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We study the turbulent square duct flow of dense suspensions of neutrally buoyant
spherical particles. Direct numerical simulations (DNS) are performed in the range of
volume fractions φ = 0–0.2, using the immersed boundary method (IBM) to account
for the dispersed phase. Based on the hydraulic diameter a Reynolds number of 5600
is considered. We observe that for φ=0.05 and 0.1, particles preferentially accumulate
on the corner bisectors, close to the corners, as also observed for laminar square duct
flows of the same duct-to-particle size ratio. At the highest volume fraction, particles
preferentially accumulate in the core region. For plane channel flows, in the absence
of lateral confinement, particles are found instead to be uniformly distributed across
the channel. The intensity of the cross-stream secondary flows increases (with respect
to the unladen case) with the volume fraction up to φ= 0.1, as a consequence of the
high concentration of particles along the corner bisector. For φ = 0.2 the turbulence
activity is reduced and the intensity of the secondary flows reduces to below that of
the unladen case. The friction Reynolds number increases with φ in dilute conditions,
as observed for channel flows. However, for φ = 0.2 the mean friction Reynolds
number is similar to that for φ = 0.1. By performing the turbulent kinetic energy
budget, we see that the turbulence production is enhanced up to φ = 0.1, while
for φ = 0.2 the production decreases below the values for φ = 0.05. On the other
hand, the dissipation and the transport monotonically increase with φ. The interphase
interaction term also contributes positively to the turbulent kinetic energy budget and
increases monotonically with φ, in a similar way as the mean transport. Finally, we
show that particles move on average faster than the fluid. However, there are regions
close to the walls and at the corners where they lag behind it. In particular, for
φ = 0.05, 0.1, the slip velocity distribution at the corner bisectors seems correlated to
the locations of maximum concentration: the concentration is higher where the slip
velocity vanishes. The wall-normal hydrodynamic and collision forces acting on the
particles push them away from the corners. The combination of these forces vanishes
around the locations of maximum concentration. The total mean forces are generally
low along the corner bisectors and at the core, also explaining the concentration
distribution for φ = 0.2.
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1. Introduction
Particle-laden turbulent flows are commonly encountered in many engineering and

environmental processes. Examples include sediment transport in rivers, avalanches,
slurries and chemical reactions involving particulate catalysts. Understanding the
behaviour of these suspensions is generally a difficult task due to the large number
of parameters involved. Indeed, particles may vary in density, shape, size and stiffness,
and when non-dilute particle concentrations are considered the collective suspension
dynamics depends strongly on the mass and solid fractions. Even in Stokesian
and laminar flows, different combinations of these parameters lead to interesting
peculiar phenomena. In turbulence, the situation is further complicated due to the
interaction between particles and vortical structures of different sizes. Hence, the
particle behaviour does not depend only on its dimensions and characteristic response
time, but also on the ratio of these with the characteristic turbulent length and time
scales, respectively. The turbulence features are also altered due to the presence of
the dispersed phase, especially at high volume fractions. Because of the difficulty
of treating the problem analytically, particle-laden flows are often studied either
experimentally or numerically. In the context of wall-bounded flows, the suspension
dynamics has often been studied in canonical flows such as channels and boundary
layers. However, internal flows relevant to many industrial applications typically
involve more complex, non-canonical geometries in which secondary flows, flow
separation and other non-trivial phenomena are observed. It is hence important to
understand the behaviour of particulate suspensions in more complex and realistic
geometries. We will here focus on turbulent square ducts, where gradients of the
Reynolds stresses induce the generation of mean streamwise vortices. These are
known as Prandtl’s secondary motions of the second kind (Prandtl 1963). The
suspension behaviour subjected to these peculiar secondary flows will be investigated,
as well as the influence of the solid phase on the turbulence features.

As said, interesting rheological behaviours can be observed already in the Stokesian
regime. Among these we recall shear thinning and thickening, jamming at high
volume fractions and the generation of high effective viscosities and normal stress
differences (Stickel & Powell 2005; Morris 2009; Wagner & Brady 2009). Indeed,
for these multiphase flows the response to the local deformation rate is altered and
the effective viscosity µe changes with respect to that of the pure fluid µ. Shear
thickening and normal stress differences are observed also in the laminar regime
and are typically related to the formation of an anisotropic microstructure that arises
due to the loss of symmetry in particle pair trajectories (Kulkarni & Morris 2008;
Picano et al. 2013; Morris & Haddadi 2014). In general, the effective viscosity of
a suspension, µe, has been shown to be a function of the particle Reynolds number
Rep, the Péclet number Pe (quantifying thermal fluctuations), the volume fraction φ
and, relevant to microfluidic applications, of the system confinement (Doyeux et al.
2016; Fornari et al. 2016a).

Another important feature observed in wall-bounded flows is particle migration.
Depending on the particle Reynolds number Rep, different types of migrations are
observed. In the viscous regime, particles irreversibly migrate towards the centreline in
a pressure-driven Poiseuille flow. Hence, particles undergo a shear-induced migration
as they move from high to low shear rate regions (Koh, Hookham & Leal 1994;
Guazzelli & Morris 2011). On the other hand, when inertial effects become important,
particles are found to move radially away from both the centreline and the walls,
towards an intermediate equilibrium position. Segre & Silberberg (1962) first observed
this phenomenon in a tube and hence named it the tubular pinch effect. This migration
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is mechanistically unrelated to the rheological properties of the flow and results
from the fluid–particle interaction within the conduit. The exact particle focusing
position has been shown to depend on the conduit–particle size ratio and on the bulk
and particle Reynolds numbers (Matas, Morris & Guazzelli 2004; Morita, Itano &
Sugihara-Seki 2017). In square ducts the situation is more complex. Depending on
the same parameters, the focusing positions can occur at the wall bisectors, along
heteroclinic orbits or only at the duct corners (Chun & Ladd 2006; Abbas et al.
2014; Nakagawa et al. 2015; Kazerooni et al. 2017; Lashgari et al. 2017a).

Already in the laminar regime, the flow in conduits is altered by the presence of
solid particles. Relevant to mixing, particle-induced secondary flows are generated
in ducts, otherwise absent in the unladen reference cases as shown by Amini et al.
(2012), Kazerooni et al. (2017). Interesting results are found also in the transition
regime from laminar to turbulent flow. It has been shown that the presence of particles
can either increase or reduce the critical Reynolds number above which the transition
occurs. In particular, transition depends upon the channel half-width to particle radius
ratio h/a, the initial arrangement of particles and the solid volume fraction φ (Matas,
Morris & Guazzelli 2003; Loisel et al. 2013; Lashgari, Picano & Brandt 2015).

In the fully turbulent regime, most studies have focused on dilute suspensions of
heavy particles, smaller than the hydrodynamic scales, in channel flows. This is known
as the one-way coupling regime (Balachandar & Eaton 2010) as there is no back
influence of the solid phase on the fluid. These kind of particles are found to migrate
from regions of high to low turbulence intensities (turbophoresis) (Reeks 1983) and
the effect is stronger when the turbulent near-wall characteristic time and the particle
inertial time scale are similar (Soldati & Marchioli 2009). It was later shown by
Sardina et al. (2011, 2012) that close to the walls particles also tend to form streaky
particle patterns.

When the mass fraction is high, the fluid motion is altered by the presence of
particles (two-way coupling regime) and it has been shown that turbulent near-wall
fluctuations are reduced while their anisotropy is increased (Kulick, Fessler & Eaton
1994). The total drag is hence found to decrease (Zhao, Andersson & Gillissen 2010).

Small heavy particles tend to accumulate in regions of high compressional strain and
low swirling strength in turbulent duct flows, especially in the near-wall and vortex
centre regions (Winkler, Rani & Vanka 2004). Sharma & Phares (2006) showed that
while passive tracers and low inertia particles stay within the secondary swirling flows
(circulating between the duct core and boundaries), high inertia particles accumulate
close to the walls, mixing more efficiently in the streamwise direction. In particular,
particles tend to deposit at the duct corners. More recently, Noorani et al. (2016)
studied the effect of varying the duct aspect ratio on the particle transport. These
authors considered a higher bulk Reynolds number than Sharma & Phares (2006) and
found that in square ducts, particle concentration in the viscous sublayer is maximum
at the centreplane. However, increasing the aspect ratio, the location of maximum
concentration moves towards the corner as also the kinetic energy of the secondary
flows increases closer to the corners.

In the four-way coupling regime, considering dense suspensions of finite-size
particles in turbulent channel flows (with radii of approximately 10 plus units), it
was instead found that the large-scale streamwise vortices are mitigated and that fluid
streamwise velocity fluctuations are reduced. As the solid volume fraction increases,
fluid velocity fluctuation intensities and Reynolds shear stresses are found to decrease,
however particle-induced stresses significantly increase and this results in an increase
of the overall drag (Picano, Breugem & Brandt 2015). Indeed, Lashgari et al. (2014)
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identified three regimes in particle-laden channel flow, depending on the different
values of the solid volume fraction φ and the Reynolds number Re, each dominated
by different components of the total stress. In particular, viscous, turbulent and
particle-induced stresses dominate the laminar, turbulent and inertial shear-thickening
regimes. The effects of solid-to-fluid density ratio ρp/ρf , mass fraction, polydispersity
and shape have also been studied by Fornari et al. (2016b), Ardekani et al. (2017),
Lashgari et al. (2017b), Fornari, Picano & Brandt (2018).

Recently, Lin et al. (2017) used a direct-forcing fictitious method to study turbulent
duct flows laden with a dilute suspension of finite-size spheres heavier than the carrier
fluid. Spheres with radius a = h/10 (with h the duct half-width) were considered at
a solid volume fraction φ = 2.36 %. These authors show that particles sedimentation
breaks the up–down symmetry of the mean secondary vortices. This results in a
stronger circulation that transports the fluid downward in the bulk centre region and
upward along the side walls similarly to what is observed for the duct flow over
a porous wall by Samanta et al. (2015). As the solid-to-fluid density ratio ρp/ρf
increases, the overall turbulence intensity is shown to decrease. However, mean
secondary vortices at the bottom walls are enhanced and this leads to a preferential
accumulation of particles at the face centre of the bottom wall.

