is specified at x1

U1u
∗
1 + p∗1 = û1(y) at x = x1,

v∗1 = w∗
1 = 0 at x = x1.

}

(32)
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The action of the adjoint operator is given by

v̂0 = U0(y)v
∗
0(y) at x = x0,

ŵ0 = U0(y)w
∗
0(y) at x = x0.

}

(33)

The adjoint-based optimization algorithm is very efficient and converges often
within three to four iterations, indicating the existence of a well-separated
dominating mode.
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Energy thresholds for transition to turbulence in an asymptotic suction bound-
ary layer is calculated by means of temporal direct numerical simulations. The
temporal assumption limits the analysis to periodic disturbances with hori-
zontal wavenumbers determined by the computational box size. Three well
known transition scenarios are investigated: oblique transition, the growth and
breakdown of streaks triggered by streamwise vortices, and the development
of random noise. Linear disturbance simulations and stability diagnostics are
also performed for a base flow consisting of the suction boundary layer and a
streak. The scenarios are found to trigger transition by similar mechanisms as
obtained for other flows. Transition at the lowest initial energy is provided by
the oblique wave scenario for the considered Reynolds numbers 500, 800 and
1200. The Reynolds number dependence on the energy thresholds are deter-
mined for each scenario. The threshold scales like Re−2.6 for oblique transition
and like Re−2.1 for transition initiated by streamwise vortices and random
noise, indicating that oblique transition has the lowest energy threshold also
for larger Reynolds numbers.

1. Introduction

1.1. Earlier work on suction and bypass transition

One of the principal interests in fluid mechanics is the reduction of energy
losses in various flow systems, where the boundary layer plays an important
part. This can be achieved by laminar flow control (LFC), i.e. methods of
delaying/prohibiting transition to turbulence. One such method is wall suc-
tion, which utilizes porous surfaces to remove flow from the boundary layer.
Early interest by the aircraft industry was mostly aimed at steady uniform
suction, which stabilizes the boundary layer mainly by altering the mean flow.
For an aircraft, typically 50% of the drag comes from skin friction (Thibert
et al. 1990). Keeping a boundary layer laminar will decrease this quantity to
a fraction of its turbulent value. Beyond the LFC-application, uniform suction
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can be used to damp out existing turbulence. The large amount of suction re-
quired will however introduce a sharp velocity gradient near the wall and as a
result increased skin friction. The energy cost for relaminarization is typically
one order of magnitude larger than required for LFC (Joslin 1998). Rioual
et al. (1996) investigated the power balance of a flat plate used as an airfoil.
Uniform suction was found to reduce the wake drag and an optimum for the
suction velocity was obtained, leading to a reduction of power consumption.

In order to obtain the stabilizing effects on the boundary layer, one must
assure that the chosen material is able to provide continuous suction. Mac-
Manus & Eaton (2000) investigated the flow instabilities caused by suction
through discrete holes and found a relation between the perforation diame-
ter and the displacement thickness of the boundary layer d/δ1 ' 0.6 below
which the non-uniform effects will not provoke transition. Roberts & Floryan
(2001) considered non-uniform suction by linear instability calculations and the
non-uniformities were shown to trigger streamwise vortices, whose growth rate
scales linearly with the Reynolds number of the flow.

Optimal distribution of steady suction (with respect to minimizing the
disturbance energy) along various geometries have been investigated in different
ways. Thibert et al. (1990) computed transition locations on a wing versus
different mean suction rates and found that linearly decreasing suction rate
gives the best result. Optimization techniques has also been incorporated to
control different types of disturbances in various boundary layers (Balakumar
& Hall 1999; Pralits et al. 2002; Zuccher et al. 2004). The results have in
common that the suction distribution has a peak near the start of the control
volume and decays thereafter, however in somewhat different ways.

The present work focuses on the application of steady uniform suction for
which recent experimental studies have been carried out in the MTL wind tun-
nel at KTH Mechanics (Stockholm) by Fransson & Alfredsson (2003). In that
work, measurements on Tollmien–Schlichting (TS) wave propagation as well as
the influence of free-stream turbulence (FST) were carried out. An interesting
result is that the FST-induced disturbances reach a constant level inside the
boundary layer as suction is applied. For the given Reynolds number and tur-
bulence grids, it was also shown that transition is prevented as the suction is
turned on. Yoshioka et al. (2004) investigated the FST scenario further in a
parametric study based on the fact that for the asymptotic suction boundary
layer (ASBL), the boundary layer thickness and its associated Reynolds num-
ber can be changed independently. They found that the spanwise spacing of
the obtained streamwise elongated disturbances (streaks) is maintained in the
suction area, indicating that due to the suppression of the disturbance growth,
the streaks mainly become passive disturbances convected downstream with
the flow.

As far as the classical scenario with exponential growth of two-dimensional
TS-waves is concerned, experiments and theory match well. For bypass transi-
tion, however, the experimentally observed differences between boundary layers
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with and without suction are not completely understood. Fransson & Corbett
(2003) report a weakening of optimal linear energy growth, compared to the
Blasius boundary layer (BBL), which nevertheless still is of the same order of
magnitude. Roberts & Floryan (2001) observed that the application of uni-
form suction significantly stabilizes TS-waves but has a negligible effect on
streamwise vortices.

Considering bypass transition in general, it is well known that transient
growth is the dominating mechanism for flat-plate boundary-layer experiments
with high levels of FST present. Flow visualizations by Matsubara & Alfredsson
(2001) clearly indicate the route to transition: streaks form inside the boundary
layer, become unstable and develop turbulent spots. Numerical flow visualiza-
tions showing the same qualitative results have also been done (Brandt et al.

2004), where the inflow FST was obtained by superposition of modes of the con-
tinuous spectrum of the Orr–Sommerfeld and Squire operators. Westin et al.

(1994) among others observed that the obtained disturbance level inside the
boundary layer grows as x1/2. Fransson & Alfredsson (2003) reproduced this
result and showed that, as earlier mentioned, uniform suction is able to stop the
growth. Andersson et al. (1999) calculated the optimal scales for streamwise
streaks in the BBL and predicted that the spanwise spacing of these optimal
streaks also grows as x1/2. They confirmed the disturbance growth found by
Westin et al. (1994) when the growth of the optimal spanwise streak spacing
was incorporated.

Theoretical insight of how perturbations can enter a boundary layer is
further provided by the so called oblique-transition model. This concept was
originally introduced by Schmid & Henninson (1992) for incompressible flows
and by Fasel et al. (1993) for compressible flows. Schmid & Henningson showed,
by numerical simulations on plane Poiseuille flow, how the interaction of dist-
urbances consisting of a pair of oblique waves can lead to transition. For the
flat-plate boundary layer, this scenario was first tested numerically by Berlin
et al. (1994), and extended in the context of FST by Berlin et al. (1999).
The numerical results are also confirmed by experimental studies of the vari-
ous flows; see Elofsson & Alfredsson (1998) and Berlin et al. (1999) for plane
Poiseuille flow and the flat-plate boundary layer, respectively. For the ASBL, or
any boundary layer involving suction, this scenario is however not investigated
to the authors knowledge.

Disturbances as streamwise vortices and oblique waves in shear flows may
lead to transition to turbulence. However, for transition to occur at subcritical
Reynolds numbers, a finite initial energy of the disturbance is required. The
threshold energy is defined to be the minimum initial disturbance energy that
leads to transition. Comparing the threshold energies gives a measure of the
probability that a particular transition scenario occurs in a disturbed shear
flow. Such investigations have been done in previous numerical works for plane
Couette and Poiseuille flows (Kreiss et al. 1994; Lundbladh et al. 1994; Reddy



154 O. Levin, E. N. Davidsson & D. S. Henningson

et al. 1998) and a temporal growing Blasius boundary layer (Schmid et al.

1996).

1.2. Present work

In the present paper, we study bypass transition in the asymptotic limit of the
suction boundary layer (i.e. where the flow over a flat plate with suction has
obtained a constant boundary layer thickness) by temporal direct numerical
simulations (DNS). The investigation is limited to periodic disturbances with
specified horizontal wavenumbers. Three transition scenarios are investigated:

• The Streamwise Vortices scenario (SV), where the initial flow field con-
sists of two counter-rotating streamwise vortices. These vortices produce
streaks by the lift-up effect as time proceeds. Transition can take place
if the streak amplitude becomes large enough for secondary instabilities
to operate on it.

• The Oblique Waves scenario (OW), where the initial flow field consists of
two superposed oblique waves traveling with opposite angles to the free-
stream direction. These waves interact nonlinearly to create streamwise
vortices. This is essentially a different and quicker way of triggering
growth of streaks, which in turn are subjected to secondary instabilities.

• The Noise scenario (N), where the initial flow field consists of three-
dimensional random noise added to the base flow.

Natural transition, or growth of TS-waves, is not considered in this inves-
tigation. The asymptotic suction boundary layer is very stable to such distur-
bances and a critical Reynolds number of 54370 is reported by Hocking (1975).
The likelihood of a certain scenario to appear in practice depends on the actual
disturbance environment, the receptivity of the flow and the required distur-
bance energy and time for transition to occur. We aim at determining upper

bounds on the required energy, and also look at the time when the transition
takes place.

The paper is outlined as follows: In § 2, the numerical methods are consid-
ered. Here we describe the numerical code, base flow, how to create the primary
disturbances and which parameters are used for the simulations. In § 3, a linear
disturbance simulation is performed for the streaky base flow. Then the results
from the DNS are presented in terms of flow visualizations and spectral energy
evolution. Finally, the transition times and the energy thresholds of the three
scenarios is presented. The obtained results are summarized in § 4.

2. Numerical details

2.1. Base flow and scaling

Consider a boundary layer over a wall where x, y and z denote the streamwise,
wall-normal and spanwise coordinates, respectively. The corresponding velocity
components are U = (U, V,W ). Lengths are made nondimensional by the
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displacement thickness δ1 and velocities are made nondimensional by the free-
stream velocity, U∞. The time t is scaled with δ1/U∞. The Reynolds number is
defined as Re = U∞δ1/ν, where ν is the kinematic viscosity of the fluid. When
uniform wall-normal suction, with velocity −V0, is applied at the wall, the
flow will evolve to the asymptotic suction profile after some evolution region
(Fransson & Alfredsson 2003). The ASBL is an analytical solution to the
Navier–Stokes equations and can be written as

U0 = (1 − exp(−y),−V0, 0). (1)

The analytical solution allows the displacement thickness to be calculated ex-
actly, δ1 = ν/V ∗

0 and the Reynolds number to be expressed as the velocity
ratio, Re = U∞/V

∗
0 , where −V ∗

0 is the dimensional suction velocity.

2.2. DNS techniques

The numerical code (Lundbladh et al. 1999) uses spectral methods to solve
the three-dimensional time-dependent incompressible Navier–Stokes equations.
The discretization in the streamwise and spanwise directions make use of Fourier
series expansions, which enforces periodic solutions. The discretization in the
normal direction is represented with Chebyshev series. A pseudospectral treat-
ment of the nonlinear terms is used. The time advancement used is a second-
order Crank–Nicolson method for the linear terms and a four-step low-storage
third-order Runge–Kutta method for the nonlinear terms. Aliasing errors aris-
ing from the evaluation of the pseudospectrally convective terms are removed
by dealiasing by padding and truncation using the 3/2-rule when the FFTs
are calculated in the wall-parallel planes. In the normal direction, it has been
found that increasing the resolution is more efficient than the use of dealiasing.
The code can be run in both a temporal and a spatial mode. In the latter
case, a fringe region (Nordström et al. 1999) is added to the downstream end
of the physical domain, in which the outgoing flow is forced to its initial state.
When studying parallel flows, such as the ASBL with periodic disturbances,
the advantage of a temporal simulation can be used.

The numerical code does not allow for non-zero mean mass flow through the
lower and upper boundaries. However, the normal suction in the ASBL can be
moved from the boundary condition to the governing equations. Hence, instead
of solving the Navier–Stokes equations for V with the boundary condition V =
−V0, the same solution can be obtained by solving for V −V0 with the boundary
condition V = 0. In the code, the velocity-vorticity formulation of the Navier–
Stokes equations is solved. The equations for the normal velocity can be written

∂φ

∂t
= hV +

1

Re
∇2φ, (2)

∇2V = φ, (3)

where

hV =

(

∂2

∂x2
+

∂2

∂z2

)

H2 −
∂

∂y

(

∂H1

∂x
+
∂H3

∂z

)

, (4)
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H1 = V ϑ−Wη, H2 = Wχ− Uϑ, H3 = Uη − V χ. (5)

Here ω = (χ, η, ϑ) denote the vorticity components. The equation for the
normal vorticity can be written

∂η

∂t
= hη +

1

Re
∇2η, (6)

where

hη =
∂H1

∂z
− ∂H3

∂x
. (7)

Once V and η have been obtained, U and W can be calculated from the in-
compressibility constraint and the definition of the normal vorticity. In order
to solve the equations with the ASBL as a base flow, the normal velocity com-
ponent in (5) is modified as follows

H1 = (V − V0)ϑ−Wη, H3 = Uη − (V − V0)χ, (8)

where the suction velocity is specified as

V0 =
1

Re
. (9)

The above system of equations is closed by specifying boundary conditions
at the edges of the computational box. At the wall, no-slip boundary condition
is used, i.e.

U = 0, (10)

and at the upper boundary at the free-stream position y = yL, generalized
boundary condition is applied in Fourier space with different coefficients for
each wavenumber. It is non-local in physical space and takes the following
form

∂Û

∂y
+ kÛ =

∂Û0

∂y
+ kÛ0, (11)

where hats denote Fourier transform and k is the modulus of the horizontal
wavenumbers (k2 = α2 + β2). The condition (11) represents a potential flow
solution decaying away from the upper edge of the computational box. This
condition decreases the required box height by damping the higher frequencies
rather than forcing the disturbance velocities to a rapid decay. In the horizontal
directions, periodic boundary conditions are used.

