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This study presents direct numerical simulations of turbulent Rayleigh–Bénard convection
in non-colloidal suspensions, with special focus on the heat transfer modifications in
the flow. Adopting a Rayleigh number of 108 and Prandtl number of 7, parametric
investigations of the particle volume fraction 0 ≤ Φ ≤ 40 % and particle diameter 1/20 ≤
d∗

p ≤ 1/10 with respect to the cavity height, are carried out. The particles are neutrally
buoyant, rigid spheres with physical properties that match the fluid phase. Up to Φ =
25 %, the Nusselt number increases weakly but steadily, mainly due to the increased
thermal agitation that overcomes the decreased kinetic energy of the flow. Beyond Φ =
30 %, the Nusselt number exhibits a substantial drop, down to approximately 1/3 of
the single-phase value. This decrease is attributed to the dense particle layering in the
near-wall region, confirmed by the time-averaged local volume fraction. The dense particle
layer reduces the convection in the near-wall region and negates the formation of any
coherent structures within one particle diameter from the wall. Significant differences
between Φ ≤ 30 % and 40 % are observed in all statistical quantities, including heat
transfer and turbulent kinetic energy budgets, and two-point correlations. Special attention
is also given to the role of particle rotation, which is shown to contribute to maintaining
high heat transfer rates in moderate volume fractions. Furthermore, decreasing the particle
size promotes the particle layering next to the wall, inducing a similar heat transfer
reduction as in the highest particle volume fraction case.

Key words: suspensions, Bénard convection, plumes/thermals

† Email address for correspondence: a.demou@cyi.ac.cy

© The Author(s), 2022. Published by Cambridge University Press 945 A6-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:a.demou@cyi.ac.cy
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.534&domain=pdf
https://doi.org/10.1017/jfm.2022.534


A.D. Demou, M. Niazi Ardekani, P. Mirbod and L. Brandt

1. Introduction

Turbulent thermal convection characterises many physical phenomena such as heat
transport in stars (Busse 1970), atmospheric flows (Wyngaard 1992) and oceanic currents
(Thorpe 2004). Even though these phenomena appear to be very different from one
another, they share some fundamental features and can therefore be studied by using
essentially the same set of equations (Busse 1978). The most commonly studied
configuration resembling these flows is Rayleigh–Bénard convection, i.e. a fluid layer
that is heated from below and cooled from above. This simple configuration helped
to shed some light on the rich physics of turbulent thermal convection, both in terms
of the large-scale (Ahlers, Grossmann & Lohse 2009) and small-scale (Lohse & Xia
2010) dynamics. Several studies enriched the classical Rayleigh–Bénard system with
additional features such as emulsions (Liu et al. 2021a), two fluid layers (Liu et al.
2021b), phase transition (Wang, Mathai & Sun 2019) and point-like particles (Oresta &
Prosperetti 2013). To the best of the authors’ knowledge, there has been no previous
study considering suspensions of finite-size particles (or non-colloidal suspensions)
under turbulent conditions. Given the importance of particle-laden natural convection in
applications such as atmospheric pollution (Xu et al. 2020) and energy harvesting in solar
thermal plants (Pouransari & Mani 2017; Rahmani et al. 2018), the present study focuses
on turbulent Rayleigh–Bénard convection in non-colloidal suspensions.

Two of the most important characteristics of turbulent Rayleigh–Bénard convection
are the large-scale circulation structures and the boundary layers that form next to the
horizontal, thermally active walls. The large-scale circulation structures are fed by plumes
ejected from the boundary layers, and their behaviour is strongly affected by the domain
geometry (Zhou, Sun & Xia 2007). These structures can exhibit oscillations of the
circulation plane (Castaing et al. 1989) and azimuthal rotations (Brown & Ahlers 2006)
in cylindrical geometries, in addition to random cessations and reversals in cylindrical
(Xi & Xia 2007) or rectangular (Sugiyama et al. 2010) domains. The structure of the
large-scale circulation is significantly different in two-dimensional and three-dimensional
simulations, both in terms of shape and velocity distribution (Demou & Grigoriadis
2019), making three-dimensional simulations necessary for the accurate representation
of these structures. As concerns the second aspect, the study of the boundary layers in
Rayleigh–Bénard convection is of great importance because thermal convection theories
and models rely on assumptions on the boundary layer dynamics (e.g. Grossmann & Lohse
2000; Ahlers et al. 2006), and this small region features the largest temperature gradients
in contrast to the nearly isothermal bulk region. In detail, the near-wall distribution of
temperature can be divided into: (i) the linear region, which is associated with the viscous
sub-layer and in which thermal conduction accounts for most of the heat transfer, (ii)
the transitional region, which accommodates the edge of the boundary layer and the
maximum root-mean-square (r.m.s.) values of the temperature field and (iii) the bulk
region, which features a nearly zero temperature gradient and is therefore dominated by
thermal convection (Castaing et al. 1989; Wang & Xia 2003; Zhou & Xia 2013). Both
the structure of the large-scale circulation and the thickness of the boundary layers are
expected to be significantly affected by the addition of a solid non-colloidal dispersed
phase to the traditional Rayleigh–Bénard configuration.

Laminar Rayleigh–Bénard convection in non-colloidal suspensions was only recently
studied by Kang, Yoshikawa & Mirbod (2021). More specifically, these authors focused
on the effect of the particles on the transition from a conductive to a convective state using
as the suspension continuum model the suspension balance model. Using linear stability
analysis, it was shown that the critical Rayleigh number increases with increasing particle
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volume fraction, while the critical wavenumber of the instability remains the same. The
mechanism responsible for the increase of the critical Rayleigh number is the dissipative
force, which is intensified as the effective viscosity of suspensions increases. These authors
also carried out numerical simulations of the convective regime and reported the decrease
of the Nusselt number with increasing particle volume fraction, in line with the decay
of the convective flow for higher volume fractions. Shear-induced particle migration was
also observed, with the particles accumulating in the core of the large-scale circulation
structures, away from the fast-moving periphery.

In the turbulent regime, Rayleigh–Bénard convection was studied in the presence of
point-like particles which also can affect the flow (i.e. two-way coupling between fluid
and particles), see Oresta & Prosperetti (2013) and Park, O’Keefe & Richter (2018).
These studies demonstrated that the heat transfer and flow structures can be significantly
affected by the particle properties, in particular particle diameter and inertia. Other studies
considered turbulent thermal convection in the presence of point-like vapour bubbles,
incorporating the effects of bubble volume change through condensation and evaporation
(Oresta et al. 2009; Lakkaraju et al. 2011, 2013). Even though these studies provided
useful insight into turbulent thermal convection in the presence of point-like particles,
a comprehensive investigation is still missing for finite-size particles.

Turbulent heat transfer in suspensions of finite-size particles was mainly studied in
forced convection. In the laminar regime, Metzger, Rahli & Yin (2013) studied the effects
of shear-induced particle diffusion in Couette flows. They reported that the particle
movement induces fluctuations in the fluid velocity, leading to heat transfer enhancement.
Ardekani et al. (2018a) performed interface-resolved simulations, similar to this study,
and showed that particle inertia further increases the heat transfer rate, especially for
lower particle volume fractions. In a laminar pipe flow, Ardekani et al. (2018b) confirmed
the heat transfer enhancement in the presence of particles and observed that larger
particles produced higher heat transfer rates. The same study also considered turbulent
conditions and reported that the particles have the opposite effect on the heat transfer
rates, causing the laminarisation of the core region of the pipe even for relatively low
particle volume fractions and thus a relative reduction of heat transfer. Yousefi et al.
(2021) studied turbulent channel flows, focusing on the characterisation of the different
regimes of heat transfer encountered when varying the Reynolds number from laminar
to turbulent conditions and particle volume fraction up to 35 %. Similarly to Ardekani
et al. (2018b), the maximum heat flux rates reported by Yousefi et al. (2021) were found
at low particle volume fractions, O(10 %); the heat transfer, however, decreases below the
single-phase turbulent values for higher volume fractions due to particle migration and the
laminarisation of the flow in the channel core, see also Brandt & Coletti (2022).