In the present work, we study the turbulence modulation and particle dynamics in
turbulent square duct flows laden with particles. In particular we consider neutrally
buoyant finite-size spheres with radius a = h/18 (where h is the duct half-width),
and increase the volume fraction up to φ = 0.2. We use data from direct numerical
simulations (DNS) that fully describe the solid-phase dynamics via an immersed
boundary method (IBM). We show that up to φ = 0.1, particles preferentially
accumulate close to the duct corners as also observed for small inertial particles
and for laminar duct flows laden with spheres of comparable h/a and φ. At the
highest volume fraction, instead, we see a clear particle migration towards the core
region, a feature that is absent in turbulent channel flows with similar φ. Concerning
the fluid phase, the intensity of the secondary flows and the mean friction Reynolds
number increase with the volume fraction up to φ= 0.1. However, for φ= 0.2 we find
a reduction in the turbulence activity. The intensity of the secondary flows decreases
below the value of the unladen reference case. In contrast to what is observed for
channel flow, the mean friction Reynolds number at φ= 0.2 is found to be similar to
that for φ = 0.1. Two different mechanisms may be responsible for this observation.
On the one hand, the contribution of particle-induced stresses to the overall drag may
be lower than in channel flow. On the other hand, it is possible that at large φ the
turbulence activity may be more strongly reduced in duct flow than in channel flow.
We tend towards the second hypothesis, as in duct flow twice as many particles are
found in the near-wall regions than in channel flow. Due to the large concentration
of particles, the quasi-coherent structures are quickly disrupted, ejection and sweep
events reduce and the overall production of turbulent kinetic energy is reduced. To
support this idea, we also perform a turbulent kinetic energy budget and, indeed,
find that the mean turbulence production increases only up to φ = 0.1. Instead, for
φ = 0.2 the mean production is less than for φ = 0.05. On the other hand, the mean
dissipation and transport increase substantially with φ. Due to the presence of solid
particles, there is an additional contribution to the turbulent kinetic energy budget:
the interphase interaction term. We find that it contributes positively to the budget,
and that its mean value increases monotonically with the volume fraction, similarly
to the mean transport term. In addition, this term is particularly important very close
to the walls, in the viscous sublayer.
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Finally, we compute the slip velocity between fluid and particles, and the mean
wall-normal hydrodynamic and collision forces acting on the particles. We find
that particles move on average faster than the fluid. However, there are several
regions where they lag behind it. This occurs, for example, close to the corners.
Interestingly, it is found that along the corner bisectors, the slip velocity vanishes
where the maxima of particle concentration are found (for φ = 0.05 and 0.1). From
the mean hydrodynamic and collision forces, it is found that particles are repelled
from the corners, and the summation of these forces vanishes around the locations
of maximum concentration. For φ = 0.2, although the mean hydrodynamic forces
are generally negligible in the core region, these are slightly negative along the
bisectors (i.e. directed towards the walls). However, at large φ the motion of particles
is hindered by collisions with their neighbours. Hence, along the corner bisectors
particles experience collision forces that balance the hydrodynamic forces. The mean
total force on the particles is therefore (approximately) zero, and this explains the
large concentration at the core.

2. Methodology
2.1. Numerical method

During the last years, various methods have been proposed to perform interface-
resolved direct numerical simulations (DNS) of particulate flows. The state of art
and the different principles and applications have been recently documented in the
comprehensive review article by Maxey (2017). In the present study, the immersed
boundary method (IBM) originally proposed by Uhlmann (2005) and modified by
Breugem (2012) has been used to simulate suspensions of finite-size neutrally buoyant
spherical particles in turbulent square duct flow. The fluid phase is described in an
Eulerian framework by the incompressible Navier–Stokes equations:

∇ · uf = 0, (2.1)
∂uf

∂t
+ uf · ∇uf =−

1
ρf
∇p+ ν∇2uf + f , (2.2)

where uf and p are the velocity field and pressure, while ρf and ν are the density and
kinematic viscosity of the fluid phase. The last term on the right-hand side of (2.2)
f is the localized IBM force imposed to the flow to model the boundary condition
at the moving particle surface (i.e. uf |∂Vp = up + ωp × r). The dynamics of the rigid
particles is determined by the Newton–Euler Lagrangian equations:

ρpVp
dup

dt
=

∮
∂Vp

τ · n dS+Fc, (2.3)

Ip
dωp

dt
=

∮
∂Vp

r× τ · n dS+ Tc, (2.4)

where up and ωp are the linear and angular velocities of the particle, while Fc

and Tc are the collision forces and torques (due to particle–particle and particle–wall
interactions). In (2.3) and (2.4), Vp= 4πa3/3 and Ip= 2ρpVpa2/5 represent the particle
volume and moment of inertia, τ =−pI+ νρf (∇uf +∇uT

f ) is the fluid stress tensor, r
indicates the distance from the centre of the particle and n is the unit vector normal
to the particle surface ∂Vp.
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In order to solve the governing equations, the fluid phase is discretized on a
spatially uniform staggered Cartesian grid using a second-order finite-difference
scheme. An explicit third-order Runge–Kutta scheme is combined with a standard
pressure-correction method to perform the time integration at each sub-step. The
same time integration scheme has also been used for the evolution of (2.3) and (2.4).
For the solid phase, each particle surface is described by NL uniformly distributed
Lagrangian points. The force exchanged by the fluid on the particles is imposed
on each lth Lagrangian point. This force is related to the Eulerian force field f by
the expression f ijk =

∑NL
l=1 Flδd(xijk − Xl)1Vl, where 1Vl is the volume of the cell

containing the lth Lagrangian point and δd is the regularized Dirac delta function
(Roma, Peskin & Berger 1999). This is defined as the product of 3 one-dimensional
delta functions (one in each direction), δ1

d(xi − Xl,i)= ξ(rd)/1xi, with

ξ(rd)


1
6(5− 3|rd| −

√
(−3(1− |rd|)2 + 1)), 0.5 6 |rd|6 1.5,

1
3(1+

√
(−3rd

2 + 1)), |rd|6 0.5,
0 otherwise

(2.5)

and rd = (xi − Xl,i)/1xi. Here, Fl is the force (per unit mass) at each Lagrangian
point, and it is computed as Fl = (Up(Xl) − U∗l )/1t, where Up = up + ωp × r is
the velocity at the Lagrangian point l at the previous time step, while U∗l is the
interpolated first prediction velocity at the same point. An iterative algorithm with
second-order spatial accuracy is developed to calculate this force field. To maintain
accuracy, equations (2.3) and (2.4) are rearranged in terms of the IBM force field,

ρpVp
dup

dt
=−ρf

Nl∑
l=1

Fl1Vl + ρf
d
dt

∫
Vp

uf dV +Fc, (2.6)

Ip
dωp

dt
=−ρf

Nl∑
l=1

rl ×Fl1Vl + ρf
d
dt

∫
Vp

r× uf dV + Tc, (2.7)

where rl is the distance between the centre of a particle and the lth Lagrangian point
on its surface. The second terms on the right-hand sides are corrections that account
for the inertia of the fictitious fluid contained within the particle volume. Particle–
particle and particle–wall interactions are also considered. Well-known models based
on Brenner’s asymptotic solution (Brenner 1961) are employed to correctly predict the
lubrication force when the distance between particles as well as particles and walls is
smaller than twice the mesh size. Collisions are modelled using a soft-sphere collision
model, with a coefficient of restitution of 0.97 to achieve an almost elastic rebound
of particles. Friction forces are also taken into account (Costa et al. 2015). For more
detailed discussions of the numerical method and of the mentioned models the reader
is refereed to previous publications (Breugem 2012; Picano et al. 2015; Fornari et al.
2016b; Fornari, Picano & Brandt 2016c; Lashgari et al. 2016).

Periodic boundary conditions for both solid and liquid phases are imposed in the
streamwise direction. The stress immersed boundary method is used in the remaining
directions to impose the no-slip/no-penetration conditions at the duct walls. The stress
immersed boundary method has originally been developed to simulate the flow around
rectangular-shaped obstacles in a fully Cartesian grid (Breugem, Van Dijk & Delfos
2014). In this work, we use this method to enforce the fluid velocity to be zero at
the duct walls. For more details on the method, the reader is referred to the works
of Breugem & Boersma (2005) and Pourquie, Breugem & Boersma (2009). This
approach has already been used in our group (Kazerooni et al. 2017) to study the
laminar flow of large spheres in a squared duct.
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Case φ = 0.0 φ = 0.05 φ = 0.1 φ = 0.2

Np 0 3340 6680 13 360
Reb 5600
Lx × Ly × Lz 12h× 2h× 2h
Nx ×Ny ×Nz 2592× 432× 432

TABLE 1. Summary of the different simulation cases. Np indicates the number of
particles whereas Nx, Ny and Nz are the number of grid points in each direction.

2.2. Flow geometry
We investigate the turbulent flow of dense suspensions of neutrally buoyant spherical
particles in a square duct. The simulations are performed in a Cartesian computational
domain of size Lx = 12h, Lz = 2h and Ly = 2h where h is the duct half-width and
x, y and z are the streamwise and cross-stream directions. The domain is uniformly
(1x=1z=1y) meshed by 2592× 432× 432 Eulerian grid points in the streamwise
and cross-flow directions. The bulk velocity of the entire mixture Ub is kept constant
by adjusting the streamwise pressure gradient to achieve the constant bulk Reynolds
number Reb =Ub2h/ν = 5600. In particular, we fix a constant reference value of the
bulk velocity Ub, and at each time step compute the spatial average of the mixture
velocity. From these quantities we hence find the pressure gradient necessary to
constrain the mixture to move with velocity equal to Ub. Based on the data provided
by Pinelli et al. (2010), Reb = 5600 corresponds to a mean friction Reynolds number
Reτ = Ū∗h/ν = 185 for an unladen case, where Ū∗=

√
〈τw〉/ρf is the friction velocity

calculated using the mean value of the shear stress τw along the duct walls.
We consider three different solid volume fractions of φ = 5, 10 and 20 % which

correspond to 3340, 6680 and 13 360 particles respectively. The reference unladen
case is also considered for direct comparison. In all simulations, the duct-to-particle
size ratio is fixed to h/a = 18, and the particles are randomly initialized in the
computational domain with zero translational and angular velocities. The number of
Eulerian grid points per particle diameter is 24 (1x= 1/24) whereas the Lagrangian
mesh on the surface of the particles consists of 1721 grid points.

The simulations start from the laminar duct flow and the noise introduced by a
high amplitude localised disturbance in the form of two counter-rotating streamwise
vortices (Henningson & Kim 1991). Due to this disturbance and to the noise added
by the particles, transition naturally occurs at the chosen Reynolds number. The
statistics are collected after the initial transient phase of approximately 100 h/Ub,
using an averaging period of at least 600 h/Ub (Huser & Biringen 1993; Vinuesa
et al. 2014) (except for φ = 20 % where ∼400 h/Ub is found to be enough to obtain
converged statistics). A summary of the simulations is presented in table 1 while an
instantaneous snapshot showing the magnitude of the streamwise velocity for φ= 0.1,
together with the solid particles, is shown in figure 1.