2.3. Disturbance generation and numerical parameters

The present numerical implementation provides several possibilities for distur-
bance generation. Disturbances can be included in the flow by a body force,
by blowing and suction at the wall through non-homogeneous boundary condi-
tions and by adding them in the initial velocity field. Streamwise vortices and
oblique waves are representative disturbances that lead to transient growth
and bypass transition to turbulence (Schmid & Henninson 1992; Elofsson &
Alfredsson 1998; Reddy et al. 1998; Berlin et al. 1999; Elofsson et al. 1999).
They are added in the form û(y) exp(iαx+ iβz)+ cc to the ASBL in the initial
velocity field. The amplitude function û(y) of the initial disturbance, with
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Figure 1. Initial optimal disturbances in the ASBL for Re =
800. (a) Cross-flow plane of the optimal streamwise vortices.
(b) Contours of normal disturbance velocity of the oblique
waves in a horizontal plane at y = 1.6.

given horizontal wavenumbers (α, β), is optimized to obtain the highest energy
gain over a specified time period. The optimization code uses a direct-adjoint
technique applied to the linear disturbance equations in the temporal frame
and was originally implemented by Corbett & Bottaro (2000) that studied the
algebraic growth in boundary layers subject to different streamwise pressure
gradients. The optimization code was later extended to include the ASBL
by Fransson & Corbett (2003). For the simulations in the present work, the
streamwise vortices are optimized for (α, β) = (0, 0.53), which is the global
optimal wavenumbers for Re = 800 found by Fransson and Corbett. The time
period, which the growth is optimized for, is chosen to be 300. The oblique
wave is optimized for (α, β) = (0.265, 0.265) over a time period of 75 and
is introduced in the initial velocity field both for (α, β) and (α,−β). From
this initial condition, the nonlinear interaction between the waves will produce
streaks with wavenumbers (α, β) = (0, 0.53). Figure 1 shows the initial opti-
mal streamwise vortices and oblique waves for Re = 800. The thresholds are
expressed in terms of the energy density of the initial disturbance. The energy
density of a disturbance (u, v, w) is given by

E =
1

2�

∫

(u2 + v2 + w2) d� , (12)

where � is the volume of one periodic box. Apart from the optimal disturbance,
random noise is added to the initial velocity field. The noise is in the form of
Stokes modes, i.e. eigenmodes of the flow operator without the convective term.
These modes fulfill the equation of continuity and the boundary condition of
vanishing velocity at the wall. The total energy density of the noise is set to
0.01% of the energy density of the primary disturbance.
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Scenario Re Resolution Box size
(SV) 500 40 × 61 × 64 11.86 × 10 × 11.86

800 40 × 81 × 80 11.86 × 10 × 11.86
1200 48 × 109 × 96 11.86 × 10 × 11.86

(OW) 500 80 × 91 × 128 23.71 × 10 × 23.71
800 96 × 109 × 144 23.71 × 10 × 23.71
1200 108 × 129 × 180 23.71 × 10 × 23.71

(N) 500 40 × 81 × 80 11.86 × 10 × 11.86
800 40 × 81 × 80 11.86 × 10 × 11.86
1200 48 × 109 × 96 11.86 × 10 × 11.86

Table 1. Grid resolution and box size used for the three transi-
tion scenarios given in the order streamwise, wall-normal and span-
wise direction, respectively.

The horizontal lengths of the box for scenario (SV) are 2π/β, which cor-
responds to one spanwise wavelength of the optimal disturbance. In scenario
(OW) the horizontal lengths of the box are doubled to fit one streamwise and
spanwise period of the oblique waves. The height of the box is 10 for all
simulations. Both the box height and the resolutions are carefully tested by
convergence tests of the transition time and flow structures with varied box
height and resolution. Dealiasing is activated in the streamwise and spanwise
directions. That increases the computational resolution in the simulations with
a factor of 2.25 (1.5 in each direction). The size of the computational box and
the resolution used for the simulations are listed in table 1.

3. Results

3.1. Streamwise wavelength of secondary instability

The streak, seen as a primary disturbance, grows out of the optimal streamwise
vortices introduced in the initial field as time proceeds. When the streak ampli-
tude increases beyond a certain critical value, secondary disturbances become
unstable and start to grow. The most amplified wavelength of the secondary
instability is dependent of the shape and amplitude of the primary streak dis-
turbance. To be able to quantify the size of the primary disturbance, Andersson
et al. (2001) introduced a definition of the streak amplitude. It is defined as half
the difference between the maximum and minimum of the streamwise velocity
deviation, hence

A =
1

2

[

max
y,z

(U − U0) − min
y,z

(U − U0)

]

. (13)

Figure 2 shows a cross-flow plane of an undisturbed streak obtained from a
simulation for scenario (SV) with Re = 800 and E0 = 3 ·10−5, without noise in
the initial field. The figure shows contours of streamwise disturbance velocity



Transition thresholds in the ASBL 159

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

y

z

Figure 2. Primary streak disturbance (without noise) at
t = 400 for scenario (SV) with Re = 800 and E0 = 3 · 10−5.
Contours of streamwise disturbance velocity are shown in a
cross-flow plane. Black and grey lines show positive (high-
speed streak) and negative (low-speed streak) values, respec-
tively. The line spacing is 0.025 but the zero contour is not
displayed.

at t = 400. In absence of noise, no secondary disturbances exist to set off
secondary instability and the flow stays laminar.

When a secondary disturbance grows on a streak, the length of the periodic
box will affect its wavelength. Thus, one can either perform the simulations
with a very long box to let the simulation decide the wavelength of the sec-
ondary instability, or select the box length to match one streamwise wavelength
of the secondary disturbance. The latter alternative is used in this paper, where
many simulations are required to find the energy thresholds. That constrains
the investigation to disturbances with wavenumbers that fit the periodic box.
The first alternative is however tested in one simulation for scenario (SV) to
determine the naturally preferred instability wavelength. In that simulation,
which is performed for Re = 800 and E0 = 3 · 10−5, the length of the box is
40π/β and the resolution is 480×51×40. The obtained flow at t = 400 in a part
of the box is shown in figure 3, where contours of the streamwise disturbance
velocity is drawn. At the given time, the streak is clearly unstable to secondary
disturbances and eleven streamwise waves with varying length are present in
the box. The shorter waves grow more than the longer waves and can thus be
considered to be more unstable. The corresponding streamwise wavenumber
is approximately α = 0.4. However, that value is likely to vary slightly with
Reynolds number, initial energy density of the primary disturbance and the
noise.
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Figure 3. Natural secondary instability of a streak at t = 400
for scenario (SV) with Re = 800 and E0 = 3 · 10−5. Contours
of streamwise disturbance velocity are shown in a horizontal
plane at y = 1.6. Black and grey lines show positive and
negative values, respectively. The line spacing is 0.05 but the
zero contour is not displayed.

An additional method of finding the most amplified streamwise wavelength
is used. By determining the linear impulse response (Brandt et al. 2003) for
the base flow with a pure streak extracted from scenario (SV) without noise, as
the streak shown in figure 2, the growth rate versus the streamwise wavenum-
ber can be calculated. The method solves the disturbance equations in time
and space, linearized around the streaky base flow at a fixed time instant. The
assumption of constant streak amplitude is justified since the secondary insta-
bility is inviscid in nature and therefore leads to a fast growth in comparison
to the growth of the streak itself. The base flow is spanwise periodic and sym-
metric with respect to the (x, y)-plane. As a consequence, it admits two classes
of normal modes: a sinuous mode and a varicose mode. The initial condition
representing the impulse response for the secondary disturbance triggers two
counter-rotating streamwise vortex pairs. It has been used previously by Hen-
ningson et al. (1993) and Bech et al. (1998) and potentially excites both the
sinuous and varicose modes. As time proceeds, the disturbance rides on the
streaky base flow and evolves into a dispersive wave packet.

The linear impulse response is calculated for the streak in the time interval
200-600 with steps of 100. Spatio-temporal diagnostic tools are used in order
to evaluate the simulation results for growth rates in the asymptotic limit
where the disturbances are considered to grow exponentially. The growth rates
are denoted ωi and σ, where the former is strictly temporal and the latter
is the spatio-temporal counterpart as observed while traveling with the group
velocity vg. For further details on how these quantities are evaluated, the
reader is referred to Delbende & Chomaz (1998) and Delbende et al. (1998).
Figures 4(a) and 4(b) show the obtained sinuous type growth rates for the
different streak time instants versus the streamwise wavenumber and the group
velocity, respectively. The varicose mode attains about half the growth rate
and is not displayed here. According to Delbende et al. (1998), the overall
maximum of both type of growth rates will coincide. This quantity, denoted
σmax, is summarized in table 2 for the different time instants, together with its
corresponding streamwise wavenumber αmax and group velocity vmax

g . Further
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Figure 4. Linear impulse response for a streak with Re = 800
and E0 = 3 · 10−5. Streaks extracted for t = 200 (dotted
line), 300 (dashed line), 400 (solid line), 500 (grey line) and
600 (dash-dotted line). (a) Temporal growth rate ωi versus
streamwise wavenumber α. (b) Spatio-temporal growth rate σ
versus group velocity vg.

t A αmax σmax v−g vmax
g v+

g

200 0.33 0.35 0.021 0.58 0.73 0.88
300 0.36 0.42 0.031 0.52 0.70 0.91
400 0.35 0.47 0.033 0.52 0.69 0.93
500 0.33 0.46 0.030 0.55 0.71 0.95
600 0.32 0.43 0.027 0.59 0.73 0.94

Table 2. Comparison of linear impulse response for the streak
at different time instants. The data complements figure 4.

information in table 2 is the amplitude of the streak defined as in (13) and the
trailing-edge and leading-edge velocities of the wave packet, where σ = 0,
denoted v−g and v+

g , respectively. The instability of the wave packet riding on
the streak is clearly convective. The group velocities of the trailing and leading
edge are around 52% and 95% of the free-stream velocity, respectively. Brandt
et al. (2003) found a trailing-edge velocity of about 67% for the wave packet
riding on a streak with A = 0.36 in the BBL, while the leading-edge velocity
was found to be about the same as for the ASBL. The overall largest growth
rate is obtained for αmax = 0.47 for the streak at t = 400. Andersson et al.

(2001) studied the secondary instability and breakdown of streamwise steaks
in the BBL. They found that the growth rate and streamwise wavenumber
increase with the streak amplitude. The critical amplitude of the streak, beyond
which streamwise traveling waves are excited, was found to be about 26% of
the free-stream velocity. The results for the ASBL show the same general
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behavior. That explains why the waves in the long-box simulation is longer,
with a corresponding smaller value of the streamwise wavenumber. The longest
waves start to grow at a smaller streak amplitude and thus have longer time
to develop. As waves with different lengths start to grow at different streak
amplitudes and hence at different time instants, it is difficult to judge which
streamwise wavenumber that dominates the secondary instability. With that in
consideration and the fact that the maximum growth rates are rather insensitive
to the streamwise wavenumber, the box length is set equal to the box width
throughout this investigation.

3.2. Simulations of transition

3.2.1. Transition thresholds

As mentioned in the introduction, the ASBL is stable to infinitesimal distur-
bances below a critical Reynolds number of 54370 (Hocking 1975). However, a
transient disturbance growth may occur for much lower Reynolds numbers. If
the initial energy of the disturbance exceeds a certain threshold value transition
occurs. The energy threshold of the primary disturbance typically decreases
with Reynolds number. Previous investigations have mainly been concerned
with determining the negative exponent γ, relating to the initial amplitude of
the primary disturbance as A0 ∝ Reγ . In this representation, the scenario with
the smallest exponent will most easily become turbulent when sufficiently large
Reynolds numbers are considered. Trefethen et al. (1993) used simple models
to feed transient growth by nonlinearities and conjectured that for the Navier–
Stokes equations, γ must be ≤ −1. Later Baggett & Trefethen (1997) reviewed
several mathematical models of transition in parallel shear flows collected from
different research groups, and found the exponents −3 ≤ γ ≤ −1 depending
on model and base flow. However, they conclude that for actual flows in pipes
and channels, the range is more likely −2 ≤ γ < −1. Most investigations
dealing with this relationship focus on plane channel flows. Kreiss et al. (1994)
obtained through DNS the threshold exponent γ = −1, for transition in plane
Couette flow initiated by streamwise vortices. Numerical studies by Lundbladh
et al. (1994) indicate that for scenario (SV), the exponent is −7/4 for plane
Poiseuille flow, while for scenario (OW), the exponents are γ = −5/4 and −7/4
for plane Couette and plane Poiseuille flow, respectively. Reddy et al. (1998)
approximately confirm these values. The quoted numerical simulations are lim-
ited to Reynolds numbers less than 5000. Chapman (2002) used an asymptotic
(Re → ∞) analysis of the Navier–Stokes equations to study the threshold ex-
ponents for transition in plane Couette and plane Poiseuille flow initiated by
streamwise vortices and oblique waves. He finds the exponents to be different
than in the above mentioned works (Lundbladh et al. 1994; Reddy et al. 1998).
Chapman explains this difference by the fact that the asymptotic values are
only reached for very large Reynolds numbers, of order 106, where the scaling
laws of the transient growth is different than for the Reynolds numbers used in
the numerical simulations. Recent experiments on pipe flow by Hof et al. (2003)



Transition thresholds in the ASBL 163

indicate that the required disturbance amplitude to cause transition scales as
Re−1.

