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DERIVATION OF DRAG LAW

We derive a relation for the frictional drag, expressed in
terms of a friction Reynolds number, Reτ , from the scal-
ing considerations presented in the Letter. The nomen-
clature is consistent with the one used in the Letter. In
the single-phase case, one can relate the bulk velocity to
the friction velocity from the logarithmic scaling laws for
mean velocity and velocity defect. A detailed derivation,
together with the inherent assumptions can be found e.g.
in [S. B. Pope Turbulent flows. Cambridge university
press, 2000].

We aim at relating Reτ to the parameters governing
the flow in the overlap region: Reb, Φ and Dp/h. As for
single-phase turbulent channel flow we assume for the
homogeneous suspension region that the bulk velocity is
well approximated by integrating the velocity defect over
the height of the homogeneous suspension region (HSR).
This approximation is valid as long as (i) the Reynolds
number is sufficiently high that the inner layer of the HSR
does not contribute significantly to the bulk velocity and
(ii) the virtual wall origin δpw is sufficiently small that
the flow inside the particle-wall layer contributes little to
the bulk velocity. Thus,

Ub ≈
1

h− δpw

(∫ h

δpw

udy

)
. (1)

The bulk velocity is then estimated by integrating the
defect law from δpw to h (consistency requires that the
constant Bd, typically small, is set to 0),

Ub ≈
(
Uc −

u∗τ
κ

)
. (2)

Next, the two expressions for the log law, in inner and
outer variables respectively, are combined to relate the
mean centerline velocity Uc to the apparent wall friction
velocity u∗τ , yielding:

Uc
u∗τ

=
1

κ
ln

(
h− δpw
δe∗v

)
+B +Bd (3)

Combining Eqs. (2) and (3) we obtain the following ex-
pression for Ub/u

∗
τ :

Ub
u∗τ

=
1

κ

[
ln

(
h− δpw
δe∗v

)
− 1

]
+B +Bd (4)

Substituting u∗τ = uτ (1 − δpw/h)1/2, and δe∗v = νe/u
∗
τ

in Eq. (4) we get

Ub
uτ

=

(
1

κ

[
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(
Reτ

ν

νe

(
1− δpw

h

)3/2
)
− 1

]
+B +Bd

)(
1− δpw

h

)1/2

(5)

After re-arranging, we finally obtain

Reτ =
Reb

2ξ
1/2
pw

(
1

κ

[
ln
(

Reτχ
eξ3/2pw

)
− 1
]

+B +Bd

)−1

,

(6)

where ξpw = (1 − δpw/h) and χe = ν/νe. Eq. (6)
can be solved numerically by substituting δpw =
C(Φ/Φmax)1/3Dp and νe = (1+(5/4)Φ/(1−Φ/Φmax))2ν.

The constant C = O(1) was set to 1.5 for all the cases
presented in this study, and Φmax to 0.6.

AN ALTERNATIVE CORRELATION FOR THE
OVERALL DRAG

Fig. S1 displays the same quantity as Fig. 4 of the
manuscript: the relative difference between predicted
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FIG. S1. Relative difference to the theoretical prediction of
friction Reynolds number (the shaded area corresponds to
a difference of ±4%) when an empirical correlation is used:

Reτ = 0.09(Rebχ
eξpw)0.88/(ξ3/2χe). Filled symbols corre-

spond to values that were not for corrected for the presence
of the particle-wall layer (i.e. δpw = 0).The maximum statis-
tical error in the computation of the overall drag (with 95%
confidence interval) from the DNS is below 1%. The corre-
sponding (shifted) error bar is also shown on the left hand
side of the plot legend.

values of Reτ and the values obtained from the DNS,
Rednsτ . The difference now is that the estimate is based
on an empirical correlation valid for single-phase flow
(Resphτ ≈ 0.09Re0.88b [S. B. Pope Turbulent flows. Cam-
bridge university press, 2000]), which is extended to the
case of a turbulent suspension. For the homogeneous sus-
pension region (see the modeling considerations in the

Letter) we obtain:

Rehsrτ =
u∗τ (h− δpw)

νe
≈ 0.09

(
Ub(h− δpw)

νe

)0.88

, (7)

and from this we derive the following explicit, power-law
expression for Reτ :

Reτ =
0.09 (Rebχ

eξpw)
0.88

ξ
3/2
pw χe

; (8)

where ξpw = (1 − δpw/h) and χe = ν/νe. Fig. S1 shows
that the empirical correlation given by Eq. (8) yields sim-
ilar predictions for the drag as Eq. (3) in the Letter. In
general, the predictions from the empirical correlation
are slightly more accurate (i.e., the error is smaller), in
particular for the data at the lowest values of Rehsr (see
upward- and downward-pointing triangles).

It is interesting to note that the explicit nature of
Eq. (8) enables us to estimate the relative importance
of the finite-size effect (ξpw) and effective suspension vis-
cosity (χe) at the given flow rate (quantified by Reb):

Reτ ∝
Re0.88b

ξ0.62pw χe 0.12
. (9)

The large exponent of ξpw, 0.62, confirms that the finite-
size effect plays an important role. At fixed particle size,
however, the effective viscosity still plays a major role
in these dense flows, as 1/χe ∼ 1 + Φ + O(Φ2) increases
faster with Φ than 1/ξpw ∼ 1 + Φ1/3 +O(Φ2/3).
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