3. Results
3.1. Validation

The code used in the present work has been already validated against several different
cases in previous studies (Breugem 2012; Picano et al. 2015; Fornari et al. 2016c;
Kazerooni et al. 2017). To further investigate the accuracy of the code, we calculate
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FIGURE 1. (Colour online) Instantaneous snapshot of the magnitude of the velocity
together with the solid particles; the solid volume fraction φ = 0.1.

the friction factor f = 8(Ū∗/Ub)
2 for the reference unladen case with Reb= 5600, and

compare it with the value obtained from the empirical correlation by Jones (1976)

1/f 2
= 2 log10(1.125Rebf 1/2)− 0.8. (3.1)

The same value of f =0.035 is obtained from the simulation and the empirical formula.
This corresponds to a mean Reτ = 185.

We also performed a simulation at lower Reb = 4410 and φ = 0, see figure 2,
where we report the profile of the streamwise velocity fluctuation at the wall bisector,
normalized by the local friction velocity U∗. This is compared to the results by
Gavrilakis (1992) and Joung, Choi & Choi (2007) at Reb = 4410 and 4440. We
see a good agreement with both works. For all components of the root-mean-square
velocity, the relative difference between our results (at the wall bisector) and those
by Gavrilakis (1992) is typically less than 1.5 % (and at most 4 % locally).

3.2. Mean velocities, drag and particle concentration
In this section we report and discuss the results obtained for the different solid volume
fractions φ considered. The phase ensemble averages for the fluid (solid) phase have
been calculated by considering only the points located outside (inside) of the volume
occupied by the particles. The statistics reported are obtained by further averaging over
the eight symmetric triangles that form the duct cross-section.

The streamwise mean fluid and particle velocities in outer units (i.e. normalized by
the bulk velocity Ub), Uf /p(y, z), are illustrated in figure 3(a,b) for all φ. The contour
plots are divided in four quadrants showing results for φ = 0.0 (top left), 0.05 (top
right), 0.1 (bottom right) and 0.2 (bottom left). The streamwise mean particle velocity
contours closely resemble those of the fluid phase. In particular we observe that the
maximum velocity at the core of the duct grows with φ. The increase with φ is similar
to that reported for turbulent channel flows (Picano et al. 2015), except for φ = 0.2
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FIGURE 2. (Colour online) Streamwise velocity fluctuation at the wall bisector from the
present simulation at Reb = 4410, and from the data by Gavrilakis (1992) at Reb = 4410
and Joung et al. (2007) at Reb = 4440.
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FIGURE 3. (Colour online) Contours of streamwise mean fluid (a) and particle velocity
(b) in outer units. In each figure, the top left, top right, bottom right and bottom left
quadrants show the data for φ = 0.0, 0.05, 0.1 and 0.2.

where the increase of Uf /p(y, z) in the duct core is substantially larger. We observe that
the convexity of the mean velocity contours also increases with the volume fraction
up to φ = 0.1. This is due to the increased intensity of secondary flows that convect
mean velocity from regions of large shear along the walls towards regions of low
shear along the corner bisectors (Prandtl 1963; Gessner 1973; Vinuesa et al. 2014).
For φ= 0.2 the secondary flow intensity is substantially reduced and accordingly also
the convexity of the contours of Uf /p reduces.

Next, we show in figure 4(a,b) the streamwise mean fluid and particle velocity
profiles along the wall bisector in outer and inner units (Uf /p(y) and U+f /p). The
local value of the friction velocity at the wall bisector, U∗ =

√
τw,bis/ρf , is used to
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FIGURE 4. (Colour online) Streamwise mean fluid and particle velocity along the wall
bisector at z/h=1 in outer (a) and inner units (b). Lines are used for fluid velocity profiles
while symbols are used for particle velocity profiles.

normalize Uf /p(y). Solid lines are used for Uf (y) while symbols are used for Up(y).
We observe that the mean velocity profiles of the two phases are almost perfectly
overlapping at equal φ, except very close to the walls (y+6 30) where particles have
a relative tangential motion (slip velocity). Note also that the mean particle velocity
decreases with φ very close to the walls. We also observe that by increasing φ, the
profiles of Uf /p(y) tend towards the laminar parabolic profile with lower velocity
near the wall and larger velocity at the centreline, y/h = 1. Concerning U+f /p(y+),
we observe a progressive downward shift of the profiles with the volume fraction φ

denoting a drag increase, at least up to φ = 0.1.
The mean velocity profiles still follow the log law (Pope 2000)

U+f /p(y
+)=

1
k

log(y+)+ B, (3.2)

where k is the von Kármán constant and B is an additive coefficient. For the unladen
case with Reb = 4410, Gavrilakis (1992) fitted the data between y+ = 30 and 100 to
find k= 0.31 and B= 3.9. In the present simulations, the extent of the log region is
larger due to the higher bulk Reynolds number and we hence fit our data between
y+= 30 and 140. The results are reported in table 2. For the unladen case we obtain
results in agreement with those of Gavrilakis (1992) although our constant B is slightly
smaller. Increasing φ, k decreases and the additive constant B decreases becoming
negative at φ = 0.1. Values for k and B are also reported for φ = 0.2 in table 2,
although a log layer cannot be clearly identified.

At the wall bisector, we also calculated the local friction Reynolds Reτ ,bis. This
is reported in figure 5(a) and in table 2 as function of the volume fraction φ. The
results of Picano et al. (2015) are also reported for comparison in table 2. We see
that although the initial value of Reτ ,bis for φ= 0.0 is substantially larger than that of
the corresponding channel flow at Reb= 5600, the increase with the volume fraction is
smaller than for Reτ ,2D. Indeed for φ= 0.2 we find that Reτ ,bis'Reτ ,2D. In the absence
of particles, the increase of Reτ ,bis with respect to Reτ ,2D is due to the fact that here
the secondary flows are directed towards the core, transporting streamwise momentum
in the wall-normal direction, therefore inducing a steeper gradient, dUf /dy.
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FIGURE 5. (Colour online) (a) Mean friction Reynolds number Reτ ,mean estimated from the
pressure gradient, friction Reynolds number at the wall bisector Reτ ,bis and mean friction
Reynolds number for the channel flow, Reτ ,2D (Picano et al. 2015), for all volume fractions
φ. (b) Profile of Reτ along the duct wall.

Case φ = 0.0 φ = 0.05 φ = 0.1 φ = 0.2

k 0.31 0.30 0.26 0.16
B 3.1 0.9 −1.6 −11.5
Reτ ,bis 193 208 211 217
Reτ ,mean 185 202 212 213
Reτ ,2D 180 195 204 216

TABLE 2. The von Kármán constant and additive constant B of the log law at the wall
bisector estimated from the present simulations for different volume fractions φ. Here k
and B have been fitted in the range y+ ∈[30,140]. The friction Reynolds number calculated
at the wall bisector Reτ ,bis, the mean friction Reynolds number Reτ ,mean estimated via the
pressure gradient, and the corresponding friction Reynolds number found by Picano et al.
(2015) for turbulent channel flow, Reτ ,2D, are also reported.

It is also interesting to observe the behaviour of the mean friction Reynolds number
Reτ ,mean as a function of φ, as this directly relates to the overall pressure drop along
the duct. For each case, we estimate the wall shear stress directly via the pressure
gradient needed to drive the flow (〈τw〉 = −(dP/dx)Lz/4). From the shear stress we
then compute the mean friction Reynolds number. From figure 5(a) and table 2 we
see that Reτ ,mean strongly increases with the volume fraction up to φ = 0.1. The
increase in Reτ ,mean with φ is similar to that observed for Reτ ,2D in channel flow.
However, by further increasing the volume fraction to φ = 0.2, Reτ ,mean remains
approximately constant in duct flow (it actually increases by 0.5 % as φ increases
from 0.1 to 0.2), while it increases by ∼6 % in channel flow. It is also interesting
to note that Reτ ,mean would be underestimated if only computed via the mean fluid
streamwise velocity gradient at the walls. Indeed, the wall friction is altered by the
shear exerted by the particles on the walls (through lubrication and collisions). This
is particularly important for φ = 0.2. At this φ, Reτ ,mean would be underestimated
by approximately 3 %. In figure 5(b) we report the profiles of Reτ , displaying the
signature of the near-wall structures (estimated by the velocity gradient) along one
wall. We note that the friction Reynolds number increases with φ, especially towards
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FIGURE 6. (Colour online) Mean particle concentration Φ(y, z) in the duct cross-section
for φ = 0.05 (a), φ = 0.1 (b) and φ = 0.2 (c).

the corners. For φ= 0.2, instead, the profile exhibits a sharp change at approximately
z/h= 0.1∼ 2a, and the maxima move towards the wall bisector (z/h∼ 0.65). This is
probably due to the clear change in local particle concentration in the cross-section
as we will explain in the following.

The mean particle concentration over the duct cross-section Φ(y, z) is displayed in
figure 6 for all φ, whereas the particle concentration along the wall bisector (z/h= 1)
and along a segment at z/h= 0.2 is shown in figure 7. Finally, we report in figure 8

the secondary (cross-stream) velocities of both phases, defined as
√

V2
f /p +W2

f /p. We
shall now discuss these three figures together.

The particle concentration distribution is defined as

Φ(y, z)=
1

NtNx

Nt∑
m=1

Nx∑
i=1

ψ(xijk, tm), (3.3)

where Nt is the number of time steps considered for the average, tm is the sampling
time and ψ(xijk, tm) is the particle indicator function at the location xijk and time
tm. The particle indicator function is equal to 1 for points xijk contained within the
volume of a sphere, and 0 otherwise. Two interesting observations are deduced from
figure 6: (i) particle layers form close to the walls, and (ii) for φ = 0.05 and 0.1,
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FIGURE 7. (Colour online) Mean particle concentration along a line at z/h= 0.2 and at
the wall bisector, z/h= 1.
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FIGURE 8. (Colour online) Contours and vector fields of the secondary flow velocity√
V2

f /p +W2
f /p of the fluid (a) and solid phases (b).

the local particle concentration Φ(y, z) is higher close to the duct corners. We have
recently reported a similar result for laminar duct flow at Reb = 550 and the same
duct-to-particle size ratio, h/a= 18, and volume fractions, φ (Kazerooni et al. 2017).
At those Reb and h/a, particles undergo an inertial migration towards the walls and
especially towards the corners, while the duct core is fully depleted of particles.
Clearly, turbulence enhances mixing and the depletion of particles at the duct core
disappears. It is also interesting to observe that the presence of particles further
enhances the fluid secondary flow around the corners for φ 6 0.1. This can be easily
seen from figure 9, where both the maximum and the mean value of the secondary
fluid velocity are shown as a function of the volume fraction φ. The maximum value
of the secondary cross-stream velocity increases from approximately 2 to 2.5 % of Ub.