This study aims to quantify the effects of dispersed finite-size particles in turbulent
Rayleigh–Bénard convection. The suspended particles are neutrally buoyant, with all
thermophysical properties matching the properties of the fluid. In particular, the focus is
on revealing the modification of key heat-transfer-related quantities (Nusselt number and
thermal boundary layer thickness), and on describing the underlying physical processes,
driving these changes in the presence of particles. The remainder of this paper is structured
as follows: § 2 presents the mathematical description of the physical problem and aspects
of the numerical method used to solve the governing equations. The main results are shown
and discussed in § 3. First, the parametric investigation of the particle volume fraction is
presented in terms of flow visualisation (§ 3.1), heat transfer modulation (§ 3.2), two-phase
statistics (§ 3.3), turbulent kinetic energy (TKE) budgets (§ 3.4), heat transfer budgets
(§ 3.5) and two-point correlations (§ 3.6). Moreover, the parametric investigation of the
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particle size is presented in §3.7, utilising many of the statistical quantities mentioned
above. Finally, § 4 concludes the study, listing the main findings.

2. Mathematical formulation and numerical method

2.1. Governing equations
Considering a Newtonian fluid within the limits of the Oberbeck–Boussinesq
approximation (Oberbeck 1879; Boussinesq 1903), the governing equations for the
incompressible fluid phase become

∇ · uf = 0, (2.1)

∂uf

∂t
+ uf · ∇uf = − 1

ρf
∇P + νf ∇2uf + [

1 − βf
(
Tf − T0

)]
g + f , (2.2)

∂Tf

∂t
+ uf · ∇Tf = αf ∇2Tf . (2.3)

In the above equations, uf is the velocity vector of the fluid phase with individual
components (uf , vf ,wf ) along (x, y, z), P is the pressure and Tf the fluid temperature.
Moreover, ρf , νf , αf and βf denote the density, kinematic viscosity, thermal diffusivity
and thermal expansion of the fluid. Furthermore, t denotes time, g = −9.81ẑ is the gravity
vector and T0 is a reference temperature inside the domain. The influence of particles
on the fluid phase motion is introduced via the source term f , which is activated in
the vicinity of the particle surface to indirectly impose the no-slip and no-penetration
boundary conditions at the moving solid boundary.

The rigid particles are considered to be spherical and neutrally buoyant (constant
density, neglecting thermal expansion) with the same properties as the fluid phase. The
Newton–Euler equations are used to describe the motion of the particles (linear and
angular velocity), along with the heat transfer equation to calculate the temperature in
the solid phase

mp
dup

dt
= f c +

∮
∂Ωp

𝞽 · np dA, (2.4)

Ip
dωp

dt
= τ c +

∮
∂Ωp

r × (
𝞽 · np

)
dA, (2.5)

∂Tp

∂t
+ up · ∇Tp = αp∇2Tp. (2.6)

In these equations, up and ωp denote the particle linear and angular velocity vectors, while
mp and Ip denote the particle mass and moment of inertia. Moreover f c and τ c model
the force and torque resulting from any short-range particle–particle and particle–wall
interactions, and 𝞽 is the fluid stress tensor. The surface integrals are calculated over the
particle surface ∂Ωp, with an outward-pointing normal vector np and a position vector
r relative to the particle centre. The heat transfer inside the particles is governed by the
same equation as the corresponding equation for the fluid, with Tp and αp denoting the
temperature and thermal diffusivity of the particle phase.

2.2. Numerical method
We use the direct-forcing immersed boundary method (IBM), initially developed
by Uhlmann (2005) and modified by Breugem (2012), to fully resolve the
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fluid–solid interactions. A volume of fluid (VoF) approach (Hirt & Nichols 1981) is
coupled to the IBM to solve the temperature equation in the two phases (Ström & Sasic
2013). The method has been used extensively with several validations reported by Picano,
Breugem & Brandt (2015), Lashgari et al. (2016) and Ardekani et al. (2016) for the
fluid–solid interactions and by Ardekani et al. (2018a,b) and Majlesara et al. (2020) for
the heat transfer in particle-laden flows. Furthermore, direct comparison of the numerical
results with the experimental measurements of Zade (2019) at dense regimes verified
the excellent accuracy of the numerical code. All the details of the implementation are
presented in the aforementioned references. Nonetheless, for the sake of completeness, a
brief description of the method is also presented here.

The Navier–Stokes equations governing the fluid phase dynamics are solved on a
uniform (	x = 	y = 	z) and staggered Cartesian grid. The spherical particles are
discretised by a set of Lagrangian points, uniformly distributed along their surfaces. The
IBM forcing scheme consists of three steps: (i) the fluid prediction velocity is interpolated
from the Eulerian to the Lagrangian grid, (ii) the IBM force required for matching the
local fluid velocity and the local particle velocity is computed on each Lagrangian grid
point and (iii) the resulting IBM force is spread from the Lagrangian to the Eulerian
grid. The interpolation and spreading operations are done through the regularised Dirac
delta function of Roma, Peskin & Berger (1999), which acts over three grid points in all
coordinate directions.

Using the VoF approach, proposed in Ardekani et al. (2018a), the velocity of the
combined phase is defined at each point in the domain as

ucp = (1 − ξ)uf + ξup, (2.7)

where uf is the fluid velocity and up the solid phase velocity, obtained as the rigid body
motion of the particle at the desired point. In other words, the fictitious velocity of the fluid
phase trapped inside the particles is replaced by the particle rigid body motion velocity
when solving the temperature equation inside the solid phase; this velocity is computed as
up + ωp × r with r, the position vector from the centre of the particle. The phase indicator
ξ is obtained from the exact location of the fluid/solid interface and used to distinguish
the solid and the fluid phases within the computational domain. Also, ξ is computed at the
velocity (cell faces) and the pressure points (cell centre) throughout the staggered Eulerian
grid. This value varies between 0 and 1 based on the solid volume fraction of a cell of size
	x around the desired point, then ucp is used to solve a unified temperature equation,
which combines both (2.3) and (2.6). It should be noted that the computed ucp remains a
divergence free velocity field.

Accounting for the inertia and buoyancy forces of the fictitious fluid phase inside the
particle volume and using the IBM, (2.4) and (2.5) are rewritten as

ρpΩp
dup

dt
≈ −ρf

NL∑
l=1

f l	Ωl + ρf
d
dt

(∫
Ωp

u dΩ

)
−
∫
Ωp

ρbgdΩ + ρpΩpg + f c, (2.8)

Ip
dωωωp

dt
≈ −ρf

NL∑
l=1

rl × f l	Ωl + ρf
d
dt

(∫
Ωp

r × udΩ

)
−
∫
Ωp

r × ρbgdΩ + τ c, (2.9)

where the first terms on the right-hand side describe the IBM force and torque as the
summation of all the point forces f l on the surface of the particle. The second terms
account for the inertia of the fictitious fluid phase trapped inside the particle and the
third terms consider the correction due to applying the buoyancy force to the whole
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computational domain (including the fictitious fluid phase trapped inside the particle).
Here, ρb is the variable density of the fluid, assuming the Boussinesq approximation.
Finally, f c and τ c are the force and the torque exerted during the particle–particle/wall
interactions. When the gap between two particles (or a particle and the wall) is smaller
than the grid spacing, the IBM fails to resolve the short-range hydrodynamic interactions.
Therefore, we use a lubrication correction model based on the asymptotic analytical
expression for the normal lubrication force between two equal spheres (Brenner 1961).
When the particles are in collision, the lubrication force is turned off and a collision force
based on the soft-sphere model is activated. The restitution coefficients, used for normal
and tangential collisions, are 0.97 and 0.1, with Coulomb friction coefficient 0.15. More
details on the short-range models and corresponding validations can be found in Costa
et al. (2015).

2.3. Dimensionless parameters
Considering the type and properties of the particles discussed in the previous section,
the physical problem studied here is characterised by the following dimensionless
parameters:

(i) Rayleigh number, Ra = |g|β	TL3/(να);
(ii) Prandtl number, Pr = ν/α;

(iii) Particle volume fraction, Φ = npΩp/Ωtot;
(iv) Stokes Number, St = τp/τf .