For boundary layer flows, little work aimed in this direction is found, mainly
because of difficulties to define such a relationship as the local Reynolds num-
ber changes with the boundary layer thickness. However, tools for transition
prediction in boundary layers have been developed for half a century. Ander-
sson et al. (1999) proposed a relation for bypass transition prediction in the
BBL. The relation states that the Reynolds number (based on the boundary
layer thickness) at transition scales as −1 with the level of FST. It is based on
transient growth theory together with the assumption that the initial distur-
bance energy is proportional to the FST energy. Levin & Henningson (2003)
later generalized the relation to the Falkner–Skan boundary layer. Fransson
et al. (2005) experimentally showed a very good correlation to the relation in
the BBL.

In a parallel boundary layer such as the ASBL, the Reynolds number based
on the boundary layer thickness is constant and therefore the procedure to find
the threshold energy is straightforward. When a simulation is found to reach
transition, another one is simply carried out with smaller initial energy until
the accuracy is considered sufficient. It is also of interest to determine the
time (tT ) when transition occurs. There are several methods of determining if
transition has taken place. For example, it can be defined by the appearance
of sharp peaks of some flow quantity like the velocity components, energy
density or wall shear stress. In the present work, the Reynolds number based
on the mean friction velocity, Reτ , provides a well-defined measure. Transition
is defined to appear when the friction velocity Reynolds number exceeds a
certain critical value that is chosen, based on the results, to be 26, 38 and
50 for Reynolds number 500, 800 and 1200, respectively. However, at low
Reynolds numbers and large initial energies of the primary disturbance, this
definition breaks down for scenario (SV) and (OW). This is because the initial
disturbance produces a larger mean friction velocity than the turbulence itself.
Examples of the evolution of the friction velocity Reynolds number are shown
in figure 5, where transition takes place at the rapid growth of the friction
velocity Reynolds number around t = 800.

Before presenting the results, two things need to be mentioned about these
simulations. Firstly, we register transition as the process when the fluid goes
into the turbulent state. However, the simulations are not continued to ensure
that turbulence is sustained over time. Secondly, random noise is added to
the primary disturbance in the (SV) and (OW) simulations. This is especially
important in scenario (SV) where we need to break the symmetry of the streak,
which otherwise would decay (Gustavsson 1991). Increasing the energy level of
the noise makes the flow more unstable and transition appears earlier as shown
in figure 5(a). Figure 5(b) shows that distributing the energy of the noise
differently affects the course of events somewhat as well, despite the low initial
energy compared to that of the primary disturbance. In this investigation, one
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Figure 5. Effect of noise on the friction velocity Reynolds
numberReτ for scenario (SV) with Re = 800 and E0 = 3·10−5.
(a) Constant seed number and various initial energy density
quota between noise and primary disturbance. Black lines:
Solid 0.01%, dashed 0.02%, dotted 0.05%. Grey lines: dashed
0.005%, dotted 0.002%. (b) Various seed numbers, keeping
initial energy quotient set to 0.01%.

noise setup is used, thus our obtained energy threshold must be considered
as an upper bound, since more optimal disturbance configurations that would
lead to transition for lower initial energies may exist.

3.2.2. Transition initiated by streamwise vortices

In the simulations of scenario (SV), the initial condition consists of optimal
streamwise vortices (see figure 1a) and a small amount of random noise to
set off secondary instability. The size and resolution of the box for the three
simulated Reynolds numbers 500, 800 and 1200 are specified in table 1. The
flow pattern of the simulation for Re = 800 and E0 = 3 · 10−5 is shown in
figure 6, where lines of constant streamwise disturbance velocity are plotted
in a horizontal plane at y = 1.6. At the start of this simulation, the initiated
streamwise vortices evolve into streaks by the lift-up effect. Figure 6(a) shows
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Figure 6. Flow pattern close to transition for scenario (SV)
with Re = 800 and E0 = 3 · 10−5. Contours of streamwise
disturbance velocity are shown in a horizontal plane at y = 1.6
at time instants 600 (a), 700 (b), 800 (c) and 900 (d). Black
and grey lines show positive and negative values, respectively.
The line spacing is 0.05 but the zero contour is not displayed.

the resulting streak at t = 600. Grey lines demonstrate negative disturbance
velocity, i.e. the low speed streak positioned around z = 0. At t = 700, shown
in figure 6(b), a secondary instability has developed that deforms the streak
in a sinuous manner with a streamwise wavelength equal to the box length.
Figure 6(c) shows the state at t = 800, which is close to the breakdown to
turbulence. According to our definition, the transition time in this case is 820.
The solid line in figure 5(a) shows the evolution of Reτ for this simulation. For

the undisturbed base flow Reτ =
√
Re, which is also very close to the initial

value in the figure. This quantity shows a rather slow increase as the streaks
form and grow in amplitude, followed by a rapid growth as the streaks break
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Figure 7. Energy content in Fourier modes (α1, β1) for sce-
nario (SV) with Re = 800 and E0 = 3 · 10−5. The initially
excited mode (0, 1) is shown by the grey solid line, while the
nonlinearly generated modes are shown by black lines. The
modes are indicated in the figure and × denotes 0, 1 or 2.

down and transition occurs. The early turbulent state succeeding breakdown
is shown in figure 6(d), which shows the flow pattern at t = 900.

Further insight into the transition process is provided by the energy evolu-
tion of the Fourier components, shown in figure 7. The velocity field is Fourier
transformed in the horizontal directions and (α1, β1) denotes the streamwise
and spanwise wavenumbers, respectively, each normalized with the correspond-
ing fundamental wavenumbers. The initial energy is fed into streamwise vor-
tices (0, 1) shown as the grey line in figure 7. This mode grows algebraically
as transient growth place energy into the streamwise velocity component (the
streak). The superharmonic streak mode (0, 2) also experience an algebraic
growth although the energy content in this mode is at least one decade smaller.
At about t = 400, the streak reaches its largest amplitude. At the same time,
the secondary instability is triggered and the modes (1, 0-2) show an exponen-
tial growth. At later instants higher harmonics start to grow exponentially;
the modes (2, 0-2) are shown in the figure. Transition is obtained as the energy
content of these modes are of the same order as that for the streak.

3.2.3. Transition initiated by oblique waves

In the simulations of scenario (OW), the initial condition consists of two opti-
mal oblique waves (see figure 1b) oriented 45 degrees angle to the free-stream
direction, one in the positive spanwise direction and the other in the negative.
The same random noise as for scenario (SV) is added to the initial field. The
size and resolution of the box for the simulations are given in table 1. Contours
of constant streamwise disturbance velocity in a horizontal plane at y = 1.6
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Figure 8. Flow pattern close to transition for scenario (OW)
with Re = 800 and E0 = 1 · 10−5. Contours of streamwise
disturbance velocity are shown in a horizontal plane at y = 1.6
at time instants 500 (a), 600 (b), 700 (c) and 800 (d). Black
and grey lines show positive and negative values, respectively.
The line spacing is 0.05 but the zero contour is not displayed.

are shown in figure 8 from the simulation for Re = 800 and E0 = 1 · 10−5. At
the start of this scenario, the initiated pair of oblique waves interact with each
other and streamwise vortices with half the spanwise wavelength are created.
The streamwise vortices again evolve into streaks due to the lift-up effect. Fig-
ure 8(a) shows two spanwise periods of streaks at t = 500. In the presence of the
oblique modes, the secondary instability is of the varicose type with horizontal
wavelengths equal to these of the oblique waves, and thus also of the horizontal
box dimension. At t = 600, shown in figure 8(b), the secondary instability
has developed and deforms the streaks. Figure 8(c) shows the flow pattern at
t = 700 close to the transition time, which with our definition becomes 731.
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Figure 9. Energy content in Fourier modes (α1, β1) for sce-
nario (OW) with Re = 800 and E0 = 1 · 10−5. The initially
excited modes (1,±1) are shown by the grey solid line, while
the nonlinearly generated modes are shown by black lines. The
modes are indicated in the figure and × denotes 0, 2 or 4.

The early turbulent state succeeding breakdown is shown in figure 8(d), which
shows the flow pattern at t = 800.

Figure 9 shows the energy evolution of the Fourier components. The ini-
tial energy is fed into the oblique wave modes (1,±1) shown as the grey line
in the figure. These modes grow initially due to linear transient effects, but
start decaying rather quickly as the energy is nonlinearly redistributed into
the streamwise vortices (0, 2). These vortices produce streamwise streaks with
spanwise wavenumber 0.53 as for scenario (SV). From this point, scenarios
(OW) and (SV) are similar in behavior since both contain the instability and
breakdown of streaks. However, when the streak amplitude is large enough
for the secondary instability to set in, at t ≈ 400, the oblique wave modes
(1,±1) still contain a considerable amount of energy. Since the oblique modes
are associated with a varicose or symmetric streak instability this will have the
opposite spanwise symmetry compared to the sinuous or antisymmetric sec-
ondary instability found in scenario (SV). As a consequence, these wavelengths
become twice as large compared to the streak breakdown in scenario (SV).

3.2.4. Threshold energy

In addition to scenarios (SV) and (OW), a corresponding investigation for sce-
nario (N) is performed. In these simulations, the initial disturbance consists of
noise only. This noise is the same as for the other simulations, but with a con-
siderably higher level of initial energy density, which is required for breakdown
to turbulence to occur. The size and resolution for scenario (N) are reported in
table 1. Figure 10 shows the energy evolution of the Fourier components in the
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Figure 10. Energy content in Fourier modes (α1, β1) for sce-
nario (N) with Re = 800 and E0 = 3.2 · 10−4. The modes are
indicated in the figure and × denotes 0, 1 or 2.

simulation with Re = 800 and E0 = 3.2 ·10−4. The initial energy is distributed
in the modes with |α1| ≤ 2 and |β1| ≤ 2. The streak modes (0, 1) and (0, 2)
grow algebraically while the other modes shown in the figure decay until about
t = 500, when secondary instabilities are triggered. Transition occurs as the
energy content of these modes are of the same order as for the streak modes.
For our definition of the transition time, this appears at t = 729. The tran-
sition mechanism for scenario (N) seems to be the same as for scenario (SV).
Streaks are produced of the random noise and breakdown occurs as a result of
a secondary streak instability.

In order to compare the threshold energies for the three scenarios, the time
of transition tT for each initial energy density E0 of the simulations are sum-
marized in figure 11. The lines connecting the data are extrapolated towards
tT → ∞ for the lowest obtained energy that leads to breakdown before t = 2000
of each case. The figure shows how the time of transition decreases as the initial
energy of the primary disturbance increases. This trend is less significant for
scenario (N) where rather high energies are required to obtain transition. The
most competitive initial disturbance, of the ones considered herein, in terms of
transition at low energy/short time is the pair of oblique waves. Scenario (N),
on the other hand, requires 1-2 orders of magnitude larger energy.

The energy thresholds for transition, extracted from figure 11 (where the
lines approach the time 2000), are plotted for their respective Reynolds num-
ber in figure 12. The solid lines represent least square fits of the formula
E0 ∝ Re2γ , and the determined proportionality constants and exponents are
given inside the plot. The exponents for scenarios (SV) and (N) are with
the present accuracy, equal. However, with increased accuracy, the exponent
for scenario (SV) becomes slightly lower than for scenario (N). As mentioned
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Figure 11. Transition time as a function of initial energy
density. Black lines (SV), grey lines (OW) and dotted lines
(N) for Reynolds number 500 (5), 800 (�) and 1200 (4).

above, scenario (N) essentially seem to be another way to trigger streaks. Thus
it is not surprising that the exponents are adjacent. Since random noise is not
the optimal disturbance distribution to create streaks, a higher initial energy
is required for transition to occur. The steepest slope is obtained for scenario
(OW), which thereby will have the highest potential to trigger transition also
for larger Reynolds numbers than considered here. This is in agreement with
previous investigations of plane Couette flow (Lundbladh et al. 1994).

4. Conclusions

In the present study, several scenarios of bypass transition are investigated for
the asymptotic suction boundary layer (ASBL). This flow is strictly parallel in
the sense of constant thickness of the boundary layer, which allows for direct
numerical simulations in the temporal regime. However, the temporal assump-
tion limits the analysis to periodic disturbances with horizontal wavenumbers
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Figure 12. Threshold energy density for the three scenarios,
streamwise vortices (SV), oblique waves (OW) and random
three-dimensional noise (N). The circles correspond to data
from the DNS. The lines are fits to the data with their corre-
sponding functions indicated beside.

determined by the computational box size. The work aims at finding energy
thresholds for generic disturbances that are known to lead to transition with
low initial energies and not for the most likely disturbances that may be present
in the flow. Furthermore, the receptivity of the flow is not considered. Three
scenarios are considered: growth and breakdown of streaks initiated by stream-
wise vortices (SV), oblique transition where an oblique wave pair (OW) is used
to trigger the streamwise vortices, and three-dimensional random noise (N).
These scenarios are well established and thoroughly investigated for other flows
(Kreiss et al. 1994; Lundbladh et al. 1994; Reddy et al. 1998; Chapman 2002).
The different stages of transition are identified and found to be in accordance
with previous work on channel flows and boundary layers.

For scenario (SV), simulations of secondary disturbances are performed in
order to study the influence of the box length. The result is a wave packet with a
trailing-edge velocity of 0.52, to be compared with 0.67 for the Blasius boundary
layer (BBL) (Brandt et al. 2003). The leading-edge velocity is 0.95, which is
similar to what is found for the BBL. Growth rates are also calculated, which
become largest for the sinuous instability mode with a streamwise wavenumber
comparable to the spanwise wavenumber of the streak.