The relative increase of the mean
√

V2
f +W2

f in comparison to the unladen case, is
even larger than the increase in the maximum value at equal φ. Similarly, in laminar
ducts, as particles migrate towards the corners, secondary flows are generated.
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FIGURE 9. (Colour online) Mean and maximum value of the secondary flow velocity of
the fluid phase as a function of the solid volume fraction φ. Results are normalized by
the values of the single-phase case.

As shown in figure 6, the particle concentration close to the corners increases
with the volume fraction. However, the mean particle distribution in the cross-section
changes at the highest volume fraction considered, φ = 0.2: the highest values of
Φ(y, z) are now found at the centre of the duct (see figure 7b). This is not the case
in turbulent channel flows and hence it can be related to the additional confinement
of the suspension given by the lateral walls. As previously mentioned, the streamwise
mean fluid and particle velocities are also substantially higher at the duct centre for
φ = 0.2.

To better quantify this effect, we analyse the numerical data by Picano et al. (2015)
and calculate the number of particles crossing the spanwise periodic boundaries per
unit time h/Ub. For φ=20 %, we find that in 1 unit of h/Ub approximately 1 % of the
total number of particles cross the lateral boundaries. Inhibiting this lateral migration
with lateral walls has therefore important consequences on the flow structure.

Concerning the secondary fluid velocity (figure 8a), we note that for φ = 0.2 both
the maximum and the mean values decrease below those of the unladen case. The
presence of the solid phase leads to an increase of the secondary fluid velocity, which
however saturates for volume fractions between 0.1 and 0.2. As shown by these mean
velocity profiles, the turbulence activity is substantially reduced at φ = 0.2.

Vector and contour plots of the secondary motions of the solid phase are reported in
figure 8(b). These closely resemble those of the fluid phase. However, the velocities at
the corner bisectors are almost half of those pertaining the fluid phase (in agreement
with the fact that the particle concentration is high at these locations). Indeed, as
discussed above there is a high particle concentration along the diagonals; particles
reside for long times on these bisectors and, as a consequence they have lower cross-
stream velocities than the fluid. Conversely, the cross-stream particle velocity is similar
to that of the fluid phase at the walls, away from the corners. For φ = 0.2 we have
previously noticed that along the duct walls, the highest particle concentration Φ(y, z)
is exactly at the corners. In agreement, we also observe from figure 8(b) that the
secondary particle velocity is negligible at these locations (i.e. particles tend to stay
at these locations for long times).
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FIGURE 10. (Colour online) (a) Root-mean-square of the streamwise fluid velocity
fluctuations in outer units, u′f ,rms, for all φ. (b) Root-mean-square of the streamwise particle
velocity fluctuations in outer units, u′p,rms, for all φ. (c) Root-mean-square of the vertical
fluid velocity fluctuations in outer units, v′f ,rms, for all φ. (d) Root-mean-square of the
vertical particle velocity fluctuations in outer units v′p,rms, for all φ.

3.3. Velocity fluctuations
Next, we report the contours of the root-mean-square (r.m.s.) of the fluid and particle
velocity fluctuations in outer units, see figure 10. Due to the symmetry around the
corner bisectors, we show only the contours of v′f /p,rms(y, z) in panels (c) and (d).
Corresponding r.m.s. velocities along two lines at z/h = 0.2 and 1 are depicted in
figure 11. Results in inner units are shown at the wall bisector, z/h= 1 in figure 12.

The contours of the streamwise fluid velocity fluctuations reveal that r.m.s. values
are stronger near the walls (close to the wall bisector), while minima are found along
the corner bisectors. In this region, u′f ,rms(y, z) is substantially reduced for φ= 0.2, as
also visible from the profiles in figure 11(a). From figure 11(a) we also see that the
local maxima of u′f ,rms(y) close to the corners is of similar magnitude for φ= 0.0, 0.05
and 0.1. On the other hand, at the wall bisectors the maxima of u′f ,rms(y, z) decrease
with φ, well below the value of the unladen case (see figure 11b). For φ = 0.2 the
profile of u′f ,rms(y) deeply changes. In particular, the streamwise r.m.s. velocity u′f ,rms(y)
is substantially smaller than in the unladen case in the core region, where the particle
concentration and the mean velocity are high while the secondary flows are negligible.
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FIGURE 11. (Colour online) Root-mean-square of fluid and particle velocity fluctuations:
(a,b) streamwise, (c,d) wall-normal and (e, f ) spanwise (z-direction) components in outer
units at z/h= 0.2 (a,c,e) and z/h= 1 (b,d, f ), for all φ. Lines and symbols are used for
the fluid and solid phase statistics, respectively.

After the maximum value, u′f ,rms(y) initially decreases smoothly and then sharply for
y/h> 0.6.

From figures 10(b) and 11(a,b) we see that the streamwise r.m.s. particle velocity,
u′p,rms(y, z), resembles that of the fluid phase. However, u′p,rms(y, z) is typically smaller
than u′f ,rms(y, z) in the cross-section. Exceptions are the regions close to the walls
where the particle velocity does not vanish (unlike the fluid velocity).

From the contour of v′f ,rms(y, z) (see figure 10c), we see that r.m.s. velocities are
larger in the directions parallel to the walls, rather than in the wall-normal direction.
Close to the wall bisectors, the peak values of the wall-normal and parallel fluid
r.m.s. velocities increase with φ, again except for φ= 0.2 when turbulence is damped.
From figure 11(c,e) we see instead that close to the corners, the local maxima of
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FIGURE 12. (Colour online) Root-mean-square of fluid and particle velocity fluctuations:
(a) streamwise, (b) wall-normal and (c) spanwise (z-)direction components in inner units
at z/h= 1 for all φ. Lines and symbols are used for the fluid- and solid-phase statistics
as in figure 11.

both v′f ,rms(y) (wall normal) and w′f ,rms(y) (wall parallel) increase with respect to the
unladen case, for all φ. At the wall bisector (see figure 11d), wall-normal velocity
fluctuations are slightly larger than the single-phase case for φ . 0.1.

Finally, figure 11( f ) shows profiles at the wall bisector of the parallel component
of the fluid velocity r.m.s., w′f ,rms(y). Note that the peak value of w′f ,rms(y) increases
with the volume fraction up to φ = 0.1 and moves closer to the wall. There is hence
a clear redistribution of energy due to the particle presence towards a slightly more
isotropic state.

Concerning the solid phase, the wall-normal particle r.m.s. velocity, v′p,rms, exhibits
a peak close to the walls where particle layers form, see figures 10(d) and 11(d) (and
also Costa et al. 2016). Differently from the channel flow analysed by Picano et al.
(2015), in the square duct flow v′p,rms decreases slowly with increasing volume fraction
φ in the wall particle layer (y+6 20) and the maxima are similar for all φ. This may
be related to the existence of the secondary flows that pull the particles away from
the walls towards the duct core. As for the fluid phase, the particle r.m.s. velocity
parallel to the wall is greater than the perpendicular component close to the walls.
From the profiles at the wall bisector, see figure 11( f ), we also see that the maximum
of w′p,rms(y) is similar for φ = 0.05 and 0.1, while it clearly decreases for the densest
case simulated. More generally, we observe that particle r.m.s. velocities are similar
to those of the fluid phase towards the core of the duct.
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FIGURE 13. (Colour online) Mean turbulence intensity I = 〈u′〉/Ub for all φ, normalized
by the value for the unladen case.

Both fluid- and solid-phase r.m.s. velocities are shown in inner units at the wall
bisector in figure 12(a–c). The local friction velocity has been used to normalize the
velocity fluctuations. The fluid-phase r.m.s. velocity increases with φ in the viscous
sublayer. Clearly, the presence of solid particles introduces additional disturbances in
the fluid increasing the level of fluctuations in regions where these are typically low
(in the unladen case). On the other hand, particle velocity fluctuations are typically
smaller than the corresponding fluid r.m.s. velocity, except in the inner-wall region,
y+ < 20, where they are one order of magnitude larger.

Finally, we also computed the mean turbulence intensity defined as I = 〈u′〉/Ub,

with u′ =
√

1/3(u′2f ,rms + v
′2
f ,rms +w′2f ,rms). This is shown is figure 13, where results are

normalized by the value obtained for the unladen case. As for secondary flows, we see
that the turbulence intensity I increases up to φ = 0.1, for which I is approximately
5 % larger than the unladen value. For φ= 0.2, instead, the mean turbulence intensity
decreases well below the single-phase value, and I(φ = 0.2)∼ 0.9 I(φ = 0). It can be
expected that when the volume fraction is larger than a threshold value (0.1<φ60.2),
the particles are almost closely packed in the near-wall region. As a consequence, the
quasi-coherent turbulent structures are quickly disrupted (as can be seen in figure 14)
and the turbulence regenerating cycle is modified. As we will see in the next section,
there is a strong reduction of the primary Reynolds stresses at φ = 0.2, especially
in the regions close to the wall bisector. Since the mean fluid velocity gradients are
also reduced in the near-wall region with respect to φ = 0.1, it can be expected that
the associated turbulence production (〈u′fv

′

f 〉dUf /dy + 〈u′f w
′

f 〉dUf /dz) will be strongly
reduced, leading to the observed reduction in turbulence intensity.

In addition, we also calculated the fraction of the global kinetic energy that is
contained in each phase, and the overall energy dissipation (per unit density) of
the fluid phase, εT = 2µ〈E ijE ij〉, averaged over time and volume, and normalized by
νU2

b/(2h)2 (E ij = 0.5(∂ui/∂xj + ∂uj/∂xi) is the strain-rate tensor). The global kinetic
energy is defined as K = Kf + Kp = 0.5(U2

f ,i + u′2f ,rms,i) + 0.5(U2
p,i + u′2p,rms,i), where Kf

and Kp are the total energies of the fluid and solid phase. We find that 6 %, 12 %
and 24 % of K is contained in the particle phase for φ = 0.05, 0.1 and 0.2. Clearly,
these values are proportional to the solid volume fraction.
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FIGURE 14. (Colour online) The magnitude of the fluid velocity (normalized by Ub) at
y+ ' 20 for φ = 0.0, 0.1 and 0.2.