In the above expressions, L is the reference length and	T = Th − Tc is the temperature
difference between the heated (Th) and cooled (Tc) boundaries of the domain. Moreover,
np and Ωp denote the total number of particles and the volume of each particle. The
Stokes number is defined as the ratio of the characteristic particle time scale τp =
d2

p/(18ν), where dp is the particle diameter, to a characteristic fluid time scale τf .
Depending on the definition of τf , two different Stokes number definitions can be given:
(i) StK = d2

pε
1/2/(18ν3/2) based on the Kolmogorov time scale (ν/ε)1/2, where ε is the

energy dissipation rate, and (ii) Stf = d∗
p

2(Ra/Pr)1/2/18, based on the free-fall time scale
(L/(gβ	T))1/2, where d∗

p is the dimensionless particle diameter. Both of these definitions
are important in characterising the flow since StK characterises the particle response to the
effects of the smaller flow scales, while Stf characterises the large-scale effects.

The most important output parameter is the Nusselt number, expressing the heat transfer
inside the cavity and defined as Nu = hL/k, where h and k denote the convection and
conduction heat transfer coefficients. In the simulations, the Nusselt number over a surface
S with an outward-pointing normal vector nS is calculated as, Nu = 〈∇T∗ · nS〉S, where
the operation 〈Ψ 〉ψ denotes the averaging of the dependent variable Ψ with respect to the
independent variable ψ . Another informative output parameter is the Reynolds number
Re = LU/ν, which provides a measure of the extent of turbulence. More specifically, using
the maximum r.m.s. of the fluid vertical velocity wrms

f as a characteristic velocity amplitude
(as in Calzavarini et al. (2005) and van der Poel, Stevens & Lohse (2013) for example),
the Reynolds number can be used to characterise the turbulence-inducing effect of the
large-scale circulation structures that steer the flow.

The reference scales used for the non-dimensionalisation are L as the length scale,
(gβ	TL)1/2 as the velocity scale and the free-fall time scale. The temperature is made
dimensionless as T∗ = (T − T0)/(	T), where T0 = (Th + Tc)/2. To avoid overloaded
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Lz

Lx

Ly

Figure 1. Schematic representation of the set-up used in the present study. The domain dimensions along the
x, y and z directions are (Lx,Ly,Lz) = (2, 2, 1) and the diameter of the suspended particles is set to dp = 1/15.
The fluid and the suspended particles are heated from the bottom wall (depicted in red) and cooled from the
top wall (in blue).

Ra Pr d∗
p Φ Nx × Ny × Nz CFL

108 7 {1/20, 1/15, 1/10} {0, 1, 5, 10, 15, 20 25, 30, 35, 40} 960 × 960 × 480 0.5

Table 1. Physical and numerical parameters adopted in the present study. The free-fall-based Stokes number
values corresponding to the dimensionless particle diameters listed are Stf = 0.5, 0.9 and 2.1 respectively. The
values of the Kolmogorov-based Stokes number are presented in §§ 3.4 and 3.7. All cases were simulated using
a Courant–Friedrichs–Lewy (CFL) condition value of 0.5.

notation, in the remainder of this paper all reported quantities are dimensionless without
any special annotation.

2.4. Case description
The three-dimensional geometry considered in the present study is shown in figure 1.
A fluid layer containing the suspended particles is enclosed between two infinitely
long horizontal solid walls, heated from below and cooled from above at a constant
temperature. The x and y directions are here assumed periodic. The domain dimensions
are defined as (Lx, Ly, Lz) = (2, 2, 1). The suspended spherical particles do not exhibit
thermal expansion and are therefore considered neutrally buoyant. Moreover, all the
particles have the same diameter and share the same thermophysical properties as the
fluid. In §§ 3.1–3.6, a parametric study of the particle volume fraction is carried out, with
Φ = 0 %–40 % and a fixed dimensionless particle diameter of d∗

p = 1/15. Afterwards, in
§ 3.7, the effects of the particle size are explored, with d∗

p = 1/20–1/10 and a fixed particle
volume fraction of Φ = 35 %. The values of the dimensionless parameters adopted along
with other numerical parameters are shown in table 1, describing a total of 12 simulations.
For simplicity we will use d∗

p instead of Stf to distinguish between the different cases.
Moreover, since no analytical relation exists for calculating the energy dissipation rate
as in single-phase convection (see e.g. Ahlers et al. 2009), an a posteriori analysis is
required to calculate the Kolmogorov-based Stokes number, which is presented in §§ 3.4
and 3.7.

To justify the adopted grid resolution, the criterion suggested in Shishkina et al. (2010)
is used to calculate the maximum grid spacing 	zmax inside the thermal boundary layers.
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Nu

〈N
u〉

t

0 500 1000

t t
1500

Time series Bottom
TopAveraged from t = 0

Averaged from t = 870

2000
32

33

34

35

36

800 1200 1600 2000
32

33

34

35

36(a) (b)

Figure 2. (a) Time series and running average of the Nusselt number on the bottom wall. (b) Running average
of the Nusselt number on both the bottom and top walls. The plots correspond to the case Φ = 20 % and
d∗

p = 1/15.

For the parameters used in the present study, 	zmax = 2−3/20.481−10.982−3/2Nu−3/2.
Considering a value Nu = 32.4, calculated in the single-phase Rayleigh–Bénard
convection (Stevens, Clercx & Lohse 2010; van der Poel et al. 2013), this criterion gives
	zmax = 4.08 × 10−3, which corresponds to a uniform grid of 245 grid points along the
wall-normal direction. Since the presence of the particles is expected to influence the flow,
the present study adopted a uniform grid spacing which is almost half of what the criterion
suggested, corresponding to 960 × 960 × 480 grid cells. Relative to the particles, this
resolution corresponds to 24, 32 and 48 grid points per particle diameter, for the different
particle diameters listed in table 1. This resolution was proven to be appropriate in other
turbulent direct numerical simulation studies (Ardekani et al. 2018a; Yousefi, Ardekani &
Brandt 2020; Yousefi et al. 2021).

All simulations are initialised using a statistically stationary solution from the
single-phase case (Φ = 0 %), superimposed with the required number of particles at
random locations. A dynamically adjusted time step is adopted, respecting the restriction
of Wray’s Runge–Kutta scheme (Wesseling 2009) by using CFL = 0.5. The final time
of each simulation was decided on an individual basis. More specifically, since the study
will mainly present the statistics of the flow, an initial period is allowed for a statistically
stationary state to be developed, followed by an extended time period to collect adequate
statistical samples. This procedure is illustrated in figure 2(a), for the case with Φ = 20 %
and d∗

p = 1/15. After an initial transient, the Nusselt number on the bottom wall fluctuates
around a distinct mean value. To avoid contaminating the statistical sample with the values
at the initial stages of the simulation, the statistical sampling starts after the stabilisation
of the mean Nusselt value. Figure 2(b) shows the running average of the Nusselt number
on both the bottom and top walls, after the initial transient period. The statistical sample
is considered large enough when the difference between the two time-averaged Nusselt
values is of the order of 0.1 %.

To further enhance the statistical samples, the top–bottom symmetry of the problem
is exploited by averaging the fields between symmetric locations at the top and bottom
halves of the cavity. Furthermore, since the x and y directions are periodic, the statistical
fields are also averaged along horizontal planes. The resulting time- and area-averaged
observables (denoted as 〈 · 〉t,x,y or simply 〈 · 〉) vary only along the vertical direction z.
The area-averaged r.m.s. values are calculated in a consistent manner, for example the
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Figure 3. Snapshots of the temperature field along with the particle locations in a wall-normal y–z plane.
The particles are coloured based on their vertical velocity w; (a) Φ = 10 %, (b) Φ = 20 %, (c) Φ = 30 % and
(d) Φ = 40 %. In all the cases, d∗

p = 1/15. Since the contour plane is partially transparent, the particles with
centres located behind the plane appear to have a halo around them.

r.m.s. values of the fluid temperature field are calculated as

Trms
f =

√
〈T2

f 〉t,x,y − 〈
Tf
〉2
t,x,y. (2.10)

All the simulations presented in this study ran on 576 CPU processors. The single-phase
simulation was performing on average 980 time steps per hour, while the simulation with
the highest particle volume fraction Φ = 40 % was performing 113 time steps per hour.
Given that the time step was roughly the same in all cases, the simulation with Φ = 40 %
was approximately 9 times slower than the single-phase simulation, highlighting the
significant computational overhead of the particle calculations.