The obtained threshold energies for the three transition scenarios scale with
Reynolds number as Re−2.6 (OW), Re−2.1 (SV) and Re−2.1 (N). These val-
ues correspond to slightly below −1 when considering disturbance amplitudes,
which agree reasonably well with numerical investigations for other flows. For
the present accuracy, the exponents for scenarios (SV) and (N) are equal. The
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reason may be that the underlying transition mechanisms are identical, since
noise also gives rise to transient growth of streaks. However, the required initial
energy of the noise for transition to occur is higher since the noise is far from
the optimal configuration to trigger streaks. It is important, when considering
the likelihood of these scenarios to appear in practice, to consider the initial
energy of the disturbance required to achieve transition. For the investigated
domain of Reynolds numbers, oblique transition clearly posses the largest po-
tential to transform this flow into the turbulent state. It also has the steepest
threshold curve, indicating that this scenario will dominate even more as the
Reynolds number is increased.

A similar study was made by Schmid et al. (1996) by simulations of a
temporally growing BBL for the initial Reynolds number 500. Their lowest
threshold is obtained for scenario (OW) and the value is ' 8 · 10−7, to be
compared to 2.7 · 10−5 obtained from our curve fits. For scenario (SV) the
roles are opposite but the energies are larger. Keeping in mind that a temporal
simulation of the BBL does not represent the fully physical situation, these
results indicate that perhaps the physics of the ASBL makes this boundary
layer more resistant to the initial nonlinear redistribution necessary to obtain
the growing streaks out of the oblique waves. Such investigations are left for
future studies, however.

The authors are grateful to Luca Brandt for helping us with the calcula-
tions of the linear impulse response. We are also thankful to Peter Corbett,
Alessandro Bottaro and Jens Fransson for letting us use their disturbance opti-
mization code. Use of computational resources at High Performance Comput-
ing Center North (HPC2N) is also gratefully acknowledged. This work has been
financed through the program of Energy Related Fluid Mechanics operated by
the Swedish Energy Agency.
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Turbulent spots in the asymptotic suction

boundary layer

By Ori Levin

KTH Mechanics, SE-100 44 Stockholm, Sweden

Amplitude thresholds for transition of localized disturbances, their breakdown
to turbulence and the development of turbulent spots in the asymptotic suction
boundary layer are studied using direct numerical simulations. A parametric
study of the horizontal scales of the initial disturbance is performed and the
disturbance that lead to the highest growth under the conditions investigated
are used in the simulations. It is found that the threshold amplitude scales
like Re−1.5 for 500 ≤ Re ≤ 1200, based on the free-stream velocity and the
displacement thickness. For Re ≤ 367, the localized disturbance does not lead
to a turbulent spot. The localized disturbance develops into a hairpin vortex.
When it breaks down to a turbulent spot, it happens through the development
of hairpin vortex heads and spiral vortices. The shape and spreading rate of the
turbulent spot are determined for Re = 500, 800 and 1200. Flow visualizations
reveal that the turbulent spot takes a bullet-shaped form that becomes more
distinct for higher Reynolds numbers. Long streaks extend in front of the spot
and in its wake, a calm region exists. The spreading rate of the turbulent spot
is found to increase with increasing Reynolds number.

1. Introduction

In natural transition, the breakdown to turbulence typically starts in isolated
regions initiated by disturbances present in the laminar flow. These turbulent
spots grow in size as they propagate downstream and merge together to form a
fully developed turbulent flow. Turbulent spots were first observed by Emmons
(1951) in shallow water flowing down an inclined plate. Since then, turbulent
spots and their development have been investigated extensively in channel flows
and boundary layers.

The early experimental work of turbulent spots in boundary layers has been
reviewed by Riley & Gad-el-Hak (1985). Flow visualizations of Elder (1960)
and Cantwell et al. (1978) reveal that the turbulent spot in the boundary
layer over a flat plate takes the form of an arrowhead with its tip pointing in
the downstream direction. The leading edge develops an overhang over the
laminar boundary layer. Behind the spot, a nonturbulent region with streaks
can be seen. The laminar flow in the wake of the turbulent spot turns out
to be more stable and has been termed a calmed region. The leading and
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trailing edges propagate at about 90% and 50% of the free-stream velocity,
respectively, while the lateral spreading is at a half-width angle of about 10◦

regardless of Reynolds number (Wygnanski et al. 1976). As the spot propagates
downstream, its height increases at a rate similar to the growth of a turbulent
boundary layer. Wygnanski et al. (1979) observed oblique wave packets swept
at an angle of about 40◦ near the wingtips of the spot. Whether these waves
packets play an important role in the lateral spreading or merely act as passive
attendants to the spot has been debated.

The evolution of turbulent spots in boundary layers with pressure gradients
has also been investigated. Katz et al. (1990) observed that the rate of growth
of the spot is significantly inhibited by a favourable pressure gradient. The
familiar arrowhead shape of the spot gave way to a rounded triangular shape
with the trailing interface being straight and perpendicular to the free-stream
direction. They did not observe wave packets and attributed this to the stability
of the laminar flow. With an adverse pressure gradient, the trend is the opposite
as observed by Seifert & Wygnanski (1995). The rate of growth of turbulent
spots, especially the lateral growth, is enhanced by an adverse pressure gradient
as well as the interaction of the spot with the wave packet trailing it.

There are very few simulations of turbulent spots in boundary layers. The
first direct numerical simulation (DNS) of a spot that was taken far enough
in time to make comparisons with experiments was performed by Henningson
et al. (1987) for a temporally growing Blasius boundary layer. Later Singer
(1996) looked more into details of the substructures within a young turbulent
spot by means of DNS of a spatially growing Blasius boundary layer. In these
simulations, the spot assumed the well-known shape of an arrowhead with its
characteristic overhang of the leading edge but wave packets were not observed.

In plane Poiseuille flow, the spot develops the shape of a reverse arrowhead
as can be seen in flow visualizations by Carlson et al. (1982) and Alavyoon et al.

(1986). Oblique waves can be seen at the wingtips and streaks extend in the
interior of the spot throughout its length. A further investigation of the oblique
waves were done by Henningson & Alfredsson (1987). In contrary to spots in the
flat-plate boundary layer, the spreading rates in the streamwise and spanwise
directions are found to depend on the Reynolds number (Alavyoon et al. 1986).
The only simulation of a turbulent spot in plane Poiseuille flow was performed
by Henningson & Kim (1991). Their obtained spot had a very similar shape to
that observed in laboratory flows and oblique waves existed at the wingtips.

For turbulent spots in plane Couette flow, the simulations of Lundbladh
& Johansson (1991) preceded the experiments of Tillmark & Alfredsson (1992)
and Dauchot & Daviaud (1995). In both the simulations and the experiments,
the spot assumed an elliptical shape that evolved towards a circular shape
as it propagated downstream. Moreover, the lateral spreading rate increased
with increasing Reynolds number for low Reynolds numbers but levelled off
to a constant rate at high Reynolds numbers corresponding to a half-width
angle of 13◦ in the simulations and 11◦ in the experiments of Tillmark &
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Alfredsson (1992). In the experiments, waves with the wave crests aligned
in the streamwise direction were observed at the spanwise edges of the spots.
These waves were not observed in the simulations.

There have been many investigations of turbulent spots in wall-bounded
flows, mostly experimental studies but also simulations (Mathew & Das 2000).
But nothing has been reported on turbulent spots in the asymptotic suction
boundary layer (ASBL). Boundary layers subjected to suction at the wall are
interesting flow cases with applications in the area of control (Joslin 1998;
Balakumar & Hall 1999; Pralits et al. 2002; Zuccher et al. 2004). The ASBL is
stable to infinitesimal disturbances below a critical Reynolds number of 54370,
based on the free-stream velocity and the displacement thickness (Hocking
1975). However, a transient disturbance growth may occur for much lower
Reynolds numbers (Fransson & Alfredsson 2003; Fransson & Corbett 2003;
Yoshioka et al. 2004). Levin et al. (2005) reported breakdown to turbulence
in the ASBL at a Reynolds number of 500. At the time of writing this paper,
experiments of turbulent spots in the ASBL are, however, performed in the
MTL wind-tunnel at KTH Mechanics in Stockholm by Jens Fransson.

In the present study, threshold amplitudes of localized disturbances, their
breakdown and the development of turbulent spots in the ASBL are carried out
by means of DNS. In § 2, the numerical method is presented as well as a para-
metric study of the localized disturbance. In § 3, the results are organized as
follows: amplitude thresholds are presented in § 3.1, vortical structures within
a transitional localized disturbance are visualized in § 3.2 and the development
of turbulent spots is investigated in § 3.3. Finally, conclusions are drawn in § 4.

2. Numerical details

2.1. Base flow and scaling

Consider a boundary layer over an infinite wall with permeable properties and
with suction applied under it, see figure 1. The coordinates in the streamwise,
wall-normal and spanwise directions are denoted x, y and z, respectively. The
corresponding velocity components are U = (U, V,W ). Lengths are scaled
by the displacement thickness δ1 and velocities are scaled by the free-stream
velocity U∞. The units of time t are δ1/U∞. The Reynolds number is defined
as Re = U∞δ1/ν, where ν is the kinematic viscosity of the fluid. When uniform
wall-normal suction, with velocity −V0, is applied at the wall, the boundary
layer thickness, shown as the dashed lines in figure 1, becomes constant over
the wall. This asymptotic suction profile can be experimentally obtained after
some evolution region (Fransson & Alfredsson 2003). The ASBL is an analytical
solution to the Navier–Stokes equations. It was first derived by Griffith &
Meredith (1936) and can be written as

U0 = (1 − exp(−y),−V0, 0). (1)

The analytical solution allows the displacement thickness to be calculated ex-
actly, δ1 = ν/V ∗

0 and the Reynolds number to be expressed as the velocity ratio,
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Figure 1. The asymptotic suction boundary layer.

Re = U∞/V
∗
0 , where −V ∗

0 is the dimensional suction velocity. This also implies
that the displacement thickness and the Reynolds number can be prescribed
independently.

2.2. DNS techniques

The numerical code (see Lundbladh et al. 1999) uses spectral methods to solve
the three-dimensional time-dependent incompressible Navier–Stokes equations.
The discretization in the streamwise and spanwise directions makes use of
Fourier series expansions, which enforce periodic solutions. The discretiza-
tion in the wall-normal direction is represented with Chebyshev polynomial
series. A pseudospectral treatment of the nonlinear terms is used. The time
advancement is a second-order Crank–Nicolson method for the linear terms
and a four-step low-storage third-order Runge–Kutta method for the nonlin-
ear terms. Aliasing errors arising from the evaluation of the pseudospectrally
convective terms are removed by dealiasing by padding and truncation using
the 3/2-rule when the FFTs are calculated in the wall-parallel planes. In the
wall-normal direction, it has been found that increasing the resolution is more
efficient than the use of dealiasing. The code can be used both for temporal and
spatial simulations. In the latter case a fringe region (Nordström et al. 1999)
is added to the downstream end of the physical domain, in which the outgoing
flow is forced to its initial state. However, when studying parallel flows, such as
the ASBL with a localized disturbance, the advantage of a temporal simulation
can be used.

The numerical code does not allow for uniform flow through the lower
and upper boundaries. However, the wall-normal suction in the ASBL can be
moved from the boundary conditions to the governing equations (see Levin
et al. 2005). Hence, instead of solving the Navier–Stokes equations for V with
the boundary condition V = −V0, the same solution can be obtained by solving
for V − V0 with the boundary condition V = 0.
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Figure 2. Contours of wall-normal velocity, at y = 1, of a
localized disturbance consisting of two counter-rotating vortex
pairs with the scales lx = 10, ly = 1.0 and lz = 5.5. Black and
grey lines display positive and negative values, respectively.

At the wall, no-slip boundary conditions are specified and at the upper
edge of the computational box, a generalized boundary condition is applied in
Fourier space with different coefficients for each wavenumber. The condition
represents a potential-flow solution decaying away from the upper edge of the
computational box and decreases the required box height by damping the higher
frequencies rather than forcing the disturbance velocities to a rapid decay. In
the horizontal directions, periodic boundary conditions are used.

2.3. Disturbance generation and numerical parameters

The present numerical implementation provides several possibilities for distur-
bance generation. Disturbances can be included in the flow by a body force, by
blowing and suction at the wall through non-homogeneous boundary conditions
and by adding them in the initial velocity field. In order to produce a turbulent
spot, a localized disturbance is superposed to the ASBL in the initial velocity
field. The type of disturbance is centred around a pair of oblique waves, in
the streamwise-spanwise wavenumber plane, consisting of two counter-rotating
vortex pairs, see figure 2. This type of initial disturbance has been used in
earlier studies of transient growth and transition in channel flows (Henningson
et al. 1993) and boundary layers (Breuer & Haritonidis 1990; Breuer & Landahl
1990; Bech et al. 1998). In terms of a stream function, it is defined by

ψ = Ax̄ȳ3z̄ exp (−x̄2 − ȳ2 − z̄2), (2)
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Re A Lx × Ly × Lz Nx ×Ny ×Nz End time Note

500 0.08 100 × 15 × 40 200 × 101 × 160 200 Res. check
800 0.05 100 × 15 × 40 320 × 161 × 256 200 Res. check
1200 0.03 100 × 15 × 40 480 × 241 × 384 200 Res. check

Table 1. Flow and box parameters for resolution checks.

where x̄ = x/lx, ȳ = y/ly and z̄ = z/lz. The velocity components are given by
(u, v, w) = (0,−ψz, ψy) and normalized so that the amplitude A is given by the
maximum absolute value of the wall-normal disturbance velocity. The energy
of the disturbance is defined by

E =
1

2

∫

(u2 + v2 + w2) dxdy dz. (3)

When studying the development of turbulent spots, apart from the local-
ized disturbance, random noise is added to the initial velocity field in order to
break up symmetries. The noise is in the form of Stokes modes, i.e. eigenmodes
of the flow operator without the convective term. These modes fulfil the equa-
tion of continuity and the boundary condition of vanishing velocity at the wall.
The introduced noise level is specified with its energy density, thus the total
energy of the noise divided by the volume of the box.