Concerning the mean values of the overall energy dissipation, we see that they
increase with the volume fraction, up to φ = 0.1. In particular, εT = 23, 28 and 30
for φ = 0.0, 0.05 and 0.1. Instead, for φ = 0.2, εT = 28. Generally, a reduction in
εT is related to turbulence attenuation as discussed, for example, by Spandan, Lohse
& Verzicco (2016). As shown in figure 14, it is difficult to identify quasi-coherent
structures at φ= 0.2 (due to the large number of particles near the walls), and as we
will later explain, ejection events that are typically (very) intense close to the wall
bisectors, substantially reduce in this case. The turbulence activity is hence reduced
as shown by the reduction in energy dissipation, turbulence intensity and, as we will
discuss in the next sections, of the primary Reynolds stresses and mean streamwise
vorticity.

At φ = 0.2, the stronger reduction in turbulence activity in comparison to channel
flow may be due to the geometrical constraint given by the lateral walls. From the
data of Picano et al. (2015), it can be found that on average 7.5 % of the particles
reside near the walls (between y/h = 0 and y/h ∼ 0.12). In duct flow instead, we
find that 13.1 % of the particles are located close to one of the 4 walls. There
are hence almost twice as many particles interacting with the near-wall turbulence,
leading to its stronger attenuation. It is also interesting to note that for all φ, the
amount of particles located close to the walls is always approximately 13 % of the
total. This observation can be relevant for modelling purposes as done by Costa et al.
(2016) who divide a particle-laden turbulent flow into a near-wall particle layer and
a homogeneous suspension bulk flow.

3.4. Reynolds stress and mean fluid streamwise vorticity
We now turn to the discussion of the primary Reynolds stress in the duct cross-section,
as this plays an important role in the advection of mean streamwise momentum. We
show in figure 15(a) the 〈u′fv

′

f 〉 component of the fluid Reynolds stress in the
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FIGURE 15. (Colour online) Contours of the primary Reynolds stress 〈u′f /pv
′

f /p〉 of (a) the
fluid and (b) particle phase for all volume fractions considered. The profiles along the
wall bisector at z/h= 1 are shown in outer and inner units in panels (c) and (d). Lines
and symbols are used for the fluid- and solid-phase statistics as in figure 11.

duct cross-section, for all φ. The component 〈u′f w
′

f 〉 is not shown as it is the 90◦
rotation of 〈u′fv

′

f 〉. We see that the maximum of 〈u′fv
′

f 〉, located close to the wall
bisector, increases with the volume fraction up to φ = 0.1. The maximum 〈u′fv

′

f 〉

then progressively decreases with φ, denoting a reduction in turbulent activity. For
φ = 0.2 we observe that the maximum of 〈u′fv

′

f 〉 reaches values even lower than in
the unladen case. The contour of 〈u′fv

′

f 〉 also changes with increasing φ. We find that
〈u′fv

′

f 〉 increases towards the corners, and also for φ = 0.2 it is larger than in the
unladen case. However, the mean value of 〈u′fv

′

f 〉 in one quadrant slightly increases
up to φ = 0.1, while for φ = 0.2 the mean is 26 % smaller than for the unladen case.

The profiles of 〈u′fv
′

f 〉 at the wall bisector (z/h = 1) are shown in figure 15(c).
While the profiles for φ = 0.05 and 0.1 are similar and assume larger values than
the reference case, we see that for φ = 0.2 the profile is substantially lower for all
z/h> 0.2. This is also different to what is found in channel flow as close to the core,
〈u′fv

′

f 〉 is found to be similar for φ= 0.0 and 0.2. This is probably related to the high
particle concentration at the duct core, see figure 6(c). Looking at the profiles in inner
units, see figure 15(d), we also see that the peak values of 〈u′fv

′

f 〉
+ are similar for the
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unladen case and for the laden cases with φ=0.05 and 0.1. This is in contrast to what
is found in channel flows, where a reduction of the peak with φ is observed (Picano
et al. 2015). This shows that up to φ= 0.1, the turbulence activity is not significantly
reduced by the presence of particles. On the other hand, for φ = 0.2 we observe a
large reduction in the maximum 〈u′fv

′

f 〉
+, denoting an important reduction in turbulent

activity.
The Reynolds stress of the solid phase, 〈u′pv

′

p〉, is also shown for comparison in
figure 15(b–d). The profiles are similar to those of the fluid phase, although 〈u′pv

′

p〉<
〈u′fv

′

f 〉 for all φ, except close to the walls for φ = 0.2. These local maxima may be
related to the higher local particle concentration in layers close to the walls.

In figure 15(c) we also show the profile of 〈u′fv
′

f 〉 obtained from an additional
simulation. Here, we have used the Eilers fit (Stickel & Powell 2005) to estimate
the effective viscosity of the suspension at φ = 0.2 and found νe/ν = [1+ 2.5φ/(1−
φ/0.6)]2 = 1.89. With this value we can define an effective bulk Reynolds number,
Ree=Rebν/νe= 2962, ideally the bulk Reynolds number of a suspension of uniformly
distributed monodispersed spheres. The results of a new unladen simulation with
Reb = Ree = 2962 are compared in figure 15(c) with those of the case with φ = 0.2.
We see that for φ = 0.2, the maximum of 〈u′fv

′

f 〉 is lower than that in the simulation
with Ree = 2962. This indicates that the turbulence attenuation is larger than what
can be expected by just modelling the suspension rheological properties (i.e. νe/ν).
Therefore the specific size of the particles (∼20+ units), and their high concentration
at the walls (13.1 % of Np) contribute strongly to the turbulence attenuation. This
clearly shows, that the effects of a non-uniform particle distribution should be
considered when trying to model such flows.

While for turbulent channel flow the cross-stream component of the Reynolds
stress tensor, 〈v′f w

′

f 〉, is identically zero, in duct flow it is finite and contributes to the
production or dissipation of mean streamwise vorticity. Hence it is directly related
to the origin of mean secondary flows (Gessner 1973; Gavrilakis 1992). This can be
seen from the Reynolds-averaged streamwise vorticity equation for a fully developed
single-phase duct flow,

Vf
∂Ωf

∂y
+Wf

∂Ωf

∂z
+
∂2(〈w′2f 〉 − 〈v

′2
f 〉)

∂y∂z
+

(
∂2

∂y2
−
∂2

∂z2

)
〈v′f w

′

f 〉 − ν

(
∂2

∂y2
+
∂2

∂z2

)
Ωf = 0,

(3.4)

where Vf and Wf are the mean velocities in the two wall-normal directions, and the
mean vorticity is defined as

Ωf =
∂Wf

∂y
−
∂Vf

∂z
. (3.5)

The first two terms of (3.4) represent the convection of mean vorticity by the
secondary flow itself and have been shown to be almost negligible (Gavrilakis 1992).
The third term is a source of vorticity in the viscous sublayer due to the gradients
in the anisotropy of the cross-stream normal stresses. The fourth term, involving the
secondary Reynolds stress, acts as source or sink of vorticity. Finally, the last term
represents the viscous diffusion of vorticity.

The contours of 〈v′f w
′

f 〉 are shown in figure 16 for all φ. These are non-negligible
along the corner bisectors (being directly related to mean secondary flows), and
approximately one order of magnitude smaller than the primary Reynolds stress.
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FIGURE 16. (Colour online) Contours of the secondary Reynolds stress 〈v′f /pw′f /p〉 of (a)
the fluid and (b) the particle phase for all volume fractions φ under investigation.

Interestingly, we see that the maxima of 〈v′f w
′

f 〉 strongly increases with φ up to
φ= 0.1 and also for φ= 0.2, the maximum value is still larger than that for φ= 0.05.
We also notice that regions of finite 〈v′f w

′

f 〉 become progressively broader with
increasing φ.

The secondary Reynolds stress of the solid phase, 〈v′pw′p〉, resembles qualitatively
that of the fluid phase, except at the corners were a high value of opposite sign
is encountered. As a consequence, close to the corners this term may contribute in
opposite way to the production or dissipation of vorticity with respect to 〈v′f w

′

f 〉.
We conclude this section by showing in figure 17 the mean streamwise fluid

vorticity Ωf for all φ. The region of maximum vorticity at the wall is found between
z/h = 0.2 and z/h = 0.5 for the unladen case and it extends closer to the corner
for increasing φ. We also find that the maximum Ωf initially increases with the
solid volume fraction (for φ = 0.1 the maximum Ωf is just slightly smaller than for
φ = 0.05). This is expected as also the intensity of the secondary motions increase.
The contours of Ωf become more noisy for φ = 0.2, with a maximum value below
that of the single-phase case. Also, for φ= 0.2 the location of maximum Ωf is similar
to that found for the unladen case.

The mean streamwise vorticity attains a positive or negative sign in the near-wall
region, depending on the specific octant considered. As we move further away
from the walls, the mean streamwise vorticity changes sign. For the unladen case,
the magnitude of the maximum vorticity at the walls is 2.5 times larger than the
magnitude of the maximum vorticity of opposite sign found closer to the corner
bisector. As reference and for clarity, we will consider the vorticity to be positive at
the wall, and negative further away, as found for the top and bottom walls (for the
lateral walls the situation is reversed). We find that the vorticity minimum approaches
progressively the walls as φ increases up to φ = 0.1, and that the ratio between
the magnitudes of the maximum and minimum of vorticity increases up to ∼3. On
the other hand, for φ = 0.2 we clearly notice several local vorticity minima. One
minimum is further away from the walls, at a location similar to what is found for
the unladen case. Another minimum is further away towards the corner bisector. The
other minimum is instead close to the corners. As we have previously shown, at the
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FIGURE 17. (Colour online) Contours of the mean fluid streamwise vorticity Ωf (scaled
by h/Ub) for all φ under investigation.

largest φ there is a significant mean particle concentration exactly at the corners
and correspondingly we see two intense spots of vorticity around this location,
antisymmetric with respect to the corner bisector.

Although (3.4) is valid for single-phase duct flow, we have calculated the convective,
source/sink and diffusive terms for the cases of φ= 0, 0.05 and 0.1. For φ= 0.2 there
is a strong coupling between the dynamics of both fluid and solid phases, and it is
therefore difficult to draw conclusions only by estimating the terms in (3.4).

