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We perform three-dimensional numerical simulations to investigate the sedimentation
of a single sphere in the absence and presence of a simple cross-shear flow in a
yield stress fluid with weak inertia. In our simulations, the settling flow is considered
to be the primary flow, whereas the linear cross-shear flow is a secondary flow
with amplitude 10 % of the primary flow. To study the effects of elasticity and
plasticity of the carrying fluid on the sphere drag as well as the flow dynamics, the
fluid is modelled using the elastoviscoplastic constitutive laws proposed by Saramito
(J. Non-Newtonian Fluid Mech., vol. 158 (1–3), 2009, pp. 154–161). The extra
non-Newtonian stress tensor is fully coupled with the flow equation and the solid
particle is represented by an immersed boundary method. Our results show that
the fore–aft asymmetry in the velocity is less pronounced and the negative wake
disappears when a linear cross-shear flow is applied. We find that the drag on a
sphere settling in a sheared yield stress fluid is reduced significantly compared to
an otherwise quiescent fluid. More importantly, the sphere drag in the presence of
a secondary cross-shear flow cannot be derived from the pure sedimentation drag
law owing to the nonlinear coupling between the simple shear flow and the uniform
flow. Finally, we show that the drag on the sphere settling in a sheared yield stress
fluid is reduced at higher material elasticity mainly due to the form and viscous drag
reduction.

Key words: particle/fluid flows

1. Introduction
Suspensions of dense particles in a yield stress fluid are ubiquitous in many

engineering processes (crude oil, foodstuff transport, cosmetics, microfluidics, mineral
slurries, cement pastes, fermentation processes, 3-D printing, drilling muds, etc.),
natural phenomena (debris flows, lava flows, natural muds, etc.) and biological
systems (physiology, biolocomotion, tissue engineering, etc.). Yield stress fluids
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exhibit a yield stress, beyond which they deform as a non-Newtonian viscous liquid
while they behave as solids for lower stress levels. In mentioned practical applications,
one is usually dealing with the transport of the suspended particles in yield stress
fluids. Hence, in these systems, particle sedimentation occurs in the presence of a
shear flow. In Stokes flow of Newtonian fluids, the governing equations of motion
are linear thus the settling rate of a spherical particle is not affected by a shear flow
superimposed on the settling flow. However, in yield stress fluids, the sphere drag
is affected by a cross-shear flow as the linearity of the Stokes equations breaks due
to the nonlinear rheology of the yield stress fluids. The objective of this paper is to
investigate the flow dynamics and drag laws of a sphere settling in yield stress fluids
when a cross-shear flow exists.

Sole plastic properties of yield stress fluids can be addressed via adopting ideal
yield stress constitutive laws such as Bingham and Herschel–Bulkley models (also
known as viscoplastic models). However, experimental works show that elasticity
plays an important role in problems involving inclusions in practical yield stress
fluids (Holenberg et al. 2012; Firouznia et al. 2018). Therefore, the goal of the
present study is twofold: we do not only study the nonlinear coupling of a settling
and shear flow around a sphere but also take into account the plastic as well as
the elastic properties characterising many practical yield stress fluids. Hence, in this
introduction, we first give a review of several works that have been undertaken on
flows around a three-dimensional (3-D) or a two-dimensional (2-D) particle immersed
in a viscoplastic fluid (see also Maleki et al. 2015). Second, we review the works
addressing the role of elasticity in a yield stress fluid and a pure sedimentation
problem. Third, we review a limited recent number of works that investigate
shear-induced sedimentation of particles in viscoelastic fluids.

The problem of a single spherical particle settling in an ideal yield stress fluid
has been extensively studied theoretically and numerically (see e.g. Andres 1960;
Yoshioka, Adachi & Ishimura 1971; Beris et al. 1985; Beaulne & Mitsoulis 1997;
Blackery & Mitsoulis 1997; Liu, Muller & Denn 2002; Yu & Wachs 2007). Two
main numerical difficulties arise in solving this problem: handling a freely moving
particle, and the numerical treatment of the yield stress constitutive equations as the
effective viscosity becomes infinite at the yield surface and within a solid region.