Amplitude thresholds for transition and the development of turbulent spots
are investigated for three Reynolds numbers, Re = 500, 800 and 1200. For
each Reynolds number, the resolution is carefully checked for a small test case.
Dealiasing is activated in the streamwise and spanwise directions. The ampli-
tude of the localized disturbance, which has the scales given in figure 2, is about
twice as large as the threshold value for the corresponding Reynolds number,
resulting in breakdown to a turbulent spot well before the termination time
of 200. When evaluating the resolution convergence, the disturbance energy,
extreme values of velocity and vorticity components and visual examinations
of flow structures are taken into account. The resolutions given in table 1 are
decided to be in use after being compared to both coarser and finer grids not
given here. As can be seen in table 1, the resolution in each direction is linearly
scaled with the Reynolds number. Moreover, when the box size is increased, the
resolution is increased correspondingly to insure the same number of modes per
length unit in each direction. To summarise the above, the number of modes is
at least given by (Nx×Ny×Nz) = (Re/250 ·Lx×Re/75 ·Ly +1×Re/125 ·Lz),
where Lx, Ly and Lz denote the length, height and width of the box, respec-
tively. When searching for the critical Reynolds number, the resolution for
Re = 500 is used.

Apart from the resolution checks, the size of the box is examined for a few
cases. It is found that the needed box height decreases with increased Reynolds
number. One reason for this can be the fact that lower initial amplitudes of the
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wall-normal disturbance velocity are used for higher Reynolds numbers. The
interaction distance between mirror spots in the spanwise direction is short,
resulting in low sensitivity of the box width. On the other hand, the interaction
distance in the streamwise direction is longer. The interaction takes the form
of bonding between streaks at the front and trail of mirror spots. For each
simulation, the box size is set to fit one spot and avoid interactions between
mirror spots during the time simulated.

2.4. Study of horizontal scales of localized disturbances

The influence of the streamwise and spanwise length scales of the localized dis-
turbance is studied. The wall-normal scale is ly = 1 while the horizontal scales
lx and lz are varied. The Reynolds number is Re = 500 and the size of the com-
putational box used for this parametric study is (Lx×Ly×Lz) = (100×15×50).
In a first attempt to study how the horizontal scales of the initial disturbance
affect the development of a turbulent spot, the amplitude of the initial dis-
turbance is kept constant to A = 0.07. As a result, the energy of the initial
disturbance increases as the horizontal scales increase. This give rise to stronger
breakdown and larger turbulent spots. When the scales are increased further,
the localized disturbance break down to several turbulent spots and this is not
requested. The next approach is to keep the initial energy of the disturbance
constant, while varying the horizontal scales. The streamwise scale is varied
from 7 to 11 with steps of 1 and the spanwise scale is varied form 4 to 7 with
steps of 0.5. The energy level is set to the value that the disturbance with
horizontal scales lx = lz = 7 assumes with the amplitude A = 0.07. Figure 3
shows contours of constant initial disturbance amplitude as dotted lines and
contours of constant disturbance energy at time 200 as the solid lines. Among
the simulated cases, lx = 10 and lz = 5.5 give rise to the maximum distur-
bance energy at time 200. The energy evolution until this instant is somewhat
different for the various cases and no clear trend can be distinguished apart
from the initial transient growth. When evaluating the disturbance energy at
t = 30, 40 and 50, the maximum moves out from the considered scales towards
longer and more narrow initial disturbances. However, these narrow localized
disturbances do not lead to transition despite their large initial amplitude.

Breuer & Haritonidis (1990) compared the numerical results for a weak
localized disturbance with experiments, where the disturbance was caused by
the impulsive motion of a membrane at the wall and received good qualitative
agreement of the initial evolution. Henningson et al. (1993) investigated the
effects caused by turning the localized disturbance an angle around the y-axis
and found that a non-zero angle gives rise to larger initial growth. In a pre-
liminary study to the present work, it was found that a disturbance with 20
degrees angle to the free-stream direction results in lower threshold amplitudes.
However, in the present study, we focus on localized disturbances aligned with
the free-stream direction and that can be experimentally reproduced with the
down-up motion of a membrane at the wall.
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Figure 3. Study of horizontal scales of the localized distur-
bance. Contours of A (dotted lines) and disturbance energy at
time 200 (solid lines). The energy contours show values from
46 to 58 with steps of 1.

3. Results

3.1. Transition thresholds for localized disturbances

In this section, the threshold amplitudes for transition from a localized dis-
turbance to a turbulent spot are investigated by a numerous of direct numer-
ical simulations. If the initial amplitude of the disturbance exceeds a certain
threshold value, AT , transition occurs. Previous investigations have mainly
been concerned with determining the negative exponent γ, relating to the ini-
tial amplitude of the primary disturbance as AT ∝ Reγ . Trefethen et al. (1993)
used simple models to feed transient growth by nonlinearities and conjectured
that for the Navier–Stokes equations, γ must be ≤ −1. Later Baggett & Tre-
fethen (1997) reviewed several mathematical models of transition in parallel
shear flows collected from different research groups, and found the exponents
−3 ≤ γ ≤ −1 depending on model and base flow. However, they conclude that
for actual flows in pipes and channels, the range is more likely −2 ≤ γ < −1.
Most investigations dealing with this relationship focus on plane channel flows
(Kreiss et al. 1994; Lundbladh et al. 1994; Dauchot & Daviaud 1995; Reddy
et al. 1998). However, Levin et al. (2005) investigated transition thresholds
for periodic disturbances in the ASBL at the same Reynolds number as con-
sidered in the present work. They found that the threshold amplitude scales
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Re A Lx × Ly × Lz Nx ×Ny ×Nz End time Note

360 0.1 200 × 30 × 64 400 × 201 × 256 1000 No trans.
366 0.1 200 × 30 × 64 400 × 201 × 256 1000 No trans.
367 0.1 200 × 30 × 64 400 × 201 × 256 1000 No trans.
368 0.1 200 × 30 × 64 400 × 201 × 256 1000 Transition
370 0.1 200 × 30 × 64 400 × 201 × 256 1000 Transition
380 0.1 200 × 30 × 64 400 × 201 × 256 1000 Transition
500 0.05 150 × 15 × 40 300 × 101 × 160 300 Transition
500 0.048 200 × 15 × 40 400 × 101 × 160 500 Transition
500 0.046 300 × 19 × 60 600 × 129 × 240 1000 Transition
500 0.045 300 × 19 × 60 600 × 129 × 240 1000 Transition
500 0.044 300 × 19 × 60 600 × 129 × 240 1000 No trans.
800 0.025 200 × 15 × 40 640 × 161 × 256 500 Transition
800 0.023 200 × 15 × 40 640 × 161 × 256 500 Transition
800 0.022 300 × 15 × 40 960 × 161 × 256 602 Transition
800 0.0215 300 × 15 × 40 960 × 161 × 256 1000 Transition
800 0.021 300 × 15 × 40 960 × 161 × 256 1000 No trans.
800 0.0205 300 × 15 × 40 960 × 161 × 256 1000 No trans.
1200 0.015 200 × 10 × 40 960 × 161 × 384 500 Transition
1200 0.013 300 × 10 × 40 1440× 161 × 384 1000 Transition
1200 0.012 300 × 10 × 40 1440× 161 × 384 1000 Transition
1200 0.011 300 × 10 × 40 1440× 161 × 384 1000 No trans.

Table 2. Flow and box parameters for threshold simulations.

like Re−1.3 for oblique transition and like Re−1.05 for transition initiated by
streamwise vortices and random noise.

For growing boundary layers, little work aimed in this direction is found,
mainly because of difficulties to define such a relationship as the local Reynolds
number changes with the boundary layer thickness. However, tools for tran-
sition prediction in boundary layers have been developed for half a century.
Andersson et al. (1999) proposed a relation for bypass transition prediction
in the Blasius boundary layer where the level of free-stream turbulence that
lead to transition scales like Re−1. A very good correlation to this result was
experimentally obtained by Fransson et al. (2005).

On the other hand, for a parallel boundary layer such as the ASBL, where
the Reynolds number based on the boundary layer thickness is constant, the
procedure to find the threshold amplitude is straightforward. Simulations are
carried out with varied initial amplitudes of the localized disturbance at the
Reynolds numbers 500, 800 and 1200. Some of the simulations in the search for
the threshold amplitudes are summarized in table 2. When evaluating whether
transition occurs or not, the disturbance energy, extreme values of velocity
and vorticity components and visual examinations of the flow field are taken



186 O. Levin

0 200 400 600 800 1000
0

10

20

30

40

50

0 500 1000

−0.1

0

0.1

0.2

0 500 1000
0

0.5

1

(a)

(b) (c)

E

t

vmax

vmin

t

ωmax
x

t

Figure 4. Evolution of disturbance energy (a), minimum and
maximum wall-normal disturbance velocity (b) and maximum
streamwise vorticity (c) at Re = 500 and A = 0.046 (solid
line), 0.045 (dashed line) and 0.044 (dotted line).

into account. Figure 4 shows the evolution of disturbance energy (figure 4a),
minimum and maximum wall-normal disturbance velocity (figure 4b) and max-
imum streamwise vorticity (figure 4c) for three initial amplitudes close to the
threshold value at Re = 500. In this case, transition occurs for the amplitudes
A = 0.045 and 0.046 but not for 0.044 for which the disturbance energy and
flow extreme values decay after the initial transient growth.

The circles in figure 5 summarizes the amplitude thresholds taken as the
lowest amplitudes for which transition is attained in the DNS before t = 1000
for the three Reynolds numbers. The solid line is the least square fit of Reγ to
the data and for this range of Reynolds numbers, the threshold amplitude is
found to scale as Re−1.5. In this investigation, only one localized disturbance
is introduced in the flow, thus the obtained amplitude thresholds must be con-
sidered as an upper bound, since more optimal disturbance configurations that
would lead to transition for lower initial amplitudes may exist. Furthermore,
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Figure 5. Threshold amplitude as function of Reynolds num-
ber. The circles correspond to the lowest amplitudes from the
DNS that lead to transition. The black line is a least square
fit to the data corresponding to AT = 6.36 · 104Re−1.54. The
grey line indicates the critical Reynolds number of 367.

no conclusions of the asymptotic behaviour (Re → ∞) can be drawn. In fact,
Chapman (2002) used an asymptotic analysis of the Navier–Stokes equations
to study threshold exponents for transition in plane Couette flow and plane
Poiseuille flow and found discrepancies to available results from numerical sim-
ulations. He explains this difference by the fact that the asymptotic values are
only reached for very large Reynolds numbers, of order 106, where the scaling
laws of the transient growth is different than for the Reynolds numbers used in
the numerical simulations.

An attempt of finding the critical Reynolds number for transition initiated
of the localized disturbance is also carried out. Simulations are performed with
an initial amplitude of the localized disturbance of 0.1 and varied Reynolds
numbers, see table 2. This amplitude is considered to be sufficiently large to
represent the search for a critical Reynolds number after evaluation of sim-
ulations with larger amplitudes. The resolution for these simulations is the
same as used for Re = 500. Relaxation of the localized disturbance appears for
Re = 367 or below. This value is indicated in figure 5 as the thick grey line.

3.2. Breakdown to a turbulent spot

In this section, the breakdown mechanism of a localized disturbance is discussed
and visualized by vortical structures. The turbulent spot is an assemblage of
many small-scale streaky structures and hairpin vortices (Perry et al. 1981;
Sankaran et al. 1988; Singer & Joslin 1994; Schröder & Kompenhans 2004).
These hairpin vortices evolve at the trailing edge of the young spot and in-
crease the region of turbulence in the streamwise and spanwise directions as
the spot grow. The spot appears to grow through the birth of new structures
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Figure 6. Visualizations of vortical structures (λ2 = −0.002)
and wall-shear stress (with dark regions displaying high shear)
for the breakdown of a localized disturbance with A = 0.06 at
Re = 500. (a) t = 80, (b) 140, (c) 200 and (d) 300.

rather than the growth or spreading of the substructures themselves. Vortical
structures can be identified in the flow by plotting regions where the second
largest eigenvalue λ2 of the Hessian of the pressure assumes negative values
(Jeong et al. 1997). Figure 6 shows a sequence of the early development of
the localized disturbance with A = 0.06 at Re = 500. The initial disturbance
develops into a hairpin vortex aligned with the streamwise direction, see fig-
ure 6(a) that shows the instant at t = 80. Its legs are close to the wall at the
trailing edge of the disturbance while the head is located higher up and further
downstream. Between the legs, an upward motion is present. On each side of
the head, counter-rotating structures can be seen. As can be seen in figure 6(b),
which shows the instant at t = 140, the head is detached as a result of vortex
stretching and a new head is formed in its place. At the same time, spiral
vortices appear at the counter-rotating structures on each side. The head de-
tachment continues as the time proceeds and at t = 200, six hairpin heads can
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Re A Lx × Ly × Lz Nx ×Ny ×Nz End time Note

500 0.06 400 × 25 × 100 800 × 181 × 400 1200 Spot
800 0.03 400 × 12 × 80 1280× 129 × 512 950 Spot
1200 0.02 300 × 10 × 80 1440× 161 × 768 510 Spot

Table 3. Flow and box parameters for simulations of turbu-
lent spots.

be distinguished along the centreline in figure 6(c). At t = 300, the flow pat-
tern has become complex with many hairpin and spiral vortices characterising
a young turbulent spot.

3.3. Development of turbulent spots

In this section, turbulent spots are visualized and the spreading angles and
propagation velocities of the leading and trailing edges are evaluated. Table 3
summarizes the parameters for the three performed simulations. Apart from
the localized disturbance, random noise is added to the initial velocity field
in order to break up symmetries. The level of the noise is prescribed with its
energy density, which has the value 10−7 for all three simulations.