As discussed by Gavrilakis (1992), the production of vorticity within the viscous
sublayer is the main factor responsible for the presence of vorticity in the bulk of
the flow. The main contribution to the production of vorticity is given by the term
involving the gradients of the cross-stream normal stresses. For the unladen case, the
maxima of this term are located close to the corners (at y/h = 0.016, z/h = 0.16
from the bottom-left corner, similarly to what was found by Gavrilakis (1992)).
Another positive, almost negligible contribution to the production of mean streamwise
vorticity is given by the convective term. On the other hand, the diffusive term and
the term involving the gradients of the secondary Reynolds stress give a negative
contribution to the generation of vorticity in this inner-wall region. Note that the
largest negative contribution due to the latter term is found close to the maximum
production ((y/h, z/h) = (0.016, 0.15) for φ = 0). Generally, we observe that the
maximum production and dissipation increase and approach the corner as the volume
fraction increases up to φ= 0.1 (not shown). In order to understand how the presence
of particles contributes to the generation of vorticity, we calculate the ratio between
the overall production and dissipation at the location of the maximum of the normal
stress term (i.e. the summation of the convective term and the normal stress term,
divided by the absolute value of the summation between the diffusive and secondary
Reynolds stress terms). For the unladen case we have a good balance and the ratio
is approximately 1. For φ = 0.05 and 0.1, the ratio is 0.96 and 0.95. Hence, the
presence of the solid phase gives an additional contribution of approximately 5 % to
the generation of mean streamwise vorticity in the near-wall region at the location of
maximum production. The increased production due to larger gradients of the normal
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stress difference and due to the additional contribution by particles, leads globally to
the larger Ωf observed at φ = 0.05 and 0.1.

3.5. Quadrant analysis
In this section we employ the quadrant analysis to identify the contribution from
so-called ejection and sweep events to the production of 〈u′fv

′

f 〉 and 〈u′f w
′

f 〉. In single-
phase wall-bounded turbulent flows, it is known that these phenomena are associated
with pairs of counter-rotating streamwise vortices that exist in the shear layer near
the wall. These force low-momentum fluid at the wall towards the high-speed core
of the flow. This is typically referred to as a Q2 or ejection event, with negative
u′f and positive v′f . On the other hand, events with positive u′f and negative v′f are
associated with the inrush of high-momentum fluid towards the walls and are known
as sweeps or Q4 events. Events Q1 (positive u′f and positive v′f ) and Q3 (negative u′f
and negative v′f ) are not associated with any particular turbulent structure when there
is only one inhomogeneous direction. However, as discussed by Huser & Biringen
(1993) in turbulent duct flows these also contribute to the total turbulence production.

We first show contours of the probability of finding Q1, Q2, Q3, Q4 events for
φ = 0.0 and 0.05 in figure 18, and for φ = 0.1 and 0.2 in figure 19. The maximum
probability of an event is 1, so that the sum Q1+ Q2+ Q3+ Q4= 1 at each point.
Since these events are typically important close to the walls, the y-coordinate is
reported in inner units (the viscous length at the wall bisector is chosen), while the
wall-parallel z-coordinate spans half of the duct. The contours of the probability of
the different events directly enables us to easily compare and discuss all cases.

Results for the unladen case are substantially in agreement with those by Huser
& Biringen (1993) and Joung et al. (2007). Ejection (Q2) events are important at
the wall bisector (y/h = 1) and around y/h ∼ 0.8. Joung et al. (2007) report strong
Q2 events already y/h = 0.62, and this is probably due to the fact that their Reb

was smaller than ours (Reb = 4410 instead of 5600). Q4 events are instead dominant
closer to the vertical walls, around y/h= 0.3 (as also reported by Joung et al. (2007)).
Q3 events are found when both u′f and v′f are negative. As also shown by Huser
& Biringen (1993), we see that these increase from the wall bisector towards the
vertical walls, being dominant at the corners. Consequently, these events are created
by ejections from the vertical wall (and particularly from the corners), resulting in the
increase of 〈u′fv

′

f 〉 in this region.
The general picture is similar for φ=0.05 and 0.1. The probability maps of Q1, Q2,

Q3 and Q4 events are only slightly changed with respect to those of the unladen case.
Concerning the probability of Q3 events we see that it is still higher at the corner
and that it increases with φ along the vertical wall and along the corner bisector.
It is clear from figure 19 that the turbulence activity is strongly reduced for φ =
0.2. The probability of ejection and sweep events close to the walls is drastically
reduced. The probability of sweep (Q4) events is around 35 % only in a small region
close to the wall bisector (y/h∼ 0.85). Instead, the probabilities of Q2 (ejections) and
Q3 events are above 35 % in a region around the corner bisector, where we recall
there is high mean particle concentration (y/h ∈ (0; 0.4)). At this volume fraction the
probability of these events is therefore mostly correlated to fluid–particle interactions.
The probability contours for φ = 0.2 are indeed very different from those at lower φ
and from those of the unladen case. The absence of high probability regions of Q2
and Q4 events around z/h∼ 0.8 and z/h∼ 0.3 denotes the disruption of the coherent
streamwise vortical structures.
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FIGURE 18. (Colour online) Maps of probability of Q1, Q2, Q3, Q4 events in panels
(a), (c), (e), (g) and (b), (d), ( f ), (h) for particle volume fractions φ = 0.0 and 0.05,
respectively.
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FIGURE 19. (Colour online) Maps of probability of Q1, Q2, Q3, Q4 events in panels (a),
(c), (e), (g) and (b), (d), ( f ), (h) for particle volume fractions φ=0.1 and 0.2, respectively.

The presence of two inhomogeneous directions allows us to extend the quadrant
analysis to the secondary shear stress 〈v′f w

′

f 〉, which contributes to the production,
dissipation and transport of mean streamwise vorticity, as discussed above. As in
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Huser & Biringen (1993), to distinguish between the events related to the primary
and secondary Reynolds stresses, we will refer to the latter as Q1s, Q2s, Q3s and
Q4s events. These authors showed that as the corners are approached, contributions
of the Q1s and Q3s events progressively decrease. On the other hand, Q2s and Q4s
events are found to be stronger than the latter close to the corners. This is due to
the interaction between ejections from both walls that tilt the ejection stem toward
the perpendicular wall. We looked at probability maps of these events as previously
done for the events related to the primary Reynolds stress. For the unladen case we
see indeed that close to the corners the probability of having Q2s and Q4s events
is substantially larger than that of Q1s, Q3s events (not shown). As we increase the
volume fraction φ the probability of these events remains high until the highest
φ = 0.2 is reached. In this case, we find that there is an approximately equal share
of probability between all type of events indicating again that there is a substantial
alteration of the turbulence and less structured flow in the presence of many particles.

4. Turbulent kinetic energy budget
In this section we investigate in more detail how the turbulence is altered by

the presence of the solid particles. With this aim, we performed a turbulent kinetic
energy budget. In the present simulations, the solid-phase contribution to the transport
equation of turbulent kinetic energy is given by the mean value of the scalar product
between the fluctuations of the immersed boundary force (f ′IBM) and the fluid velocity
(u′f ). As in Tanaka (2017), we name this as the interphase interaction term, I . At
a statistically steady state, the transport equation of the turbulent kinetic energy,
kT = 0.5(u′2f ,rms + v

′2
f ,rms +w′2f ,rms), reads:

Uj
∂kT

∂xj
=−

∂Tj

∂xj
+ P− ε + 〈 f ′IBM,ju

′

f ,j〉, (4.1)

where P = −〈u′f ,iu
′

f ,j〉(∂Uf ,i/∂xj) is the production of the turbulent kinetic energy,
kT , ε = ν〈(∂u′f ,i/∂xj)(∂u′f ,i/∂xj)〉 is the dissipation of kT , while Tj = 0.5〈u′f ,iu

′

f ,iu
′

f ,j〉 +

〈p′u′f ,j/ρf 〉 − ν(∂kT/∂xj) represents the transport (i.e. diffusion) of kT . The term on the
left-hand side represents instead the convection of turbulent kinetic energy. The terms
appearing in (4.1) are calculated for all φ and normalized by 〈U∗,0〉4/ν, where 〈U∗,0〉
is the mean value of the friction velocity for the unladen case. We choose this value
of the mean friction velocity in order to easily compare the cases at different φ, to
understand whether the turbulence activity is reduced or not.

The values of the four terms on the right-hand side of (4.1) along the wall bisector
are shown in figure 20(a–d) for all φ. The convective term is always ∼0 and it is
hence not shown. We observe that the peak of the production, P, initially increases
with the volume fraction, from 0.25 for φ = 0.0 to approximately 0.28 for φ = 0.1.
For the unladen case, the production peak is at y/h = 0.063, y+ = 12. Instead, for
φ=0.05 and 0.1 it is located slightly closer to the wall (but still in the buffer layer), at
y/h= 0.049, y+' 9. Further increasing the volume fraction to φ= 0.2, the production
peak is replaced by two lower peaks at y/h' 0.04 and y/h' 0.12. Their values are
approximately 0.15 and 0.16, hence substantially smaller than the maximum of P for
the unladen case. This is related to the dense near-wall particle layer that disrupts
coherent structures and reduces both ejection and sweep events, therefore reducing the
production of turbulent kinetic energy. For y/h > 0.16 (y+ ' 30), the production is
larger for all laden cases than for the unladen case. However, at equal y/h the values
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FIGURE 20. (Colour online) The four terms appearing in the transport equation of
turbulent kinetic energy are shown along the wall bisector for φ = 0.0 (a), φ = 0.05 (b),
φ = 0.1 (c) and φ = 0.2 (d): P is the production, ε is the dissipation, −∂Tj/∂xj is the
transport term and I is the contribution due to the solid phase.

for φ = 0.2 are smaller than those for φ = 0.1. Therefore, the turbulence activity is
increased with the volume fraction up to φ = 0.1. For φ = 0.2, due to large excluded
volume effects it is instead reduced, at least with respect to the case at φ = 0.1.

It is interesting to note that for the unladen case, the peak of production in
the buffer layer is essentially balanced by the dissipation and transport terms. The
transport terms that mostly balance the production are the turbulent and viscous
diffusion terms, 0.5〈u′f ,iu

′

f ,iu
′

f ,j〉 and ν(∂kT/∂xj) (see also Vinuesa et al. 2014).
However, as φ is increased, the production peak is progressively only balanced by
the dissipation. The minimum of −∂Tj/∂xj progressively disappears, while its value
at the wall increases. In particular, the pressure diffusion (〈p′u′f ,i/ρf 〉) and (especially)
the viscous diffusion highly increase at the wall. Notice that the maximum of
−∂Tj/∂xj increases from 0.2 for φ = 0.0 to 0.84 for φ = 0.2. Hence, due to the high
concentration of particles at the walls, there is also a larger redistribution of energy
(i.e. the diffusion/transport of turbulent kinetic energy is enhanced).