To eliminate the first difficulty, this problem has primarily been studied by fixing
the particle and imposing an external flow while the confining walls are translating
with the same velocity of the medium. This is called the resistance problem (i.e.
the flow past a fixed obstacle). Most of these simulations were performed in two
dimensions, either by assuming the obstacle to be an infinitely long circular cylinder
(see e.g. Zisis & Mitsoulis 2002; De Besses, Magnin & Jay 2003; Roquet & Saramito
2003; Mitsoulis 2004; Tokpavi, Magnin & Jay 2008; Putz & Frigaard 2010; Wachs
& Frigaard 2016; Chaparian & Frigaard 2017a,b; Ouattara et al. 2018) or a spherical
particle by imposing 2-D axisymmetric boundary conditions (e.g. Beris et al. 1985;
Beaulne & Mitsoulis 1997; Blackery & Mitsoulis 1997; Liu et al. 2002). To our
knowledge, only two studies exist that solve the problem of a particle settling in
viscoplastic fluids (Yu & Wachs 2007) and creeping flow of Bingham plastics around
translating objects (Sverdrup, Almgren & Nikiforakis 2019) using fully 3-D numerical
simulations. Recently, the flow past a rotating sphere in a Bingham plastic fluid has
been investigated by Pantokratoras (2018) for a wide range of material properties and
Reynolds number.

Two different approaches are implemented to remove the second difficulty: the
regularization method and the augmented-Lagrangian method. The former removes
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the inherent discontinuity of an ideal yield stress constitutive equation (see e.g.
Bingham 1922; Herschel & Bulkley 1926) by approximating the solid region as a
fluid with an extremely high viscosity. Frigaard & Nouar (2005) provides a review
on different regularization schemes. The augmented-Lagrangian scheme, on the other
hand, maintains the true constitutive equation but requires the solution of an often
expensive minimization problem. For more details on this method the reader is
referred to Glowinski & Wachs (2011).

When a sphere is falling in a yield stress fluid, the stresses decay as we move away
from the surface of the particle and they may become smaller than the yield stress.
Therefore, there exists a rigid envelope (a plug or an unyielded region) surrounding
the liquid (yielded) zone around the particle (Volarovich & Gutkin 1953; Ansley &
Smith 1967). Moreover, two unyielded triangular polar caps form at the front and
rear stagnation points of the sphere (Beris et al. 1985; Beaulne & Mitsoulis 1997;
Blackery & Mitsoulis 1997). It is noteworthy to mention that in the literature different
terms have been used to refer to the location of the polar caps, such as the leading
and trailing parts of the spheres, or north and south poles of the sphere. For the 2-D
cases (i.e. cylinders in an infinite domain) it has been shown that, in addition to the
rigid envelope and the stagnant regions attached to the front and rear of the cylinder,
two counter-rotating solid islands may form at both sides of the cylinder’s equator in
the fluid zone (see e.g. De Besses et al. 2003; Chaparian & Frigaard 2017b). Ansley
& Smith (1967) postulated the shape of the plug regions around a falling sphere
and pointed to plasticity theory as a tool for tackling problems involving yield stress
fluids. However, it is only more recently that researchers have made systematic use
of plasticity theory and especially the slipline method for analysing the yield limit
in 2-D problems involving yield stress fluids (Liu et al. 2016; Balmforth et al. 2017;
Chaparian & Frigaard 2017a,b).

Wall effects on the evolution of the yielded/unyielded zones has been investigated
numerically and experimentally. These studies include either a particle settling in a
tube filled with a viscoplastic fluid (Beaulne & Mitsoulis 1997; Blackery & Mitsoulis
1997) or the flow of a viscoplastic fluid past a 2-D cylinder (a long circular cylinder)
located between two parallel plates (see e.g. Zisis & Mitsoulis 2002; Mitsoulis 2004;
Ouattara et al. 2018). Generally, it is found that at a fixed confinement ratio, the
yielded zone surrounding the particle shrinks with increasing yield stress leaving thin
viscous layers around the particle. A well-resolved series of simulations for the case
of a settling circular disk shows that the thin viscous layers resemble a cross-eyed
owl (Wachs & Frigaard 2016). At fixed yield stress, increasing the confinement ratio
results in the extension of the yielded region around the particle and, eventually, its
interaction with the walls.

The drag exerted on a particle settling in an ideal yield stress fluid is found to
be a function of both the Bingham number and the confinement ratio. The sphere
drag is an increasing function of Bingham number (Bi) at fixed confinement ratio
(see e.g. Atapattu, Chhabra & Uhlherr 1995; Blackery & Mitsoulis 1997; Tabuteau,
Coussot & de Bruyn 2007; Ahonguio, Jossic & Magnin 2014). Blackery & Mitsoulis
(1997) reported the Stokes drag coefficient (i.e. the ratio of the total drag force
to the Stokes drag on a sphere settling in a Newtonian fluid) as a function of the
Bingham number (i.e. the ratio of the yield stress to viscous stresses) and showed an
enhancement of the Stokes drag coefficient with an increasing confinement ratio. For
large Bingham numbers (Bi> 10), however, the Stokes drag coefficient is independent
of the confinement ratio. At large enough Bi numbers, the envelope of the yielded
zone around a particle is encapsulated by an outer plug region attached to the
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boundaries. Thus, at this point, a further reduction of the confinement does not affect
the flow dynamics and drag forces. These results are qualitatively valid for cases of
viscoplastic fluids flowing around a 2-D cylinder in a duct (Zisis & Mitsoulis 2002;
Mitsoulis 2004). Wall slip also alters the flow dynamics and consequently the drag
forces in flows of yield stress fluids over solid boundaries. In experimenting with
practical viscoplastic materials, the slip at the wall is unavoidable (see e.g. Meeker,
Bonnecaze & Cloitre 2004; Holenberg et al. 2012). De Besses et al. (2003) showed
that the wall slip reduces the drag force exerted by a viscoplastic fluid on a 2-D
cylinder in an infinite medium.