As the spot propagates downstream, it grows in size. However, the wall-
normal spreading is very small. Figure 7 shows the turbulent spot at t = 950
for the Reynolds number 500. The streamwise disturbance velocity is visualized
with dark and light regions displaying high and low values, respectively. The
wall-parallel plane at y = 1 is shown in figure 7(a) and the (x, y)-plane along
the centreline (z = 0) is shown in figure 7(b). A corresponding visualization
of a turbulent spot at t = 950 for Reynolds number 800 is shown in figure 8.
For both figures, the length of the planes is 300 while the width and height
show the entire spanwise and wall-normal extend of the computational box,
respectively. From the visualizations it can be interpreted that the turbulent
spot takes a bullet-shaped form with a rounded leading edge and a straight
trailing edge. This shape becomes more distinct for higher Reynolds numbers
as the scales within the spot get smaller. The interior of the spot is occupied
of turbulent streaky structures. The side views reveal that the leading edge
develops an overhang over the laminar flow and this is typical for turbulent
spots in boundary layers. Beneath this overhang, long streaks extend from the
turbulent region close to the wall. These streaks evolve from the influence of
the disturbed flow in the overhang region. Behind the trailing edge of the spot,
shorter streaks persist and they evolve from the relaminarization of turbulent
structures propagating in a slower rate than the trailing edge itself. In the
wake of the spot, the flow is accelerated close to the wall resulting in a calm
region similar to what can be seen behind turbulent spots in boundary layers
without wall suction. As expected for such a stable base flow, no evidence of
waves surrounding the spot can be seen.
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(a) (b)

Figure 7. Visualization of a turbulent spot at Re = 500 and
t = 950. Flow is in downward direction and the length of
the planes is 300. Dark and light regions show high and low
streamwise disturbance velocity, respectively. (a) Top view at
y = 1. (b) Side view through the middle of the spot at z = 0.
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(a) (b)

Figure 8. Visualization of a turbulent spot at Re = 800 and
t = 950. Flow is in downward direction and the length of
the planes is 300. Dark and light regions show high and low
streamwise disturbance velocity, respectively. (a) Top view at
y = 1. (b) Side view through the middle of the spot at z = 0.
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Figure 9. Horizontal spreading of turbulent spots for Re =
500 (a, b), 800 (c, d) and 1200 (e, f). Linear fits (—) to
the DNS data (· · · ) for the intervals showed in the figures.
(a, c, e) Streamwise spreading versus time. (b, d, f) Lateral
spreading versus streamwise coordinate.

In order to evaluate the spreading rate of the turbulent spot in the wall-
parallel plane at y = 1, the streamwise derivative of the streamwise velocity
provides a well-define measure. The region of turbulence is decided to be rep-
resented by the criteria ∂u/∂x ≥ 0.05, which concurs well with other similar
conditions as well as visual examinations of the flow (figures 7a–8a). This
condition is chosen because it is easy to measure in an experiment and it fil-
ters away the laminar streaks. Figure 9 shows the horizontal spreading of
the simulated turbulent spots with the propagation of the leading and trail-
ing edges displayed in figures 9(a, c, e) and the lateral spreading displayed in
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Figure 10. Spreading of turbulent spots versus Reynolds
number. (a) Propagation velocities, uspot, of the leading and
trailing edges. (b) Mean half-width angle α. The cross indi-
cates the critical Reynolds number.

figures 9(b, d, f). The dotted lines correspond to data extracted from the sim-
ulations and the solid lines are linear fits to the data for the intervals showed
in the figures. Hence, for the evaluation of the spreading rates, the initial evo-
lution of the spots is disregarded. In agreement with spots in other flows, the
length and the width of the turbulent spots assume a linear growth. A closer
look at the propagation of the leading and trailing edges for Re = 500 reveals
that the slopes of the dotted lines are locally more flat with jumps in between.
This is because the individual structures, in the considered plane, propagate
in a slower rate than the leading and trailing edges themselves. New turbulent
structures are born in the laminar streaks preceding the turbulent region and
at the trailing edge structures move out of the spot and undergo relaminariza-
tion. This corresponds to the jumps in the dotted lines. The data from the
lateral spreading is more scattered since the widest part of the spots move back
and forth somewhat as new structures are born. It can also be noted that the
spreading differs between the both sides owing to the randomness introduced
by the initial noise.

The main characteristics of the spreading of the three simulated spots are
summarized in figure 10. As can be seen in figure 10(a), the velocity of the
leading edge is about 0.85 to 0.9 for all simulated Reynolds numbers and this
is in agreement with the turbulent spot in the flat-plate boundary layer. The
trailing edge velocity, on the other hand, decreases with increasing Reynolds
number. The half-width angle, which is taken as the mean value from both
sides, also indicates a Reynolds number dependence at low Reynolds numbers.
As can be seen in figure 10(b), the half-width angle increases with increasing
Reynolds number. However, it seems to level off to a constant value at high
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Figure 11. Evolution of the disturbance energy within tur-
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Reynolds numbers. In this figure, the cross indicates the reasonable assumption
of a zero spreading angle at the critical Reynolds number.

As the spot grows linearly in length and width and the wall-normal growth
is negligible in comparison, it is reasonable to expect a quadratic growth of the
disturbance energy in the fully developed turbulent spot. To assess whether
this is true or not, the square root of the disturbance energy is plotted versus
time in figure 11(a). Linear fits to the data are represented by the grey lines
and confirm the assumption of a quadratic growth of the disturbance energy.
The agreement becomes better for higher Reynolds numbers. An explanation
for this is that the turbulent structures within the spot is larger for lower
Reynolds numbers, and hence, the evolution of the energy is more affected by
the growth or decay of individual structures. In figure 11(b), the slopes of the
fitted lines are plotted versus Reynolds number. An interesting observation
is that if we assume a linear increase of the slope with increasing Reynolds
number for Re ≤ 800 (dashed line), the Reynolds number for a zero growth of
the disturbance energy falls very close to the critical Reynolds number found
in § 3.1. This might provide an additional approach of finding the critical
Reynolds number for the onset of a turbulent spot.

4. Summary and conclusion

The first study of the development of localized disturbances and turbulent
spots in the asymptotic suction boundary layer are carried out using direct
numerical simulations. The localized disturbance is superposed to the initial
velocity field in the form of two counter-rotating vortex pairs. This type of
initial disturbance can be experimentally reproduced with the down-up motion
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of a membrane located at the wall (Breuer & Haritonidis 1990). A parametric
study of the horizontal scales of the initial disturbance is performed. It is
found that keeping the initial disturbance energy constant rather than the
initial disturbance amplitude is appropriate when comparing the growth of
disturbances with different scales. The disturbance scales that lead to the
highest growth under the conditions investigated are used in the simulations.

The threshold amplitude for breakdown of the localized disturbance into
a turbulent spot is investigated for the Reynolds numbers Re = 500, 800 and
1200, based on the free-stream velocity and the displacement thickness. It is
found that the threshold amplitude, defined as the maximum wall-normal dis-
turbance velocity, scales like Re−1.5 for the numerical set-up and the considered
Reynolds numbers. For Re ≤ 367, the localized disturbance decays after the
initial transient growth.

The vortical structures within the early breakdown mechanism of the local-
ized disturbance is studied for Re = 500. The initial disturbance develops into
a hairpin vortex aligned with the streamwise direction. Its legs are close to the
wall at the trailing edge of the disturbance while the head is located higher up
and further downstream. This head is detached as a result of vortex stretching
and a new head is formed in its place. This process continues resulting in a
row of hairpin vortex heads. In a previous numerical study of Singer & Joslin
(1994), the same behaviour was found in the flat-plate boundary layer. The
young turbulent spot consists of many hairpin and spiral vortices that increase
the size of the spot through the addition of new structures.

The shape and spreading rate of the turbulent spot are determined for
Re = 500, 800 and 1200. Flow visualizations reveal that the turbulent spot
takes a bullet-shaped form with a rounded leading edge and a straight trailing
edge. This shape becomes more distinct for higher Reynolds numbers as the
scales within the spot get smaller. The leading edge develops an overhang over
the laminar flow. Beneath this overhang, long streaks extend from the turbulent
region close to the wall and the breakdown of these streaks is responsible for the
streamwise growth of the spot. Behind the trailing edge of the spot, shorter
streaks persist and evolve from turbulent structures that move in a slower
rate than the trailing edge itself. The spot is followed by a calm wake with
accelerated flow.

The fully developed turbulent spot is found to grow linearly both in length
and width while the wall-normal spreading is very small. As a result, the dis-
turbance energy within the spot assumes a quadratic growth, which becomes
more legible for higher Reynolds numbers. The leading edge is found to propa-
gate at about 85-90% of the free-stream velocity while the trailing edge velocity
decreases with increasing Reynolds number. The half-width angle is found to
increase with increasing Reynolds number. However, it seems to level off to a
constant value at high Reynolds numbers.

To summarize, the turbulent spot in the asymptotic suction boundary layer
bears many similarities to spots in other flows. Its shape and spreading rates are
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reminiscent of the turbulent spot in boundary layers subjected to a favourable
pressure gradient. In common with spots in plane Couette flow and plane
Poiseuille flow, the spreading rates are dependent of the Reynolds number.

This work was funded by the Swedish Energy Agency (Energimyndigheten).
The direct numerical simulations was performed at the Center for Parallel Com-
puters at KTH.
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Early turbulent evolution of the Blasius wall jet

By Ori Levin, Astrid H. Herbst and Dan S. Henningson

KTH Mechanics, SE-100 44 Stockholm, Sweden

The first direct numerical simulation that is sufficiently large to study the self-
similar behaviour of a turbulent wall jet is performed. The investigation is an
extension of the simulation performed by Levin et al. (2005). The same numer-
ical method is used, but a significantly larger computational domain enables
to follow the development of the flow throughout the transition into its early
turbulent evolution. Two-dimensional waves and streamwise elongated streaks,
matched to measured disturbances, are introduced in the flow to trigger a nat-
ural transition mechanism. The Reynolds number is 3090 based on the inlet
velocity and the nozzle height. The simulation provides detailed visualizations
of the flow structures and statistics of mean flow and turbulent stresses. A
weak subharmonic behaviour in the transition region is revealed by animations
of the flow. The averaged data is presented in both inner and outer scaling in
order to identify self-similar behaviour. Despite the low Reynolds number and
the short computational domain, the turbulent flow exhibits a reasonable self-
similar behaviour, which is most pronounced with inner scaling in the near-wall
region.

1. Introduction

A plane wall jet may be considered as a flow which is created by the injection
of high-velocity fluid in a thin layer close to a wall. The wall jet consists of an
inner region, which is similar to a boundary layer, and an outer region wherein
the flow resembles a free shear layer. These layers interact strongly and form
a complex flow pattern. Besides the interesting physics, wall jets are of great
interest from an engineering point of view, for instance in film cooling of gas
turbine blades, in combustion chambers in defrosters and for separation control
on airfoils.

The first study on a turbulent wall jet was carried out experimentally by
Förthmann (1934), who found that the mean velocity field is self-similar, the
half-width, which is the distance from the wall where the velocity in the outer
region reaches half the local maximum velocity, grows linearly and that the
maximum velocity is inversely proportional to the square-root of the stream-
wise distance. The experimental work on turbulent wall jets up to 1980 has
been reviewed by Launder & Rodi (1981). For the turbulent plane wall jet in
a quiescent surrounding, one main feature is the displacement of the position

201



202 O. Levin, A. H. Herbst & D. S. Henningson

of zero shear stress from the position of maximum velocity. Up to that time, a
semi-logarithmic variation of the velocity near the wall was assumed, but con-
siderable differences occur in the constants. For the Reynolds stresses, the early
experimental data shows a considerable scatter and most of the experimental
set-ups did not assure two-dimensionality.

Preserving this feature, Abrahamsson et al. (1994) presented measurements
of Reynolds stresses and wall shear stresses for a wall jet at Reynolds numbers
Re = 10000, 15000 and 20000, based on the nozzle height and the inlet velocity.
The streamwise development of the half-width and the maximum velocity were
found to be independent of the Reynolds number using momentum scaling as
proposed by Narasimha et al. (1973). Abrahamsson et al. (1994) questioned
the existence of a constant shear-stress layer. Their measurements support
Launder & Rodi (1981) claiming a transport of positive outer shear stress into
the wall region.

Using Laser Doppler measurement technique, Schneider & Goldstein (1994)
found for their measurements at Re = 14000 that the measured turbulent
normal stresses are higher compared to the existing hot-wire data. The hot
wires are shown to indicate low values of the Reynolds stresses in the turbulent
outer regions where they are effected by strong flow reversals. Laser Doppler
measurements by Eriksson et al. (1998) resolved for the first time the inner peak
in the streamwise turbulence intensity as well as the inner (negative) peak in
the shear stress of a turbulent wall jet at Re = 9600.

The applicability of various scaling laws to the turbulent wall jet was stud-
ied by Wygnanski et al. (1992) based on experimental data for Reynolds num-
bers in the range 3000 to 30000. They discarded the traditional wall-jet scaling
as earlier suggested by Narasimha et al. (1973) and proposed a self-similarity
scaling based on the momentum flux at the nozzle and on the viscosity of the
fluid. They showed that a logarithmic velocity distribution cannot be derived
based on the assumption on the constancy of the Reynolds stress or on the thin-
ness of the logarithmic region relative to the thickness of the inner layer. In an
investigation based mostly on experimental data by Eriksson et al. (1998) and
Abrahamsson et al. (1994), George (2000) reasoned that neither the inner nor
the outer scaling can perfectly collapse the data at finite Reynolds numbers due
to the fact that the interaction region remains Reynolds number dependent.