3. Results

3.1. Flow visualisation
To get a first appreciation of the flow within this configuration, figure 3 shows the
instantaneous temperature fields and particle locations along a wall-normal y − z plane, for
different values of the particle volume fractions and a fixed particle diameter of d∗

p = 1/15.
In all cases, hot and cold plumes are ejected from the bottom and top boundary layers.
These plumes feed the large-scale circulation in the bulk of the cavity, which is evident
from the particle motion. In particular, the bulk of the cavity accommodates regions with
coordinated upward and downward particle motions. Furthermore, as better illustrated
in figure 4, with increasing particle volume fraction there exists an increased layering
of particles along the bottom and top walls. This is more pronounced for Φ = 40 %
(figure 4d), where the walls are covered with tightly packed particles. In addition, for
smaller particle volume fractions, the particles appear to be cooler next to the bottom
heated wall. As the particle volume fraction increases, the particles have, on average, a
higher temperature, suggesting a longer residence time in the near-wall region.

Focusing on the fluid phase, figure 5 shows two instantaneous temperature isosurfaces
for different values of the particle volume fraction. These isosurfaces give a better
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Figure 4. Snapshots of the first particle layer next to the bottom wall (x–y plane). The particles are coloured
based on their temperature; (a) Φ = 10 %, (b) Φ = 20 %, (c) Φ = 30 % and (d) Φ = 40 %. In all the cases,
d∗

p = 1/15.

understanding of the structure of the plumes that are ejected from the bottom and top
boundary layers. Starting from Φ = 10 %, the bottom boundary layer features an active
region with intense plume ejection next to a more quiescent region. The same is true for the
top boundary layer, with its quiescent region located opposite the bottom boundary layer’s
active region, and vice versa. This three-dimensional plume configuration facilitates the
presence of a large-scale circulation. For particle volume fractions up to 30 %, the presence
of a solid phase intensifies the plumes in the quiescent regions. Furthermore, the particle
inertia helps the plumes ejected from the active regions to travel through the bulk of the
cavity all the way to the opposite boundary layer. By contrast, increasing the particle
volume fraction even further, to 40 %, has the opposite effect; the ejection of plumes
is suppressed, without a clear distinction between active and quiet regions and no clear
indication of a large-scale circulation structure as we shall discuss in detail below.

3.2. Heat transfer modulation
The heat transfer inside the cavity is expressed through the Nusselt number, defined in
§ 2.3, and shown in figure 6(a) as a function of the particle volume fraction, for d∗

p = 1/15.
The Nusselt number is calculated by averaging the heat fluxes at the bottom and top
walls. Up to Φ = 25 %, the Nusselt number increases almost linearly with the particle
volume fraction, reaching a maximum value of 33.8, from 31.8 at Φ = 0 %; a relatively
mild increase of approximately 6 %. Beyond that point, a steep decrease is observed with
the Nusselt number dropping to 7.8 for the highest particle volume fraction considered,
Φ = 40 %. This observation is similar to what reported in Yousefi et al. (2021) for
finite-size particle suspensions in a channel flow. In that study, the maximum Nusselt
number was encountered at a particle volume fraction of 10 %, for all the Reynolds
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(a) (b)

(c) (d)

Figure 5. Snapshots of temperature isosurfaces for (a) Φ = 10 %, (b) Φ = 20 %, (c) Φ = 30 % and (d) Φ =
40 %. In all the cases, d∗

p = 1/15. Red colour corresponds to T = 0.1 and blue colour corresponds to T = −0.1.
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Figure 6. (a) Nusselt number and (b) thermal boundary layer thickness as a function of the particle volume
fraction, for d∗

p = 1/15. The boundary layer thickness based on the gradient is defined in (3.1) and the
r.m.s.-based definition given in (3.2). Both quantities are calculated by averaging the relevant quantities at
the bottom and top walls.

numbers within the transitional or fully turbulent regimes. The authors attributed the
decrease of the Nusselt number at higher values of Φ to the decreased mixing due to
the particle migration towards the channel core. More specifically, turbulence fluctuations
decrease significantly at the centreline where the particles move together as a compact
aggregate with reduced relative velocities and rotation rates. This is, however, different
from what is observed in figure 3 for the present Rayleigh–Bénard case, where the particle
layers next to the walls become more packed when increasing the particle volume fraction.
This will be examined quantitatively in § 3.3, where the average local volume fraction
inside the cavity is presented. In addition, to explain the effect of particle volume fraction
on the heat transfer inside the cavity, the heat transfer budgets will be presented and
discussed in § 3.5.
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Another important characteristic of thermal convection is the thermal boundary layer
thickness, defined either using the temperature gradient at the wall

λ∇T = (∇〈T〉|z=0)
−1

2
, (3.1)

or as the location of the maximum r.m.s. of the temperature field

λrms = argmaxz(T
rms), (3.2)

where T is the phase-averaged temperature. As shown in different single-phase studies
(Wang & Xia 2003; Demou & Grigoriadis 2019), the two definitions do not necessarily
coincide, with λ∇T calculated at the wall (therefore being closely associated with the
Nusselt number), while λrms is calculated inside the flow. As a natural length scale, λrms

was shown to be more effective in the scaling of higher-order moments of the temperature
field (Tilgner, Belmonte & Libchaber 1993; Zhou & Xia 2013). The values of the thermal
boundary layer thickness obtained from both definitions are shown in figure 6(b) as a
function of the particle volume fractions. As expected from its definition, λ∇T follows
the opposite trend as of the Nusselt number, with a small decrease for moderate particle
volume fractions and a steep increase beyondΦ = 25 %. On the other hand, λrms increases
monotonically with the solid volume fraction in the range explored. Starting from slightly
different values at Φ = 0 %, the two definitions converge to approximately the same value
at Φ ≈ 20 % and retain their agreement for up to Φ ≈ 35 %. At the highest volume
fraction considered, a large deviation is observed. Even though the temperature gradient
at the walls decreases and λ∇T increases significantly, the maximum temperature r.m.s.
value does not shift further from the walls, which explains the difference between the
two values at the highest particle volume fractions. As observed in figure 3(d), the dense
particle layer next to the walls enhances the mixing in the near-wall regions, therefore
reducing the Nusselt number, yet it still induces significant thermal agitation in this region.
These observations will be further substantiated by the investigation of the statistics of the
temperature fields in § 3.3.2.

3.3. Two-phase statistics

3.3.1. Particle distribution
Of special interest is the local particle volume fraction ϕ, defined as the fraction of a grid
cell inside a particle. This observable serves as an indicator function, taking the value ϕ =
1 when the grid cell is fully immersed in a particle and ϕ = 0 when there is no solid phase
inside the grid cell. Its time average is therefore the probability of finding the solid phase
in the volume under investigation. With the present definition, the local volume fraction
goes to zero as z → 0 because there can only be contact in isolated points between the
spheres and the solid boundary. Further exploiting the symmetries of our configuration, we
will therefore consider the time- and area-averaged local particle volume fraction 〈ϕ〉 as a
function of the vertical direction z, shown in figure 7 for the different values of the nominal
particle volume fraction under investigation, and d∗

p = 1/15. In all the cases, we see a peak
close to the wall, indicating the presence of a layer of particles adjacent to the boundary,
while the bulk of the cavity features a homogeneous local volume fraction distribution with
〈ϕ〉 ≈ Φ. A similar behaviour was also observed for moderate particle volume fractions
in strongly turbulent channel flows, attributed to the one-sided wall–particle interactions
(Costa et al. 2016; Lashgari et al. 2016; Yousefi et al. 2021). On the other hand, suspensions
in laminar Rayleigh–Bénard convection exhibited the opposite behaviour of shear-induced

945 A6-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.534


Turbulent convection in non-colloidal suspensions

1.0

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3

z
0.4 0.5

Φ = 10 %

Φ = 20 %

Φ = 30 %

Φ = 40 %

〈ϕ〉

Figure 7. Average local particle volume fraction as a function of the vertical direction for different values of
the particle volume fraction specified in this study. In all the cases, d∗

p = 1/15.

particle migration to the core of the cavity (Kang et al. 2021). The peak close to the wall
is more pronounced as the particle volume fraction increases, confirming the increased
layering of particles next to the walls depicted in the instantaneous fields shown in figure 3.
In the present study, the average local volume fraction for the case withΦ = 40 % reaches
a maximum value of ϕmax = 0.832. Given that the volume fraction for maximum circle
packing is 0.907 (Chang & Wang 2010), the case with Φ = 40 % exhibits an almost fully
packed particle layer next to the walls. A particle wall layer was first observed by Picano
et al. (2015) in turbulent channel flow of dense suspensions, where the authors explained
this formation by a mechanism similar to that usually observed in laminar Poiseuille and
Couette flows (Yeo & Maxey 2010, 2011; Picano et al. 2013). Within this mechanism,
once a particle reaches the wall, the strong wall–particle lubrication interaction stabilises
the particle wall-normal position. Hence, it becomes difficult for the particles belonging
to the first layer to escape from it.