It is of practical interest to know the force required to move a body immersed in
a yield stress fluid. We refer the reader to the early and historical work of Boardman
& Whitmore (1960). In sedimentation flows, a particle does not fall when the yield
stress resistance is larger than the buoyancy stress. A dimensionless number called
a gravity number YG is defined as the ratio between material yield stress and the
buoyancy stress. There exists a critical value of YG beyond which the particle ceases
to move and it is entrapped within the yield stress fluid. The critical value of YG
depends on the geometry of the immersed object (Ovarlez & Hormozi 2019) and it
has been found numerically for a 2-D circle (Tokpavi et al. 2008), a sphere (Beris
et al. 1985), a 2-D square (Nirmalkar, Chhabra & Poole 2012) and a 2-D ellipse (Putz
et al. 2008). Experimental attempts also have been made to determine the critical
value of YG for objects with different shapes (see e.g. Jossic & Magnin 2001; Tabuteau
et al. 2007; Tokpavi et al. 2009; Ahonguio, Jossic & Magnin 2015). There exists a
quantitative disagreement between the numerical results and experimental results due
to the unavoidable wall-slip effects in experiments as well as owing to the discrepancy
between the rheological behaviour of the practical yield stress fluids and the ideal
yield stress laws used in the theoretical and computational work. To this end, one
of the objectives of the present work is to conduct a numerical study of the flows of
yield stress fluids around a sphere using a more realistic constitutive law, i.e. including
some fluid elasticity.

In many soft materials (e.g. emulsions, foams, gels, colloidal pastes, etc.), elasticity
is found to play an important role in the dynamics of the flow around a single sphere
or 2-D cylinder (see e.g. Atapattu et al. 1995; Gueslin et al. 2006; Dollet & Graner
2007; Tabuteau et al. 2007; Putz et al. 2008; Holenberg et al. 2012; Ahonguio
et al. 2014; Ouattara et al. 2018), particles of various shapes (Jossic & Magnin
2001), dilute suspensions (Hariharaputhiran et al. 1998), concentrated suspensions
(Coussot et al. 2002) and bubbles rising in yield stress fluids (see e.g. Sikorski,
Tabuteau & de Bruyn 2009; Fraggedakis et al. 2016b). Thus, to accurately predict
the behaviour of practical viscoplastic fluids, one must also take the elasticity effects
into account. These materials are called elastoviscoplastic (EVP). There are a number
of different constitutive equations proposed in the literature to model EVP fluids (e.g.
Saramito 2007; de Souza Mendes 2007; Bénito et al. 2008; Saramito 2009; Dimitriou,
Ewoldt & McKinley 2013; Dimitriou & McKinley 2014; Geri et al. 2017). For more
information on the details of these models and their implementation, the reader is
referred to Izbassarov et al. (2018). Several modelling and numerical works have
implemented the constitutive laws of EVP materials to quantitatively capture the flow
characteristics of practical yield stress fluids (e.g. Cheddadi et al. 2011; Cheddadi &
Saramito 2013; Fraggedakis, Dimakopoulos & Tsamopoulos 2016a).

The problem of a particle settling in an EVP fluid confined in a cylindrical
container is studied through axisymmetric finite element computations by Fraggedakis
et al. (2016a). The numerical results show that the loss of fore–aft symmetry in the
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velocity field around the sphere and the appearance of the negative wake downstream
of the sphere settling in a yield stress fluid are due to the elasticity. These phenomena
were also observed experimentally (see e.g. Holenberg et al. 2012). Furthermore, it
has been demonstrated that the extent and shape of the yielded/unyielded regions,
the particle stoppage criterion and the sphere drag are influenced by the presence of
elasticity in laboratory yield stress fluids (Fraggedakis et al. 2016a). The flow field
around a single sphere and the trajectories of two spheres in simple shear flows of
practical yield stress fluids (Carbopol gel) were also studied experimentally showing
the importance of elastic effects (Firouznia et al. 2018).