Turbulent wall jets are challenging flow cases for computations. Recently
Dejoan & Leschziner (2005) performed a large eddy simulation (LES) of a
turbulent wall jet at Re = 9600 matching the experiments of Eriksson et al.

(1998). The profiles of velocity and turbulent stresses in the self-similar region
are compared to the experimental data and agree well. However, with an LES,
the transition process in the outer shear layer and especially in the boundary
layer is extremely difficult to reproduce with high accuracy, as also pointed
out by Dejoan & Leschziner (2005). Therefore some discrepancies with the
experimental data occur. Examining the budgets for the turbulent energy and
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the Reynolds stresses, the turbulent transport is seen to be very important
where the outer shear layer overlaps with the boundary layer.

Direct numerical simulations (DNS) have to the authors current knowledge
so far only been performed for transitional wall-jets. Wernz & Fasel (1996,
1997) studied the importance of three-dimensional effects in the transitional
process and Visbal et al. (1998) investigated the breakdown process in a finite-
aspect-ratio wall jet by the means of DNS. Levin et al. (2005) studied the
breakdown initiated by the interaction between waves and streaks.

The present work is an extension of the work by Levin et al. (2005), who
studied a wall jet both experimentally and numerically by means of highly
resolved three-dimensional DNS. The experimental flow was matched in the
vicinity of the nozzle outlet by a solution to the boundary-layer equations.
In the experiment, the Kelvin–Helmholtz instability and naturally appearing
streaks were observed to lead to breakdown. Two-dimensional waves and opti-
mal streaks corresponding to the most unstable scales were calculated with the
parabolized stability equations and introduced in the DNS. They found that
in the presence of streaks, pairing is suppressed and breakdown to turbulence
is enhanced.

In the present paper, the early turbulent evolution of the Blasius wall jet
at Re = 3090 is studied with DNS using the same disturbance forcing but with
a four times larger box than used by Levin et al. (2005). A Reynolds number
matching the experimental investigations (Abrahamsson et al. 1994; Schneider
& Goldstein 1994; Eriksson et al. 1998) is not feasible at the present stage,
however in advantage to an LES, all scales are resolved and the transitional be-
haviour is reproduced correctly. In section 2, the numerical methods are briefly
outlined. The animations and flow structures are discussed in section 3.1. In
section 3.2, the averaged flow characteristics are presented in outer and inner
scalings. Finally, conclusions are drawn in section 4.

2. Numerical methods

2.1. Base flow

Consider a wall jet where fluid is blown out through a nozzle and tangentially
along a wall, where x, y and z denote the streamwise, wall-normal and spanwise
coordinates, respectively. The corresponding velocity components are u =
(u, v, w). The base flow consists of the Blasius wall jet, which is a solution to
the boundary-layer equations with a coupling of the Blasius boundary layer
and the Blasius shear layer as an initial condition. The flow is matched to an
experimental set-up (Levin et al. 2005), where the nozzle height is b = 3 mm
and the inlet velocity is U0 = 15.4 ms−1, corresponding to the Reynolds number
Re = U0b/ν = 3090, where ν is the kinematic viscosity of the fluid. Figure 1(a)
shows the computed base flow compared to data measured 16 mm downstream
of the nozzle outlet.
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Figure 1. Comparison between calculations (solid lines) and
experiments (symbols) from Levin et al. (2005) at x/b = 5.3
for Re = 3090. (a) Blasius wall jet. (b) Streamwise wave
amplitude for ωb/U0 = 1.49. Experimental amplitudes are
0.3 % (◦), 1.1 % (�) and 1.7 % (M). (c) Streamwise streak
amplitudes. The wavenumber for the PSE is βb = 3.77 and
for the experiments βb = 3.15 (◦), 3.90 (�) and 4.72 (M).

2.2. DNS technics

The numerical code (see Lundbladh et al. 1999) uses spectral methods to solve
the three-dimensional time-dependent incompressible Navier–Stokes equations.
The discretization in the streamwise and spanwise directions makes use of
Fourier series expansions, which enforce periodic solutions. The discretization
in the normal direction is represented with Chebyshev polynomial series. A
pseudospectral treatment of the nonlinear terms is used. The time advancement
is a second-order Crank–Nicolson method for the linear terms and a four-step
low-storage third-order Runge–Kutta method for the nonlinear terms. Alias-
ing errors arising from the evaluation of the convective terms are removed by
dealiasing by padding and truncation using the 3/2-rule when the FFTs are
calculated in the horizontal planes. In the wall-normal direction, it has been
found that increasing the resolution is more efficient than the use of dealiasing.

At the wall, a no-slip boundary condition is set and at the upper edge of the
computational box, a generalized boundary condition is applied in Fourier space
with different coefficients for each wavenumber. The condition represents a
potential-flow solution decaying away from the upper edge of the computational
box. In the horizontal directions, periodic boundary conditions are used.

Flows such as boundary layers and wall jets are spatially growing and to
fulfil the necessary periodic boundary condition in the streamwise direction,
required by the spectral discretization, a fringe region (see Nordström et al.

1999) is added in the downstream end of the physical domain, in which the
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outgoing flow is forced to its initial state. In this region, the function λ(x)
is smoothly raised from zero and the flow is forced to a desired solution v

through the forcing term λ(x)(v−u) added to the momentum equations, where
u is the solution vector. The forcing vector v, which may depend on the
three spatial coordinates and time, is smoothly changed (blended) from the
undisturbed wall-jet solution of the boundary-layer equations at the beginning
of the fringe region to the prescribed inflow velocity vector. In the case of
forcing a disturbance in the flow, it is also added to the forcing vector in the
end of the fringe region.

2.3. Disturbance forcing and numerical parameters

In the experiment presented in Levin et al. (2005), naturally appearing waves
and streaks were observed to lead to breakdown. In order to simulate a nat-
ural transition mechanism of the wall jet from its laminar state to a fully
developed turbulent wall jet, two-dimensional waves vw and stationary longi-
tudinal streaks vs that are matched to the measured disturbances are intro-
duced. These disturbances are calculated with linear disturbance equations as
described in Levin et al. (2005) and are added to the blended Blasius wall-jet
solution v0 to give a forcing vector of the form v = v0 + vw + vs. The waves
and the streaks can then be forced in the fringe region. The forcing is turned
on smoothly in both space and time. No noise is forced in the simulation,
but a small level of noise evolving from the turbulent flow passes through the
fringe region. However, the fringe region damps the energy of the incoming
disturbances about seven decades.

Figures 1(b) and 1(c) show the computed amplitude functions of the wave
and the streak, respectively, compared to measured data from Levin et al.

(2005). The waves in the experiment were triggered by a loudspeaker at
1221 Hz, corresponding to an angular frequency of ωb/U0 = 1.49. This is
close to the most amplified frequency predicted by linear stability calculations.
The spanwise wavenumber of the streaks is βb = 3.77, which is close to that
of the naturally appearing streaks in the experiment. However, the stationary
streaks in the experiment were introduced in the flow by periodically distributed
roughness elements, positioned on the top lip of the nozzle. The peak in the
shear-layer region is in antiphase to the peak near the wall in the boundary-
layer region both for the waves and the streaks. The streamwise amplitudes of
the waves and the streaks are prescribed at the beginning of the computational
box to 0.001U0 and 0.03U0, respectively.

The computational box is shown in figure 2. It extends from the nozzle
outlet to 49.7 nozzle heights in the streamwise direction including the fringe
region, which begins at x/b = 44. The height of the box is 14.4b and the
width is 3.33b, which is two spanwise wavelengths of the forced streaks. After
considering two-point correlations of the fluctuating streamwise velocity in the
spanwise direction, the box proved to be sufficiently wide upstream of about
x/b = 25 to 30. At about the same location, an other problem arises, namely a
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Figure 2. Streamwise mean velocity, averaged over a period
of 213b/U0 and in the spanwise direction. Contour spacing is
0.1U0 and grey lines show negative values.

large external vortex that can be seen in the contours of the streamwise mean
flow shown in figure 2. This vortex evolves from a start-up vortex that slowly
convects downstream and then remains in the ambient flow in front of the
fringe region. Such an external flow exists for wall jets in experimental set-ups
as well, but as the computational box is not as large as the surrounding space
in an experiment, the problem is more prominent. It is possible to avoid the
vortex by specifying the entrainment velocity at the upper boundary. Dejoan
& Leschziner (2005) used such a boundary condition based on the laminar free
plane jet. However, we choose not to constrain the wall jet by prescribing
the entrainment velocity. With the issues of the box width and the external
flow in consideration, the flow quantities downstream of x/b = 30 should not be
considered well represented by the DNS. The relevant part of the computational
box is marked with the dashed line in figure 2.

A grid of about 62.3 million modes with 900 streamwise modes, 541 wall-
normal modes and 128 spanwise modes is used, corresponding to the same
resolution in the horizontal plane as for the smaller box used by Levin et al.

(2005), while the wall-normal resolution is 20% coarser. Dealiasing in the
streamwise and spanwise directions increases the computational resolution in
the simulation with a factor of 2.25 (1.5 in each direction). In figure 3(a),
the energy contained in the streamwise, wall-normal and spanwise spectral
modes demonstrate a decay of at least five decades. The time step is set
adaptively to keep the CFL number close to a fixed number. Figure 3(b) shows
the frequency spectra of the streamwise velocity fluctuation evaluated for a
period of 21.7b/U0 and averaged over the spanwise direction at x/b = 25,
y/b = 0.96. At this location, no peak of the forced frequency remains. The
familiar decay law ω−5/3 in the inertial subrange is evident in the frequency
range 0.6 < ωb/U0 < 6. Beyond this range, dissipation is the dominant process
giving a faster decay.

A shared memory parallelization is implemented in the numerical code.
The current study uses 16 computer nodes, each with two processors. With
a wall clock time of 60 h, a typical simulation calculates a period of about
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3.5b/U0. The sampling of statistics is turned on at tU0/b = 329 and finished
at tU0/b = 542, corresponding to five months of non-stop simulations.

3. Results

3.1. Flow structures

In order to visualize the whole wall jet from its laminar part in the vicinity of
the nozzle outlet where the waves and the streaks grow, the transition region
and its downstream turbulent part, three animations are made available. The
animations show a time period of four fundamental periods of the forced waves
and the streamwise extend is from the nozzle outlet to x/b = 38.5. The dark
areas display regions of high streamwise velocity and the white areas display
regions of backflow.

Animation I shows the (x, y)-plane in the middle of the computational
domain, where the low-velocity streak is present in the outer shear layer. The
height of the plane is y/b = 4.8. Figure 4(a) shows a snapshot corresponding
to the first frame of the animation. In the shear-layer region, anticlockwise
rotating rollers are created by the Kelvin–Helmholtz instability and follow the
flow downstream. In the boundary-layer region, clockwise rotating rollers are
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Figure 4. Visualization of streamwise velocity with dark ar-
eas displaying high velocity and white areas dislaying regions
of backflow. The flow is from left to right and the stream-
wise extend of the planes are from the nozzle outlet to 38.5b.
(a) (x, y)-plane at the middle of the box, the height of the
plane is 4.8b. (b) Horizontal plane at y/b = 0.96. (c) Horizon-
tal plane at y/b = 0.19.

formed and are associated with small separation bubbles. In this plane, the
boundary-layer rollers move faster than the rollers in the shear-layer region.
This is due to the spanwise modification of the flow by the streaks with a low-
velocity streak in the shear-layer region and a weak high-velocity streak in the
boundary-layer region. The shear-layer and boundary-layer rollers move at the
same rate in the plane located half a spanwise wavelength to the side where a
high-velocity streak is present in the outer shear layer. A weak tendency of a
subharmonic instability can be seen by looking at the roll-ups in the outer shear
layer; every other roll-up is moving slightly more upwards than the roll-ups in
between. The breakdown to turbulence appears first in the shear-layer region
and then spreads down to the boundary-layer region. The turbulent part of
the wall jet behaves as expected, the velocity is faster in the inner region and
slower in the outer region. Downstream, the velocity in the whole wall jet slows
down while the wall jet spreads and the largest scales increases.

Animation II and III show the horizontal planes at y/b = 0.96 and 0.19,
respectively, which are in the middle of the outer shear layer and the inner
boundary layer of the laminar part of the wall jet. The width of the planes
shows the entire spanwise extend of the computational box. Figures 4(b) and
4(c) show snapshots corresponding to the first frame of animation II and III,
respectively.

In animation II, two spanwise periods of the streaks are visible in the
upstream part of the plane. At about four nozzle heights downstream of the
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Figure 5. Grayscale as in figure 4. Time sequence of the
flow in a horizontal plane at y/b = 0.96 with length x/b = 9 to
13. The time period between the planes is half a fundamental
period T/2 = 2.11b/U0: (a) t = 0, (b) t = T/2, (c) t = T , (d)
t = 3T/2, (e) t = 2T , (f) t = 5T/2, (g) t = 3T , (h) t = 7T/2.

nozzle outlet, the waves start to appear. Further downstream, the interaction
between the waves and the streaks forms a staggered pattern. The streaks play
an important role in the breakdown process, where their growth is transformed
from algebraic to exponential as they become part of the secondary instability
of the waves, see Levin et al. (2005). In the turbulent flow downstream of
the rapid breakdown, the influence of the streaks can be seen to remain for
some distance. Figure 5 shows a series of snapshots taken from the animation.
The streamwise extend of the snapshots is x/b = 9 to 13, which is the region
of transition, and the time period between them is half a fundamental period
T/2 = 2.11b/U0 of the forced waves. Figure 5(a) corresponds to the first frame
of the animation. The presence of the subharmonic waves can be distinguished
by comparing the difference of the flow structures one fundamental period apart
e.g. between figure 5(b) and 5(d). The flow structures two fundamental periods
apart, as shown in e.g. figure 5(b) and 5(f) look much more alike.