We also note that, as the particle volume fraction increases, the location of the maximum
local volume fraction is also affected, moving closer to the wall by adding more particles.
More specifically, at Φ = 10 % the maximum is located at z = 0.051, while at Φ = 40 %
the maximum is at z = 0.034, approximately half of the particle diameter from the wall.
Consequently, the particles that form the dense layer at Φ = 40 % are in close proximity
with the wall. In addition, as the particle volume fraction increases, a second and third
maximum appear. Again, this second maximum further from the wall is more pronounced
as the value of Φ increases, but its location remains constant at z = 0.105 (approximately
one and a half particle diameters from the wall). These observations suggest that, as the
particle volume fraction increases, the flow conditions lead to the formation of a second
(less dense) particle layer in the vicinity of the wall. The case withΦ = 40 % also exhibits
two additional smaller maxima, before the profile of the local volume fraction reaches
a homogeneous distribution in the bulk of the cavity. In other words, by adding more
particles to the flow, more layers are formed before the uniform distribution in the central
region of the cavity is reached.

3.3.2. Temperature statistics
Figure 8 shows the wall-normal profiles of the temperature statistics for d∗

p = 1/15
and different particle volume fraction. Focusing first on the fluid and particle mean
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Figure 8. Wall-normal profiles of the temperature statistics for different values of the particle volume fraction.
(a) Mean fluid temperature, (b) r.m.s. of the fluid temperature, (c) average particle temperature and (d) r.m.s.
values of the particle temperature. In all the cases, d∗

p = 1/15.

temperatures in figures 8(a) and 8(c), we note that the different profiles are similar in
the different cases up to Φ = 30 %, with a strong gradient next to the wall and almost
isothermal conditions in the cavity core. These characteristics are also encountered in
single-phase turbulent Rayleigh–Bénard studies (Zhou & Xia 2013; Demou & Grigoriadis
2019). As the particle volume fraction increases, there is an increase of the temperature
next to the heated wall (decrease next to the cooled wall) in the region around z = 0.05
for both the fluid and the particles, in correspondence with the edge of the particle
wall layer, before T decays and reaches to the isothermal condition in the central region
of the cavity. For Φ = 40 %, this effect is much more pronounced and extends over a
larger region, approximately up to two particle diameters from the wall. These results
indicate a mixing enhancement in the vicinity of the wall, which is correlated with the
accumulation of particles in this region, as discussed previously in relation to the volume
fraction distributions in figure 7. Comparing the results pertaining the two phases, we note
that the temperatures of the fluid and particles agree fairly well throughout the cavity,
except for a small region between one and two particle diameters from the wall, where the
temperature of the particles next to the heated (cooled wall) drops below (rises above) the
fluid temperature.

The intensity of the temperature fluctuations is shown in figures 8(b) and 8(d) for the
fluid and particles. The profiles are characterised by a sharp increase with a maximum
in the near-wall region, before decreasing towards the cavity core. Again, this behaviour
is not very different to what has been reported in single-phase Rayleigh–Bénard studies
(du Puits et al. 2007; Zhou & Xia 2013). As the particle volume fraction increases up
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to 30 %, both the fluid and particle profiles exhibit increased r.m.s. values, revealing an
increased thermal agitation throughout the cavity. In line with the variation of λrms in
figure 6, the location of the maximum r.m.s. value shifts slightly away from the wall
when increasing the value of the volume fraction Φ. At Φ = 40 %, the temperature
fluctuation profiles are significantly altered, exhibiting decreased values and pronounced
differences between fluid and particles. A secondary maximum appears in the fluid profile,
at approximately one particle diameter from the global maximum. At this location, the
particle temperature r.m.s. exhibits a spike that is even larger than the maximum closer to
the wall. Similar temperature r.m.s. profiles were reported by Ciliberto & Laroche (1999)
who studied thermal convection in the presence of roughness and observed that a second
r.m.s. maximum appears when the thermal boundary layer is thin enough to interact with
the heated plate roughness. This happens when the thermal boundary layer thickness is
less than half of the roughness thickness (diameter of the largest spheres that were glued
together to create the rough surfaces in the experiments). In the present study, the opposite
effect is observed: the r.m.s. profiles exhibit a single r.m.s. maximum for the cases where
the thermal boundary layer thickness is smaller than half the particle diameter (cases
with Φ < 35 %), while a secondary r.m.s. maximum is observed for the case where the
thermal boundary layer thickness becomes comparable to the particle diameter (case with
Φ = 40 %). Therefore, even though the temperature r.m.s. profiles presented here exhibit
similarities to thermal convection in the presence of roughness, the mechanisms that cause
these effects are probably different. In the present study, these new r.m.s. maxima at
Φ = 40 % are found between the maximum local volume fractions shown in figure 7,
suggesting the increased influence of the particle motion for the thermal agitation in this
region. To support this claim, the following section presents the fluid and particle velocity
statistics.

3.3.3. Velocity statistics
The presence of counter-rotating large-scale circulation structures in the Rayleigh–Bénard
configuration complicates the study of the area- and time-averaged velocity field, which
reduces to almost zero after adequate sampling, i.e. 〈u〉 = 〈v〉 = 〈w〉 = 0. Because of this,

the velocity r.m.s. values reduce to urms =
√〈

u2
〉
, vrms =

√〈
v2
〉

and wrms =
√〈

w2
〉
. To

identify the role of different flow structures, the average fluid and particle kinetic energy
per unit mass can be divided into

Kh
f = 1

2

((
urms

f

)2 +
(
vrms

f

)2
)
, Kvf = 1

2

(
wrms

f

)2
, (3.3a,b)

Kh
p = 1

2

((
urms

p

)2 +
(
vrms

p

)2
)
, Kvp = 1

2

(
wrms

p

)2
, (3.4a,b)

where subscripts h and v correspond to the horizontal and vertical contributions. The
average kinetic energy can be used to characterise the flow large-scale motions. In
particular, the horizontal contributions are associated with the velocity of the structures
that sweep the boundary layers, while the vertical contributions are associated with the
velocities in the bulk of the cavity.

The horizontal contributions of the fluid and particle average kinetic energy per unit
mass are shown in figures 9(a) and 9(c), with d∗

p = 1/15. Similar to the temperature r.m.s.
fields, the horizontal kinetic energy contributions reach a maximum at some distance from
the wall and decay towards the bulk of the cavity. The big difference from the temperature
r.m.s. fields is that increased particle volume fraction leads to decreased kinetic energy.
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Figure 9. Components of the average kinetic energy per unit mass, derived from the velocity r.m.s., as a
function of the vertical direction for the different particle volume fractions indicated. (a) Horizontal and
(b) vertical contributions of the fluid, see (3.3a,b); (c) horizontal and, (d) vertical contributions from the
particles, defined in (3.4a,b). In all the cases, d∗

p = 1/15.