Concerning the dissipation, it generally increases with φ. In particular, it drastically
increases at the wall from 0.2 to 1.1 as φ increases from φ = 0 to 0.2. For φ =
0.2, we also observe a second local maximum of ε at approximately y/h = 0.11,
suggesting that the near-wall particle layer may act as a porous medium for the fluid
phase. The larger dissipation at the wall is balanced by a progressive increase of the
transport (−∂Tj/∂xj) and interphase interaction (I) terms. While for φ = 0.05 the
contribution of the forth term in (4.1) is almost negligible, for larger φ this term
increases substantially close to the wall. For φ = 0.2 this term is even larger than
the production term. For all φ, the interphase interaction term contributes positively
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FIGURE 21. (Colour online) The average over the cross-section of P, ε, −∂Tj/∂xj and I,
for all φ.

to the turbulent kinetic energy budget, i.e. effectively inject energy into the turbulent
fluctuations. Notice that the maximum of I is located deep inside the viscous sublayer
at y+ ' 1.5 (y/h = 0.007). The maximum of I is ' 0.07, 0.15 and 0.32 for φ =
0.05, 0.1 and 0.2.

Next, we report in figure 21 the values of P, ε, −(∂Tj/∂xj) and I averaged over
the cross-section. The mean production increases from 0.058 for the unladen case,
to 0.079 for φ = 0.1. Instead, for φ = 0.2 the mean value decreases below that for
φ = 0.05 (0.065 and 0.074). Hence, the overall turbulence production is importantly
reduced in the densest case (also explaining the observed turbulence attenuation). On
the other hand, the mean dissipation increases monotonically with φ. Indeed, energy
is mostly dissipated by friction with the duct walls and by the shear generated at
the particles surfaces. The larger the number of particles (φ), the larger the energy
dissipation. Finally, we find that both the mean transport and interphase interaction
terms increase monotonically with φ. Hence, the presence of the solid phase leads to
a stronger energy redistribution, and to an additional source of energy.

5. Particle dynamics
In this last section, we explore in more detail the dynamics of the solid phase. First

of all, we calculate the difference between the mean streamwise fluid and particle
velocities, Us(y, z) = Uf (y, z) − Up(y, z). This mean slip velocity is hence used to
determine the particle Reynolds number, Rep = (2a)Us/ν, depicted in figure 22(a–c)
for all φ. Notice that instead of defining it with |Us|, we use the actual value of the
slip velocity; hence where Rep>0 the particles lag behind the fluid and where Rep<0,
the particles are faster than the fluid. We observe that Up(y, z) is larger than Uf (y, z),
except near the corners and, for φ> 0.1, also slightly away from the walls. In regions
where Us< 0, the particle Reynolds number is of order 1 towards the core of the duct,
while it attains very large values (up to 140) near the walls. Indeed, at the walls the
fluid velocity is zero due to the no-slip condition, while the velocity of the points
on the particle surfaces is finite. On average, however, the particles move faster than
the fluid with mean Reynolds numbers |〈Rep〉| of 8.6, 7.0 and 3.6 (average performed
over space and time).

We then focus on the regions where the particles lag behind the fluid (i.e. Us > 0).
For the cases at large φ > 0.1, the higher values of Us along the walls are located
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FIGURE 22. (Colour online) The particle Reynolds number, Rep = (2a)Us/ν, in one
quadrant of the cross-section for all φ. Where Rep < 0, the particles move faster than
the fluid; whereas for Rep > 0, the particles lag behind the fluid.

approximately at the same distances from the walls at which the particle layers are
located (local maxima of particle concentration). In these particle layers close to
the walls, particle–wall interactions are important. As a consequence particles are
slowed down along their trajectories and the slip velocity is positive. Indeed, the
mean streamwise hydrodynamic force on the particle in the near-wall region acts in
the opposite x-direction (not shown).

The regions of Us > 0 close to the corners deserve special attention, particularly
for φ = 0.05, 0.1. First of all, we notice that the maximum positive Us is located on
the bisector, very close to the corner (between y/h = z/h = 0.07 and 0.1). Here the
particle Reynolds number, Rep, is between 14 and 20, for all cases. Moving along
the diagonals towards the duct core, Us progressively decreases becoming zero almost
precisely at the locations of maximum particle concentration (y/h= z/h= 0.23, 0.29
for φ = 0.05, 0.1), see figure 6(a,b). Therefore, there appears to be a correlation
between the slip velocity and the local particle concentration. Indeed, as shown by
Saffman (1965) (Liu et al. 2016, see also), a sphere in a Poiseuille flow that lags
behind the fluid experiences a lift force towards the channel centre. In analogy,
particles that lag behind the fluid experience a force that pushes them away from the
corners. Further away along the corner bisectors, the slip velocity is mostly negative
and the force towards the centre is small, and Rep almost never exceeds values larger
than 5.
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FIGURE 23. (Colour online) Distribution of the mean vertical hydrodynamic force acting
on the particles for φ = 0.05 (a), 0.1 (b) and 0.2 (c) displayed over one quadrant of the
cross-section. In (d) we show the mean hydrodynamic force Fy along the corner bisector.

To further understand the dynamics, we investigate the hydrodynamic forces acting
on the particles. The distribution in one quadrant of the cross-section of the mean
vertical hydrodynamic force, Fy/(ρf U2

ba4/(2h)2) is shown in figure 23(a–c) for all φ.
For the data in the figure, we have saved the hydrodynamic forces acting on each
particle centroid and averaged over the streamwise direction and time on a new spatial
grid. Notice that the chosen mesh is 1.5 times coarser than that of the simulation
(1x′=13x/2), a choice necessary to avoid excessively noisy distributions, while still
faithfully representing the dynamics. In addition, the first point shown is slightly larger
than a/h (0.057 instead of 0.056). This will be important later on for the discussion
of the collision forces in the wall-normal direction.

From figure 23(a–c) we clearly see that the wall-normal hydrodynamic force
is strong close to the walls and directed away from them. Hence, the particles
experience a lift force that pulls them away from the walls. For φ = 0.2 there is
a very clear formation of a near-wall layer of particles. From figure 23(c) we see
that the hydrodynamic force that is first directed away from the wall, for y/h> 0.13
changes sign, reaching quickly a minimum negative value (i.e. the force is towards
the wall). The location of the minimum negative force is at y/h∼ 0.16. For larger y/h,
the mean force first increases to ∼0 and then it decreases reaching another minimum
at y/h ∼ 0.23. After this minimum, the force remains negative and decreases as the
core is approached. Finally, Fy becomes approximately zero for y/h > 0.8 (the force
is actually slightly negative). Therefore, particles tend to reside longer in the core
region due to the very small Fy. For y/h< 0.8 particles experience forces that tend to
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push them towards the walls, which is maximum in modulus at y/h∼ 0.16. However,
if/when they get too close to the walls they are repelled from it. The repulsive force
from the walls can be the result of a slip shear-induced lift (Saffman 1965) and a
short-range viscous force between particles and walls. The weaker force that pushes
the particles towards the walls may be due to the curvature of the mean velocity
profile, similarly to what happens in laminar flows (Ho & Leal 1974; Liu et al. 2016).
Notice that for φ 6 0.1, the mean wall-normal hydrodynamic force decreases quickly
to ∼0 for y/h> 0.2. Consequently, the particles are more uniformly distributed in the
cross-section.

It is then particularly interesting to observe the behaviour of the hydrodynamic force
along the corner bisector. With this aim, we depict in figure 23(d) Fy/(ρf U2

ba4/(2h)2)
as a function of s =

√
(y/h)2 + (z/h)2, with s = 0 at the origin (the corner), and

s=
√

2h at the core. For φ= 0.05, the profiles of Fy/(ρf U2
ba4/(2h)2) seem to confirm

our speculation on the role of the slip velocity, Us. We see indeed that the force
is approximately zero for s greater than the value corresponding to the maximum
concentration (s' 0.33h). For smaller s, the force is strongly repulsive. For φ = 0.1,
the picture is not as clear. The force crosses zero for s∼0.18h and reaches a minimum
for s ∼ 0.20h. The force then oscillates around zero and another clear minimum is
found close to the location of maximum concentration, s ∼ 0.41h. Finally, the force
becomes again approximately zero for s ' 0.50h. The new location of high particle
concentration is hence due to the combined effect of hydrodynamic and collision
forces (with neighbour particles) as will be discussed later.

We have also examined the magnitude of the mean cross-stream hydrodynamic
forces acting on the particles,

(√
F2

y + F2
z

)
/(ρf U2

ba4/(2h)2) (contours not shown).

For φ 6 0.1,
√

F2
y + F2

z is generally smaller along the corner bisectors than in
the rest of the cross-section (being approximately zero at s ' 0.33h for φ = 0.05),
which may explain why particles reside longer on the corner bisectors. Instead, for
φ = 0.2,

√
F2

y + F2
z is lowest in the core region (y/h > 0.8). Here

√
F2

y + F2
z ∼ 0 and,

accordingly, the concentration is large.
We conclude this last section by discussing the mean collision forces between

particles. These are also extracted from the simulations, binned in the cross-section
and shown in figure 24(a–c). As previously stated, the first point of the chosen
mesh is at 0.06h from the wall. Consequently, the particle–wall collisions, occurring
when the particle centroids are located at distances of 0.056h from the walls, are
not captured. Results concerning the particle–wall collisions will be discussed later.
The mean vertical collision force between particles, Fc

y/(ρf U2
ba4/(2h)2), is typically

opposed to the hydrodynamic force: at near-wall locations where particles are strongly
repelled from the walls (Fy > 0), the collision force is directed towards the walls
(Fc

y < 0). When particles move away from the walls, they tend to collide with
particles that are ‘above’ them. The larger the volume fraction φ, the larger the
number of particles surrounding the reference particle, and the larger the average
collision force. On the contrary, for y/h > 0.13, where the hydrodynamic force is
(generally) directed towards the walls, collision forces are directed towards the core.
Finally, in figure 24(d) we report the summation of the mean hydrodynamic and
collision forces, Fy + Fc

y , along the corner bisector (described by the coordinate s).
For φ = 0.05, 0.1, the overall force acting on the particles is still repulsive close to
the walls. However, the initial high value of the hydrodynamic force is reduced by
the opposing collision force. Due to the negative collision force, the overall force
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FIGURE 24. (Colour online) Distribution of the mean vertical collision force acting on
the particles for φ = 0.05 (a), 0.1 (b) and 0.2 (c) displayed over one quadrant of the
cross-section. In (d) we show the combination of the mean hydrodynamic and collision
forces, Fy + Fc

y along the corner bisector.

then attains a minimum around s ∼ 0.12. Further increasing s, the collision force
changes sign and the overall repulsive force reaches a maximum. The overall force
then decreases becoming approximately zero for s > 0.33h, for all φ. Note that this
is the location of maximum particle concentration for φ = 0.05. Concerning the case
at φ = 0.2, the hydrodynamic cross-stream forces directed away from the core are
actually slightly larger than zero (in magnitude), even close to the core (as can be
seen from figure 23d). However, at this large φ, when a particle is pushed away from
the core, it encounters many neighbour particles that hinder its motion. The collision
force on the particle is hence opposed to the hydrodynamic force, and we find that
the combination of these forces is approximately zero in the core region (s > 0.9h),
as shown in figure 24(d). Hence, the large particle concentration at the core is the
result of small wall-normal hydrodynamic forces and counteracting collision forces.