In animation III, the waves are more pronounced than the streaks in the
beginning of plane. However, the spanwise modification of the flow becomes
strong well before the breakdown, which appears about two nozzle heights
downstream of the breakdown position in the upper shear layer. The influence
of the forced streaks does not remain in the turbulent flow as in the shear-layer
region of the wall jet. Instead, new streaky structures with smaller scales typical
for turbulent boundary layers are born and prevail throughout the length of the
plane. In this plane, the presence of the subharmonic waves is easier to detect.
Figure 6 shows a series of snapshots taken from the animation and the time
instants are the same as for figure 5. The streamwise extend of the snapshots
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Figure 6. Visualization as figure 5 for a horizontal plane at
y/b = 0.19 with length x/b = 11 to 15.

is x/b = 11 to 15, corresponding to the more downstream transition location.
By comparing the same time instants as before, i.e. figure 6(b) with 6(d) and
figure 6(b) with 6(f), the subharmonic appearance becomes clear.

Vortical structures can be identified in the flow by plotting regions where
the second largest eigenvalue λ2 of the Hessian of the pressure assumes negative
values (Jeong et al. 1997). Levin et al. (2005) studied these structures and ob-
served the following five stages in the transition mechanism: (i) Spanwise rollers
are formed in the wave troughs in the outer shear layer and move downstream.
In the boundary layer close to the wall beneath the wave crests, counter-rotating
rollers are formed. (ii) In the presence of streaks, the shear-layer rollers are
sinuously modified in the spanwise direction with the boundary-layer rollers
deforming in the opposite direction. (iii) Vortex ribs are formed in the braids
of the waves, extending from the top of the shear-layer roller to the bottom
of the previous one. (iv) The vortex ribs follow the upward flow between
two neighbouring shear-layer rollers and are associated with mushroom-shaped
structures ejected from the wall jet into the ambient flow. (v) The tail legs of
the vortex ribs, generated one fundamental period earlier, separate and form a
vortex ring around the upcoming vortex ribs and additional counter-rotating
vortex rings are created preceding breakdown to turbulence. Animation IV
shows the development of the vortical structures during two fundamental pe-
riods. It shows a constant negative value of λ2 in a box of streamwise extend
from 6 to 13.6 nozzle heights, 4b high and one wavelength of the forced streaks
wide.

To illustrate the flow structures further downstream in the turbulent wall
jet, figure 7 shows the vortical structures in an instantaneous flow field. In
figure 7(a), the transition and the early turbulent region where the turbulence
has not yet reached the self-similar state is shown. The level of the isosurfaces
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Figure 7. Vortex visualization of instantaneous data. The
isosurfaces show a constant level of (a) λ2 = −λc and
(b) λ2 = −λc/3.

is the same as in animation IV. Figure 7(b) shows the turbulent structures
further downstream where the turbulence begins to reach a self-similar state.
The level of the isosurfaces is one third of the level in figure 7(a). Close to
the wall and at about two nozzle heights above the wall, streamwise elongated
structures can be seen and correspond to the vortex stretching in the layers of
maximum mean shear. The structures in the outer layer, however, are stronger
consistent with the larger outer peak of turbulence kinetic energy shown in
figure 13(d).
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3.2. Averaged flow characteristics

While the preceding section concerned the dynamics of the flow, the following
sections are designated to present the flow characteristics averaged in both time
and spanwise direction. The data is presented in inner and outer scaling in order
to identify self-similar behaviour. However, due to the low Reynolds number
and the short computational domain, the data is not sufficient to contribute to a
discussion of different approaches to scaling as presented recently by Wygnanski
et al. (1992) and George (2000).

3.2.1. Outer scaling

Scaling with outer variables is used to identify self-similar behaviour in the
outer shear layer. Here we apply the traditional scaling with the maximum
velocity of the wall jet Um and the half-width y

1/2
. In comparison with data at

higher Reynolds numbers, it has to be taken into account that the shear stress
in the outer layer and therefore also the other properties are dependent on the
Reynolds number.

The streamwise development of the variables y
1/2

and Um governing the

outer scaling is shown in figure 8. In the downstream direction, the thickness
of the wall jet increases and its velocity decays as the wall jet spreads out in
the quiescent surrounding. The laminar region in the vicinity of the inlet is
followed by the clearly visible transitional region at about x/b = 10 to 15. In
this region, the half-width undergoes a substantial rise whereas the maximum
velocity of the wall jet decays rapidly. In the downstream region, at x/b = 30
to 40, the influence of the large outer vortex in the ambient flow affects the
behaviour somewhat.

Figures 9(a) and 9(b) show the streamwise and wall-normal mean velocities,
respectively, scaled in outer scaling. The streamwise velocity profiles between
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wise component. (b) Wall-normal component.

x/b = 20 and 30 collapse reasonably well up to y/y
1/2

= 1. Further away

from the wall, the profiles deviate from each other owing to a secondary flow
induced by the large external vortex. For the wall-normal velocity profiles,
the self-similar behaviour is only obtained between x/b = 20 and 25. Further
upstream, the deviation originates from the transition to turbulence. The outer
vortex in the ambient flow compresses the downstream part of the wall jet
slightly, causing the profile at x/b = 30 to deviate towards lower values. This
deviation is larger than for the streamwise component indicating that the wall-
normal velocity is effected in a higher degree than the streamwise velocity.

The streamwise, wall-normal and shear stresses and the turbulent kinetic
energy in outer scaling are shown in figure 10 for the same streamwise positions
as in figure 9. The profiles at x/b = 25 and 30 collapse reasonably well up to
about y/y1/2 = 1. The levels of the stresses are substantially larger at the po-
sition x/b = 17 and decay thereafter in the downstream direction. In general,
the turbulent quantities scaled with outer variables, are higher in the transi-
tional region than in the self-similar region. Dejoan & Leschziner (2005) found
the same tendency in their LES study, but Eriksson et al. (1998) measured the
opposite trend for the streamwise Reynolds stress in outer scaling.

3.2.2. Inner scaling

The streamwise development of the wall thickness η = ν/uτ and the friction
velocity uτ , which are relevant for the inner scaling, can be interfered from
figures 11(a) and 11(b). Consistent with the behaviour of a wall jet, the wall
thickness increases downstream while the friction velocity decays. The stream-
wise evolution of the ratio between the half-width, used for the outer scaling,
and the wall thickness, governing the inner scaling, is shown in figure 11(c).
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ables. Lines as in figure 9.

Quantities scaled with the inner scaling are conventionally denoted with a plus

(e.g. y+ = y/η and u+ =
√
u′u′/uτ ). Using this notation we can see that

the half-width corresponds to about 300 units in inner scaling, a value that
increases with Reynolds number.

Figure 12(a) shows the near-wall region of the streamwise mean velocity
scaled with inner scaling. Within the viscous sublayer, the profiles follow a
linear law U+ = y+, shown as the grey line, up to about y+ = 4. Further away
from the wall, the profiles start to deviate from the linear behaviour, earlier
than for a turbulent boundary layer that typically starts to deviate for values
y+ ≥ 8. This observation agrees well with the behaviour interfered from the
data measured by Eriksson et al. (1998) at Re = 9000.

In figure 12(b), the ratio between the rms of the fluctuating streamwise
velocity and the mean streamwise velocity is shown. This value has previously
been shown to be constant in the viscous sublayer, up to about y+ = 5, and Al-
fredsson et al. (1988) found the value to be 0.4 in turbulent boundary-layer and
channel flows. This value seems to approximately hold even for the turbulent
wall jet as can be seen in the figure. A comparison has been done to numerical
data computed by Kim et al. (1987) in turbulent channel flow. Their data
which also was computed at a low Reynolds number shows a good agreement
with the present simulation.
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The turbulent stresses shown in figure 10 are rescaled with inner scaling and
displayed in figure 13. The profiles collapse reasonably well for the streamwise
positions x/b = 20 to 30 indicating that the flow has started to exhibit a self-
similar behaviour. It can be noted that the collapse provided with inner scaling
is much better than with outer scaling. The profile at the position x/b = 17
is, however, still close to the transitional region and deviates from the other
profiles. Downstream of the position x/b = 30, the vortex present in the end
of the computational domain causes the flow to depart from the self-similar
behaviour and profiles from this region are therefore not taken into account.

Unfortunately, recent measurements of turbulent stresses are not available
for the Reynolds number at which our simulation is performed. As pointed
out in the introduction, the recent measurements of the turbulent quantities
with Laser-Doppler technique show significant differences from the earlier hot-
wire measurements. The difference can be explained with the occurrence of
reverse flow resulting in too low values for these components in the hot-wire
measurements (Schneider & Goldstein 1994; Eriksson et al. 1998). However, in
comparison with the data presented by Eriksson et al. (1998) at Re = 9000,
the positions of the inner maxima of u+ and k+ agree well, whereas the levels
of the turbulent fluctuations are lower due to the lower Reynolds number. The
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profiles of the Reynolds shear stress collapse very well in inner scaling but the
inner negative peak occurs closer to the wall than in the measurements by
Eriksson et al. (1998).

As can be seen in the animations, the transition starts in the shear-layer
region. This process is further studied by looking at the initial development of
the fluctuation v+ as shown in figure 14. A peak in the outer layer is clearly
visible close to the transitional region at x/b = 6, were the flow still is laminar.
In the inner layer, the formation of a plateau can be seen. A new peak starts
to develop out of this plateau as the flow proceeds downstream and undergoes
transition. The two peaks in the inner and outer layer evolve into a new plateau
for the normal stress as the turbulent mixing increases indicating that the
process of merging of the inner and the outer layer is progressing (see figure 13).
It is, however, less pronounced in the DNS data than in the measurements by
Eriksson et al. (1998) performed at the higher Reynolds number. The plateau
diminishes as the flow propagates downstream. Eriksson et al. (1998) also
observed that the plateau decays in the far field.

4. Conclusions

The first direct numerical simulation that is sufficiently large to study the self-
similar behaviour of a turbulent wall jet is carried out. The Blasius wall jet
and its early turbulent evolution are studied at Re = 3090. Two-dimensional
waves and streamwise elongated streaks are introduced in the flow to trigger
a natural transition mechanism. The disturbance forcing, which is matched to
experimental conditions, is the same as in the previous study by Levin et al.

(2005), but a four times larger computational box enables to study not only the
transitional region but the early turbulent evolution. The simulation provides
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figure 9.

detailed visualizations of the flow structures and statistics of mean flow and
turbulent stresses.

In order to visualize the whole wall jet from its laminar part where the
waves and streaks grow, the transition region and its downstream turbulent
part, three animations are made available. They show the propagation of
spanwise modified roll-ups in the outer shear layer and in the inner shear layer.
Small regions of separated flow are associated with the boundary-layer rollers.
A weak subharmonic wave is present in the transition region. The breakdown to
turbulence appears first in the shear-layer region where the low-velocity streak
exists. In the turbulent flow downstream of the rapid breakdown, the influence
of the streaks can be seen to remain for some distance. About two nozzle
heights downstream of the breakdown position in the outer shear layer, the
inner shear layer undergoes transition. Streaky structures typical for turbulent
boundary layers are born in the near-wall region of the turbulent wall jet. A
forth animations shows the development of vortical structures in the region of
transition. It shows that transition appears in the mushroom-shaped structures
that are associated with vortex ribs that are ejected from the wall jet into the
ambient flow.

The averaged data is presented in both inner and outer scaling in order
to identify self-similar behaviour. Applying the traditional outer scaling with
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the maximum velocity of the wall jet and the jet half-width, the profiles of
the mean streamwise velocity collapse reasonably well between x/b = 20 and
30 up to the half-width of the jet. Components of the Reynolds stress agree
reasonably well between x/b = 25 and 30 up to the same wall-normal position.
Downstream of x/b = 30, a large vortex in the ambient flow exists due to the
limited numerical region. Such an external flow arises for all wall jets, even
in experimental set-ups. However, the strength of the vortex decreases as the
region it is allowed to occupy increases. The wall-normal velocity is effected
by this vortex in a higher degree than the streamwise velocity, the self-similar
behaviour is only obtained between x/b = 20 and 25. The turbulent quantities
scaled with outer variables are higher in the transitional region than in the
self-similar region. Dejoan & Leschziner (2005) found the same tendency in
their LES study, but Eriksson et al. (1998) measured the opposite trend for the
streamwise Reynolds stress in outer scaling.

Within the viscous sublayer, the profiles follow a linear law U+ = y+ up to
about y+ = 4. The profiles start to deviate from the linear behaviour, earlier
than for a turbulent boundary layer that typically starts to deviate for values
y+ ≥ 8 agreeing well with the behaviour found by Eriksson et al. (1998) at
Re = 9000. The ratio between the rms of the fluctuating streamwise velocity
and the mean streamwise velocity is found to be constant in the viscous sublayer
up to about y+ = 3 and the value for turbulent boundary-layer and channel
flows found by Alfredsson et al. (1988) seems to approximately hold even for
the turbulent wall jet. The profiles of the turbulent stresses collapse well for
the streamwise positions x/b = 20 to 30 indicating that the flow has started to
exhibit a self-similar behaviour in the near wall region.
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It can be noted that the collapse provided with inner scaling is much better
than with outer scaling. Despite the low Reynolds number and the short com-
putational domain, in comparison to available experiments, the turbulent flow
exhibits a reasonable self-similar behaviour, which is most pronounced with
inner scaling in the near-wall region.

This work was funded by the Swedish Energy Agency (Energimyndigheten).
The direct numerical simulation was performed at the Center for Parallel Com-
puters at KTH. Many thanks to Stefan Wallin for valuable discussions about
the turbulent statistics.
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