Additionally, the variations with the particle volume fraction are larger for the kinetic
energy than for the temperature fluctuations, even for moderate particle volume fractions.
Nonetheless, similar to the temperature fluctuations, the location of the maximum moves
away from the wall when increasing the value of Φ. This suggests a change in the way the
large-scale circulation structures sweep the boundary layers. Otherwise known as ‘wind
of turbulence’, these circulation structures unsettle the fluid in the vicinity of the wall and
contribute to the development of the viscous boundary layers. The maximum value of the
horizontal kinetic energy gives an indication of the location of the outer edge of the viscous
boundary layer, as well as the location of the periphery of the large-scale circulation
structures. In this context, the results for the horizontal kinetic energy distributions, Kh

f and
Kh

p , indicate the thickening of the viscous boundary layer, as well as the weakening of the
rotation of the large-scale circulation structures with increasing particle volume fraction.
Comparing the locations of the maximum of the kinetic energy and the temperature r.m.s.,
it is clear that the viscous boundary layer is much thicker than the thermal boundary layer,
as expected from the value of the Prandtl number Pr = 7, expressing the relative strength
of momentum over thermal diffusion.

The vertical velocity fluctuations Kvf and Kvp are depicted in figures 9(b) and 9(d). These
fields reach the maximum value at the centre of the cavity, with very small values close to
the walls. Weakening with increasing particle volume fraction is also found for the vertical
motions, throughout the cavity. Since the bulk of the cavity is mostly dominated by the
ascending and descending thermal plumes that form the upward and downward sections of
the large-scale circulation, these results corroborate the notion of a weakened circulation.
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Figure 10. Reynolds number based on the maximum r.m.s. value of the fluid vertical velocity, Re = Lwrms
f /ν,

as a function of the particle volume fraction, for d∗
p = 1/15.

Combining the different observations drawn from figure 9, it is clear that the overall kinetic
energy and the strength of the large-scale circulation decreases everywhere in the cavity
with increasing particle volume fraction.

The Reynolds number based on the maximum r.m.s. value of the fluid vertical velocity
can act as a measure of the turbulence, induced by the large-scale circulation structures.
Figure 10 shows the Reynolds number as a function of the particle volume fraction.
The Reynolds number decreases monotonically as the number of particles in the cavity
increases. For Φ ≤ 25 % the decrease is relatively mild, while for larger particle volume
fractions the decrease is more pronounced. At Φ = 40 %, a Reynolds number value of
approximately 515 is obtained, almost a third of the single-phase value of 1424. Even
though the Reynolds number value at the highest particle volume fraction is significantly
decreased, it is not so small as to suggest a complete breakdown of the large-scale
circulation. Nonetheless, in line with the Nusselt number reduction and the kinetic energy
profiles previously shown, the turbulence induced by the large-scale circulation is rapidly
weakened beyond Φ = 30 %.

To also analyse the effects of particle rotation, the horizontal (rotation axis in the x–y
plane) and vertical (rotation axis in the z-direction) components of the average absolute
particle angular velocity |ωp| are shown in figure 11. To conduct the averaging, the vertical
direction is split into 30 equal intervals, inside of which the angular velocity of each
particle is added and divided by the number of particles inside each specific interval.
As with other statistical fields presented in this study, an additional averaging between the
symmetric top and bottom locations is performed, resulting in 15 intervals in the vertical
direction. A first observation from figure 11 is that the particle rotation decreases with
the particle volume fraction. The horizontal component is much larger than its vertical
counterpart, and has an important role in the heat transfer process next to the wall: it
drags colder fluid closer to the heated wall and hot fluid away from the heated wall (the
opposite applies next to the cooled wall). This process contributes to retaining higher
heat transfer rates up to Φ = 30 % (cf. figure 6a), even though the turbulent activity in
the cavity (see the velocity r.m.s. values shown in figure 9) decreases significantly with
the particle volume fraction. For the largest particle volume fraction, Φ = 40 %, where
the boundary layers are covered with a tightly packed layer of particles, the rotation next
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Figure 11. Average particle angular velocity as a function of the vertical direction. (a) Horizontal component
and (b) vertical component. In all the cases, d∗

p = 1/15.

40

30

20
0.1 0.2 0.3

Nu

With rotation

Without rotation

Φ

Figure 12. Nusselt number of the suspensions for cases with and without particle rotation, as a function of
the particle volume fraction, for d∗

p = 1/15.

to the walls further diminishes, causing the significant decrease of the Nusselt number
reported above, see figure 6(a).

To provide further evidence on the role of particle rotation in sustaining the heat transfer,
three additional simulations were conducted where particles are not allowed to rotate,
but just translate. The volume fractions considered for this analysis are Φ = 10 %, 20 %
and 30 % and d∗

p = 1/15. First, we compare in figure 12 the Nusselt number for the
cases with and without particle rotation. As in § 3.2, the Nusselt number is calculated
by averaging the corresponding values at the bottom and top walls. For all three particle
volume fractions, the Nusselt number is reduced when particles are not allowed to rotate.
This reduction increases with the particle volume fraction, exceeding 30 % reduction at
Φ = 30 %. On the other hand, the temperature fluctuations in the fluid phase, reported in
figure 13(a), exhibit the opposite trend, with the maximum values increasing as the particle
volume fraction increases. This observation reveals another aspect of particle rotation,
the rotation-induced thermal mixing, the absence of which leads to increase temperature
inhomogeneities in the cavity, and therefore increased temperature fluctuations. Finally,
the horizontal component of the fluid kinetic energy, is shown in figure 13(b). In contrast
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Figure 13. Comparison between simulations where particle rotation is allowed and when it is not allowed.
(a) Temperature r.m.s. of the fluid phase and (b) horizontal contribution of the kinetic energy per unit mass of
the fluid. In all the cases, d∗

p = 1/15.

to the temperature fluctuations, the kinetic energy decreases when rotation is not allowed,
revealing the importance of particle rotation for the overall turbulence production inside
the cavity, see also Costa et al. (2018) and Brandt & Coletti (2022) for the case of
pressure-driven channel flows.

3.4. TKE budgets
A TKE budget analysis is given here to reveal the role of particles on altering the
production and dissipation of TKE. Considering the Navier–Stokes equations with the
IBM force ( f ) employed to impose no slip at the particle surface, the TKE budget can be
written for a steady state turbulent flow (dK/dt = 0) as

∂Ti

∂xi
= P − ε + I, (3.5)

P = 〈[1 − βf (Tf − T0)]guiδi3〉, (3.6)

ε = ν

〈
∂ui

∂xj

∂ui

∂xj

〉
, (3.7)

I = 〈uifi〉, (3.8)

where T is responsible for the spatial redistribution of the kinetic energy, P denotes the
production through buoyancy forces, ε refers to the viscous dissipation and finally I is the
interphase energy injection via the IBM force (Tanaka & Teramoto 2015).

Figure 14(a) depicts the profiles of P , ε and I at different volume fractions, for d∗
p =

1/15. Similarly, the spatial redistribution term in the wall-normal direction is given in
figure 14(b). Interestingly, the dissipation is reduced significantly with the volume fraction
in the immediate vicinity of the wall, while the production is almost unchanged in that
region. In the regions further away from the wall, both production and dissipation are
reduced with increasing particle volume fraction. This is consistent with the attenuation in
overall TKE, reported in figure 9. It should be noted that the interphase energy injection I
is several orders of magnitude smaller than the other terms and its effect can be neglected
here. A closer look at figure 14(b) reveals a local minimum in the spatial redistribution
term, located just above a particle diameter from the wall, where the particle wall layer
ends. This local minimum is emphasised as the particle volume fraction increases, where
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Figure 14. TKE budgets for different particle volume fractions, as a function of the vertical direction.
(a) Solid lines, production (P); dashed lines, dissipation (ε); dashed-dotted lines, interface injection (I).
(b) Redistribution term in the wall-normal direction (∂Tz/∂z). In all the cases, d∗

p = 1/15.

the particle layering next to the walls is more pronounced. It can be concluded from this
analysis that the formation of a particle wall layer close to the wall pulls the generated
TKE towards the wall and dissipates it faster through viscous dissipation. This mechanism
is in fact more pronounced when the particle volume fraction is higher.

With the availability of the TKE dissipation, the Kolmogorov-based Stokes number
StK = d2

pε
1/2/(18ν3/2) can be calculated. In the range Φ < 30 %, an approximately

constant value of StK = 3.9 is obtained. At higher particle volume fractions it decreases
to StK = 3.5 at Φ = 35 % and StK = 3.0 at Φ = 40 %. Even though the Stokes number
reduction is not pronounced, it does suggest the increasing impact of the turbulent
fluctuations on the particle movement as the particle volume fraction increases.