To conclude, we examine the particle–wall collisions; these substantially increase
with the volume fraction φ. To estimate these, we have considered only cases
for which particles are almost precisely at contact with a wall (at distance of
(a + 0.001)/h). We hence estimated a mean collision force 〈Fc,w

〉/(ρf U2
ba4/(2h)2)

that is seen to increase from 11.6 for φ = 0.05, to 19.3 for φ = 0.1. Finally, for
φ = 0.2 〈Fc,w

〉 further increases to 23.8. It is interesting to notice that the mean
collision force does not increase linearly with the volume fraction, φ. Instead, we see
a saturation at large φ, which may be due to the fact that at φ = 0.2, many of the
particles migrate towards the core of the duct, therefore colliding less with particles
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that are close to the walls. Further, we have previously shown an important turbulence
attenuation at the same volume fraction. The turbulent r.m.s. velocities are reduced
and consequently, turbulent structures push the particles towards the walls with lower
momentum, leading to a reduction of the overall collision force with the walls.

6. Final remarks

We have studied turbulent duct flows laden with suspensions of finite-size particles,
particles larger than the smallest flow structures. We have considered neutrally
buoyant rigid spheres of size a = h/18 ∼ 10δ∗ and three solid volume fractions
φ= 0.05, 0.1, 0.2. The bulk Reynolds number has been set to Reb= 5600 to compare
results with those found for turbulent channel flow of similar h/a and Reb. For the
unladen duct, this choice of Reb results in a mean friction Reynolds number Reτ = 185
and friction factor of 0.035 (same value that is obtained via the empirical formula of
Jones 1976).

One of the main findings concerns the effect of the particle presence on the
so-called secondary/cross-flow velocities of the fluid phase. In single-phase turbulent
duct flows their magnitude is approximately 2 % of the bulk velocity. We have found
that the intensity of these secondary flows progressively increases with solid volume
fraction up to φ = 0.1. Above this volume fraction, a strong turbulence activity
attenuation is found and correspondingly the maximum value of the cross-flow
velocity magnitude sharply drops below the value of the unladen case. Interestingly,
we have found a lag between fluid and particle cross-flow velocities. In particular, at
the corner bisectors the fluid cross-flow velocity is larger than that of the solid phase.
On the contrary, the fluid and particle cross-flow velocities are similar at the walls
away from the corners. It is well known that at the wall bisectors these secondary
flows convect low-momentum fluid from the walls towards the duct core. This induces
a convexity in the mean fluid streamwise velocity isotach (i.e. at equal distance from
the walls, the mean streamwise velocity is larger at the corner bisector than at the
wall bisector). As the cross-flow velocity increases with φ, so does the convexity of
the mean streamwise velocity contours. For φ = 0.2 the convexity is less than in the
unladen case. For all φ, the mean streamwise velocity of the solid phase is similar
to that of the fluid, except very close to the walls were the particle velocity is not
subjected to the no-slip condition.

At the wall bisector, the mean streamwise velocity profiles are found to be similar
to those in channel flows. In particular, as φ increases, the velocity decreases closer
to the walls and increases towards the core. For φ = 0.2 we have found a more
abrupt increase in velocity than what was previously found in channel flows. We
have also reported the mean streamwise velocity in inner units and calculated the
von Kármán constant, κ , and the additive coefficient B. For the unladen case we
have obtained the same κ found by Gavrilakis (1992) for Reb = 4410. On increasing
φ both κ and B are found to decrease, denoting a contrasting behaviour in terms
of drag reduction or enhancement. The friction Reynolds number calculated at the
wall bisector, Reτ ,bis is found to increase for all φ, as in channel flow, although the
increase is smaller than in the latter flow case at equal φ. Concerning the mean
friction Reynolds number, we find that it increases up to φ= 0.1 in a similar fashion
to what is observed in channel flow. Instead, for φ = 0.2 the mean friction Reynolds
number is similar to that for φ = 0.1 (it is actually 0.5 % larger). We believe that
this is due to a stronger turbulence attenuation than is found in channel flow. Indeed,
the near-wall particle concentration is approximately doubled with respect to what
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is found in channel flow. Quasi-coherent streamwise structures are rapidly disrupted
by particles and the frequency of ejection and sweep events is reduced. Following
this line of thought, we also performed a turbulent kinetic energy budget. We indeed
find that the turbulence production increases up to φ = 0.1. However, for φ = 0.2 the
mean production is less than for φ= 0.05. So there is indeed an important turbulence
attenuation. In contrast, the dissipation and the transport of turbulent kinetic energy
increase monotonically with φ. Therefore, due to the interaction with solid particles a
larger fraction of the turbulent kinetic energy is dissipated. Since the mean turbulence
production is reduced, the enhanced dissipation is balanced by a stronger diffusion
of energy and by the additional interphase interaction term, due to the presence of
solid particles. This extra term contributes positively to the turbulent kinetic energy
budget, and increases monotonically with φ in a similar way as the transport term.

Other important observations concern the mean particle concentration. Particles
tend to form a stable layer very close to the walls for all φ. However, for φ 6 0.1,
the higher particle concentration is on the corner bisectors close to the corner (at
a distance of approximately 0.27h). The high particle concentration at the corners
is probably related to the existence of the secondary flows. Eventually, it results
from the observed lag between the fluid and solid phases cross-flow velocities. It
should be noted that in laminar duct flows of similar h/a and Reb ∼ 500 particles
are also found to mostly accumulate at the corners (Kazerooni et al. 2017). In the
latter case this is a result of the particle inertial migration away from the duct core.
For φ = 0.2, the particle concentration close to the corners is still high, but the
maximum concentration is found at the duct core. This observation is in contrast to
what is found in channel flow, revealing the importance of confinement on particle
dynamics. From the data available for channel flow, we have indeed found that there
is a substantial number of particles crossing the periodic boundaries (i.e. a significant
particle diffusion in the spanwise direction). The additional confinement due to the
vertical walls induces therefore a different particle concentration.

Examining the fluid and particles velocity fluctuations, we see that close to the walls
there is a redistribution of energy towards a more isotropic state (i.e. decrease of the
streamwise r.m.s. velocity with φ and an increase of the fluctuation velocities in the
cross-stream directions). For φ= 0.2 all components of the r.m.s. velocity are found to
be smaller than those of the unladen case, except for the spanwise and wall-normal
components close to the corners. Looking at the primary Reynolds stress, we have
seen that it increases throughout the cross-section up to φ = 0.1. It is interesting to
note that for turbulent channel flow, Picano et al. (2015) found that the maximum
〈u′fv

′

f 〉
+ decreases with φ. On the other hand, we have here found that at the wall

bisector the maximum is approximately constant up to φ = 0.1. So the turbulence
activity reduction becomes important for volume fractions larger than φ = 0.1 as can
be seen from the results obtained for φ = 0.2.

Interestingly, close to the corners the secondary Reynolds stress 〈v′f w
′

f 〉, is larger
than in the single-phase case for all φ. The secondary Reynolds stress of the solid
phase, 〈v′pw′p〉, resemble those of the fluid, except at the corners where they change
sign. Therefore they may represent an additional source of mean streamwise vorticity.
Indeed, close to the corners and in the viscous sublayer, the gradients of the fluid
secondary Reynolds stress typically act as a sink of mean streamwise vorticity (the
production of vorticity within the viscous sublayer is mainly responsible for the
presence of vorticity in the bulk of the flow). The opposite sign may indicate that
this new contribution due to the solid phase actually acts as a source term.

We have then performed quadrant analyses of both primary and secondary Reynolds
stresses, looking at the occurrence probability of Q1, Q2, Q3 and Q4 events in the
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cross-section. The probabilities are everywhere similar up to φ= 0.1, again indicating
that the turbulence is not strongly altered up to this solid volume fraction. However,
for φ= 0.2 the probability maps change drastically denoting a strong reduction of the
turbulence activity.

Finally, we have studied more in detail the particle dynamics for each volume
fraction. First of all, we have computed the slip velocity between fluid and particles.
On average, the particles are found to move faster than the fluid, except in the
near-wall region and at the corners where they are slower. For φ = 0.05 and 0.1 the
location of maximum particle concentration along the corner bisectors is precisely
where the slip velocity vanishes. Closer to the corners, the particles lag the fluid and
this could be responsible for a lift force directed towards the core (Saffman 1965;
Liu et al. 2016). By estimating the mean wall-normal forces on the particles (the
summation of the hydrodynamic and collision forces), we see indeed that particles are
pushed away from the corners. The mean wall-normal hydrodynamic force generally
acts to repel the particles from the walls. Between the near-wall region and the core,
this force is generally small and directed towards the walls, especially for φ = 0.2.
Finally, in the core region it becomes approximately zero. For φ= 0.2 we find that the
mean wall-normal hydrodynamic force is actually (slightly) smaller than zero along
the corner bisectors. Hence, although hydrodynamic forces are small around the core,
particles would leave more often this region (mostly along the bisectors). However, at
this large φ, particles are surrounded by many neighbours, and experience collision
forces that hinder their motion. Consequently, the resulting mean force on the particles
is approximately zero, and the large concentration at the core is observed.
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