3.5. Heat transfer budgets
To provide further insight in the heat transfer mechanisms inside the cavity, we present
in this section the analysis of the heat transfer budgets. The phase-ensemble procedure
adopted in this study allows us to express the different contributions to the total heat flux
inside the cavity as a function of the wall-normal direction. Following the derivations in
Ardekani et al. (2018a) and Yousefi et al. (2021), one can obtain the following relation:

q′′
tot(z) = (

1 − 〈ϕ〉x,y,t
) (〈dTf

dz

〉
x,y,t

−
√

RaPr〈w′
f T ′

f 〉x,y,t

)

+ 〈ϕ〉x,y,t

(〈
dTp

dz

〉
x,y,t

−
√

RaPr〈w′
pT ′

p〉x,y,t

)
, (3.9)

where w′ = w(t)− 〈w〉 and T ′ = T(t)− 〈T〉 are the fluctuations of the vertical velocity
and temperature. The total heat flux can be split into diffusion and convection in each
phase

Cf = − (1 − 〈ϕ〉x,y,t
)√

Ra Pr
〈
w′

f T ′
f

〉
x,y,t

, Df = (
1 − 〈ϕ〉x,y,t

) 〈dTf

dz

〉
x,y,t

,

Cp = −〈ϕ〉x,y,t
√

Ra Pr
〈
w′

pT ′
p

〉
x,y,t

, Dp = 〈ϕ〉x,y,t

〈
dTp

dz

〉
x,y,t

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

945 A6-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.534


Turbulent convection in non-colloidal suspensions

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0.10 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

z z

0.04

0.02

0 0.05 0.10

0.10

0.05

0 0.05 0.10

Φ = 10 % Φ = 30 %

Φ = 20 % Φ = 40 %

C
f /

q′ t′ ot
C

p/
q′ t′ ot

D
f /

q′ t′ ot
D

p/
q′ t′ ot

(a) (b)

(c) (d )

Figure 15. Normalised contributions of the heat transfer budgets for different particle volume fractions as a
function of the wall-normal direction. (a) Convection by the fluid velocity fluctuations; (b) molecular diffusion
in the fluid phase; (c) convection by the particle velocity fluctuations and (d) molecular diffusion in the particle
phase. In all the cases, d∗

p = 1/15.

where C expresses the convection and D the diffusion components in the fluid and
particles.

The wall-normal distributions of the normalised heat transfer budgets are shown in
figure 15 for different particle volume fractions and d∗

p = 1/15. As expected, the region
close to the wall is mainly dominated by diffusion, while the bulk of the cavity is
dominated by turbulent convection. In the fluid phase, the contribution of convection
decreases as the particle volume fraction increases, with a dramatic decrease forΦ = 40 %
in the z < 0.1 region. On the other hand, the relative contribution of fluid diffusion
increases, more significantly forΦ = 40 %, with a pronounced maximum at approximately
one particle diameter from the wall. As regards the heat transfer in the particle phase,
increasing the particle volume fraction results in an increase of the contributions to the
total transport, with the exception of convection at Φ = 40 % that decreases in a similar
fashion as in the fluid phase. Most notably, the normalised particle diffusion increases
significantly next to the walls for Φ = 40 %, reflecting the dense layering of particles in
that location.

Figure 16 presents the aggregated heat transfer budget, in the form of total convection
and total diffusion in the two phases; note that the sum of the two is constant across the
cavity and equal to the total heat transfer for each case, quantified earlier by the Nusselt
number. Interestingly, the significant drop in kinetic energy with increasing particle
volume fraction (depicted in figure 9), is not reflected in the convection budgets, which
are only slightly affected up to Φ = 30 %. This is mainly attributed to the increasing
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Figure 16. Convective and diffusive contributions to the total heat transfer for different particle volume
fractions. (a) Convection by both the fluid and particle velocity fluctuations and (b) molecular diffusion in
both phases. In all the cases, d∗

p = 1/15.

temperature fluctuations (shown in figure 8) that overcome the decreasing kinetic agitation
and retain the intensity of convection heat transfer. Furthermore, the data show that
the largest contribution to the heat transfer from turbulent convection in the bulk and,
consequently, diffusion in the near-wall region occurs for Φ = 20 %. A similar behaviour
is also observed for Φ = 10 % and 30 %. Conversely, the Φ = 40 % case exhibits a
significant decrease of the convection in the bulk (reflected in the significant reduction
of the Nusselt number); in this case, the shift between convective and diffusive transport
does not occur in the close vicinity of the wall as for the lower values of Φ, but already
for z < 0.1, where a plateau is formed. In this region, the total contribution from diffusion
is larger for Φ = 40 % than for the other cases, except from the region very close to the
wall where the lower particle volume fraction cases have significantly larger diffusion.
These results quantify the effect of the tightly packed layer of particles next to the walls at
Φ = 40 %, which significantly influences all heat transfer budgets.

3.6. Two-point correlations
To study the effects of particle volume fraction on the fluid structures inside the cavity, the
two-point spatial correlations of the velocity fluctuations along the horizontal directions
are presented. These correlations are calculated as

Rx
uu (	x, z) = 〈u′(x, y, z, t)u′(x +	x, y, z, t)〉

〈(u′(x, y, z, t))2〉 ,

Ry
uu(	y, z) = 〈u′(x, y, z, t)u′(x, y +	y, z, t)〉

〈(u′(x, y, z, t))2〉 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.11)

and likewise for Rx
vv(	x, z), Ry

vv(	y, z), Rx
ww(	x, z) and Ry

ww(	y, z). Taking into account
that the horizontal x and y directions are homogeneous, some correlations are statistically
equivalent, more specifically (Rx

uu,Ry
vv), (Rx

vv,Ry
uu) and (Rx

ww,Ry
ww) are equivalent in pairs.

Since the near-wall region is dominated by the horizontal sweeping flow of the large-scale
circulation, the correlation groups (Rx

uu,Ry
vv) and (Rx

vv,Ry
uu) provide information about the

shape and degree of coherence of these horizontal flow structures. Conversely, (Rx
ww,Ry

ww)
provides similar information for the vertical flow structures in the bulk of the cavity, which
is dominated by the ascending and descending plumes that fuel the large-scale circulation.
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Figure 17. Contour plots of the two-point velocity correlations. Panels show (a–c) (Rx
ww + Ry

ww)/2;
(d–f ) (Rx

uu + Ry
vv)/2; and (g–i) (Rx

vv + Ry
uu)/2. For (a,d,g) Φ = 0 %; (b,e,h) Φ = 35 %; and (c, f,i) Φ = 40 %.

In all the cases, d∗
p = 1/15. Since the x- and y-directions are homogeneous and the two-point correlations are

statistically equivalent in pairs, the results shown here are also valid if 	x is replaced with 	y in the x-axis of
the figure.

Figure 17 shows these three groups of two-point correlation functions for Φ = 0 %,
35 % and 40 %, with d∗

p = 1/15. The other cases are omitted because they are qualitatively
similar to cases Φ = 0 % and 35 %. As expected, the correlation (Rx

ww + Ry
ww)/2 (first

row in the figure) becomes larger in the bulk of the cavity, while (Rx
uu + Ry

vv)/2 and
(Rx
vv + Ry

uu)/2 (second and third rows) are larger closer to the walls. Focusing on the
differences between Φ = 0 % and 35 % (first and second columns), it is clear that the
degree of correlation increases with increasing particle volume fraction and therefore
the flow structures become coherent over larger distances. This observation indicates a
change in the shape of the fast-moving periphery of the large-scale circulation, which
becomes thicker with increasing particle volume fraction. It is also evident that the most
correlated regions move further away from the wall, something that is more clearly
depicted when comparing the (Rx

uu + Ry
vv)/2 values in figures 17(d) and 17(e). This is

related to the increase of the local particle volume fraction close to the walls which
increasingly limits the access of the large-scale circulation to this region. For the largest
volume fraction examined, Φ = 40 %, a significant difference is immediately visible:
up to a height of approximately one particle diameter the correlation lengths of all
two-point correlation functions are minimal. The packed layer of particles in this region
breaks up any correlations in the fluid and moves the flow structures outside this particle
layer.
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Figure 18. (a) Nusselt number and (b) thermal boundary layer thickness as a function of the dimensionless
particle diameter, for Φ = 35 %. The boundary layer thickness based on the gradient is defined in (3.1) and the
r.m.s.-based definition given in (3.2). Both quantities are calculated by averaging the relevant quantities at the
bottom and top walls.

3.7. Effects of particle size
Following the parametric study of the particle volume fraction presented in the previous
sections, this section focuses on the effects of the particle size. Three dimensionless
particle diameters are used, d∗

p = 1/20, 1/15 and 1/10, for a particle volume fraction of
35 %. These values correspond to a free-fall-based Stokes number of Stf = 0.5, 0.9 and 2.1,
and a Kolmogorov-based Stokes number of StK = 1.1, 3.5 and 8.1 respectively. The values
of both definitions of the Stokes number suggest an increasing influence of the particle
inertia relative to the large- and small-scale flow features as the particle size increases.

First, the Nusselt number and thermal boundary layer thickness are shown in figure 18 as
a function of the dimensionless particle diameter. As the size of the particle decreases, the
Nusselt number decreases significantly and, correspondingly, the thermal boundary layer
thickness increases. This weakening of the heat transfer inside the cavity is as dramatic as
the Nusselt decrease observed in § 3.2 for Φ = 40 % and d∗

p = 1/15. The main difference
observed here is the fact that the r.m.s.-based definition of the thermal boundary layer
thickness follows the gradient-based definition very closely, in contrast to the findings in
§ 3.2 where the two definitions deviate.

To provide more insight into this pronounced drop in heat transfer, figure 19 visualises
the first particle layer next to the bottom wall. As the particles decrease in size they cluster
in the near-wall region, forming a tightly packed layer for d∗

p = 1/20. In addition, the
particle temperature increases, suggesting that the particles remain in the near-wall region
for an extended time period. The particle distribution inside the cavity is presented in
figure 20, in the form of averaged local particle volume fraction as a function of the vertical
direction z. All three cases share similar characteristics, with a maximum close to the
wall and approximately uniform distribution in the bulk of the cavity. As the particle size
decreases, the maximum value becomes larger and moves closer to the wall. The maximum
values for all the cases occur just above half a particle diameter from the walls. Again,
the results for the case with the smallest particles are very similar to what is observed
in figure 7 for Φ = 40 % and d∗

p = 1/15. In both these cases, the local particle volume
fraction exceeds the value 80 % close to the wall. The increased layering next to the walls
for smaller particles was also observed in turbulent channel flows (Costa et al. 2018),
albeit not as distinctly as the present study. This finding points to the fact that the strong
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Figure 19. Snapshots of the first particle layer next to the bottom wall (x–y plane). The particles are coloured
based on their temperature; (a) d∗

p = 1/10, (b) d∗
p = 1/15 and (c) d∗

p = 1/20. In all the cases, Φ = 35 %.
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Figure 20. Average local particle volume fraction as a function of the vertical direction for different values of
the dimensionless particle diameter. In all the cases, Φ = 35 %.

wall–particle lubrication interaction is more effective with smaller particles, inducing the
formation of denser layers next to the walls, influencing the boundary layer region more
intensely.

Further analysing the effects of particles with different sizes, figure 21 shows the average
kinetic energy per unit mass, as a function of the vertical direction. The most interesting
observation is the diminished horizontal contribution to the kinetic energy of both the fluid
and particles (figure 21a,c) in the region z < 0.05, for the case with the smallest particles.
This region corresponds to the dense particle layer forming next to the wall, hindering both
the fluid and particle movement. Combining this with the decreased vertical contributions
(figure 21b,d) in the cavity core, indicates the weakening of the large-scale circulation
structure, much similar to the highest particle volume fraction results presented in § 3.3.3.

Focusing further on the heat transfer inside the cavity, figure 22 presents the convective
and diffusive contributions to the total heat transfer. As the particle size decreases,
both the convective contributions (dominating the bulk of the cavity) and the diffusive
contributions (dominating the near-wall region) decrease. Similar to the Nusselt number
variation, the case with the smallest particles exhibits the most pronounced reduction.
The convective contributions are diminished in the particle packed region z < 0.05, while
the diffusive contributions are approximately uniform in this region. The similarities to
figure 16 for the largest particle volume fraction and d∗

p = 1/15 are once again distinct,

945 A6-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.534


A.D. Demou, M. Niazi Ardekani, P. Mirbod and L. Brandt

0.004

0.002

0.004

0.002

0.004

0.002

0.004

0.002

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

z z

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Kf
h Kf

v

Kp
h Kp

v

d∗
p = 1/10

d∗
p = 1/15

d∗
p = 1/20

(a) (b)

(c) (d )

Figure 21. Components of the average kinetic energy per unit mass, derived from the velocity r.m.s., as a
function of the vertical direction for the different dimensionless particle diameters indicated. (a) Horizontal
and (b) vertical contributions of the fluid, see (3.3a,b); (c) horizontal and (d) vertical contributions from the
particles, defined in (3.4a,b).
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Figure 22. Convective and diffusive contributions to the total heat transfer for different dimensionless particle
diameters. (a) Convection by both the fluid and particle velocity fluctuations and (b) molecular diffusion in
both phases.

indicating the dominance of diffusive heat transfer throughout the tightly packed particle
layer.

4. Conclusions

We present and discuss direct numerical simulations of Rayleigh–Bénard convection in
non-colloidal suspensions, with a special focus on the heat transfer modulation with
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increasing particle volume fraction and particle size. The suspended particles are neutrally
buoyant, with all thermophysical properties matching the properties of the fluid. We
employed direct-forcing IBM to fully resolve the fluid–solid interactions coupled with a
VoF approach to solve the temperature equation in the two phases and to characterise the
flow statistics.

At the macroscopic level, the Nusselt number is shown to weakly increase up to
Φ = 25 % and then significantly drop beyond that point. The positive effect of the particles
on the Nusselt number for Φ ≤ 25 % originates from increased thermal agitation that
overcomes the decreased flow kinetic energy in the cavity. For higher volume fractions,
both the instantaneous snapshots of the flow and the statistical analysis revealed an
increased layering of particles next to the walls, reaching local volume fractions over
80 %, indicating an almost fully packed layer. As a consequence, the ejection of thermal
plumes from the boundary layers and the heat transfer inside the cavity are considerably
weakened. Significant differences between the case with Φ = 40 % and the rest of the
cases are observed throughout the statistical quantities presented, including the TKE
and heat transfer budgets, and the two-point correlation functions. The role of particle
rotation on the heat transfer modulation is further investigated with additional simulations,
considering particles without the ability to rotate. In this setting, the thermal agitation
increases while the kinetic energy in the cavity decreases when comparing with the cases
where rotation is allowed. The overall effect on the heat transfer is weakening, with the
Nusselt number decreasing significantly from Φ > 30 %. This observation highlights the
role of rotation in counteracting the decrease of the heat transfer as the number of particles
in the flow increases.

Studying the effects of the particle size reveals a strong heat transfer reduction with
smaller particles. This reduction can be attributed to the increased layering next to the
walls, which suggests that the strong wall–particle lubrication interaction is more effective
for smaller particles. In general, decreasing the particle size affects the heat transfer and the
other statistical quantities in a similar fashion as the increase in particle volume fraction.
The influence of the particle size on the critical volume fraction (the volume fraction
above which heat transfer reduces) should be the topic of a future study. Guided by the
observation that the heat transfer reduction is associated with nearly fully packed wall
layers, new simulations can be designed to quantify the functional dependence of the
critical volume fraction on the particle size.

Our study quantifies the effects of non-colloidal particle suspensions in turbulent
Rayleigh–Bénard convection. An exciting prospect for the continuation of this research
will be to perform experiments to verify the inhomogeneity in the variation of Nusselt
number, temperature and particle concentration distributions especially for the higher
particle volume fractions studied here. Other interesting future extensions of this work
would be to extend the parameter space to higher Rayleigh numbers, where turbulence is
stronger, and change key characteristics of the particles, such as shape and thermophysical
properties.
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