There exists a handful experimental studies focusing on the shear-induced
sedimentation of suspensions of particles in practical yield stress fluids (see e.g.
Merkak, Jossic & Magnin 2009; Ovarlez, Barral & Coussot 2010; Ovarlez et al.
2012). Merkak et al. (2009) studied the shear-induced sedimentation of suspensions
of particles in a pipe flow configuration and proposed the criterion for particle
stability in the sheared yield stress fluid. Ovarlez et al. (2012) examined the settling
rate of suspensions of particles in different yield stress fluids (concentrated emulsions
and Carbopol gels). The density mismatched suspensions are sheared in a wide-gap
Couette device; the velocity profile and solid volume fraction are measured by
employing magnetic resonance imaging techniques. It is found that, for all the
systems, the particles that were stable at rest start sedimenting in the yielded zone as
the shear is introduced. Moreover, the experimental results of Ovarlez et al. (2012)
show that the particle settling velocity scaled by the Stokes velocity is an increasing
function of the inverse Bingham number. Despite all the experimental results falling
into a master curve in the limits of high Bingham number (plastic regime), there exists
a discrepancy when Bi 6 1, which might be due to another governing dimensionless
number associated with the presence of elasticity in a practical yield stress fluid.

A larger number of studies focus on the effect of shear flow on the particle settling
rate in viscoelastic fluids through experimental measurements (see e.g. van den Brule
& Gheissary 1993; Murch et al. 2017), direct numerical simulations (see e.g. Padhy
et al. 2013b,a; Murch et al. 2017) and theoretical analysis (see e.g. Brunn 1977b,a;
Housiadas & Tanner 2012; Vishnampet & Saintillan 2012; Housiadas 2014; Housiadas
& Tanner 2014; Einarsson & Mehlig 2017).

The drag enhancement on the sphere when it is subjected to an externally
imposed cross-shear flow is verified through direct numerical simulations both in
a weakly (Padhy et al. 2013b) and in a highly (Murch et al. 2017) constant-viscosity
viscoelastic fluid. In the case of weakly viscoelastic fluids, it has been shown that
adding polymers indirectly increases the drag on the sphere through breaking the
symmetry in the polymer and viscous stresses on the sphere surface (Padhy et al.
2013b). Contrary to the weakly viscoelastic fluids, the form drag is a primary cause
of the drag enhancement on the particle in the limit of highly viscoelastic fluids
when the cross-shear flow is coupled with the uniform flow (Murch et al. 2017). In
addition to the elasticity effects, the sphere drag coefficient is also affected by the
rheological properties of the viscoelastic fluid such as the degree of shear thinning
and the ratio of polymer to total viscosity (Padhy et al. 2013a).

The main novel contributions of our study can be summarised as follows. First,
we validate a new tool for the 3-D numerical simulations of a sphere settling in
a quiescent and sheared yield stress fluid at small particle Reynolds number. We
formulate the problem using both an ideal yield stress fluid law (Bingham model)
and EVP fluid law. The governing equations are solved using our recently developed
3-D numerical solver to handle the problems including rigid and deformable particles
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FIGURE 1. Computational domain and boundary conditions.

suspended in complex fluids (Izbassarov et al. 2018). The particle motion in the flow
is simulated by means of an efficient immersed boundary (IB) method coupled with
a flow solver for the equations of motion associated with the suspending complex
fluids. The mechanical and mathematical modelling, the computational matrix, the
boundary conditions and the numerical scheme of the simulations presented here are
reported in § 2. Second, we provide for the first time a 3-D and extensive analysis of
the velocity, stress fields and yield surfaces around a sphere settling in yield stress
fluids. We consider both quiescent and sheared yield stress fluids and compute the
drag force and its individual components, i.e. form drag, viscous drag, polymer drag
and inertia drag and discuss their dependency on the elastic and plastic properties
of the suspending fluids as well as the flow dynamics. Third, we show that the flow
dynamics and drag forces significantly change when a secondary linear cross-shear
flow is superimposed. In particular, the nonlinear coupling of the settling and simple
shear flow plays a significant role in determining the flow dynamics and consequently
the drag force on the sphere, which makes the prediction of sphere drag in a sheared
yield stress fluid difficult (§ 3). The main conclusions of this work are summarized
in § 4.

2. Problem definition

We consider the sedimentation of a single spherical particle subjected to a linear
cross-shear flow in an EVP fluid with slight inertia. The reference frame is attached
to the particle with its origin at the particle centre. Thus, the particle remains
stationary and the fluid moves with uniform velocity U∞ in the opposite direction to
gravity (figure 1). The top and bottom walls are translating with constant and equal
velocity, but in the opposite direction to create the linear shear flow in the x–z plane.
Moreover, the walls move with the uniform velocity U∞ in the streamwise direction
y. Consequently, the upper and lower plates are moving obliquely. While remaining
fixed, the particle rotates freely due to the applied cross-shear flow.

2.1. Mechanical model of EVP material
In this paper, we have adopted the model proposed by Saramito (2009) to simulate
the EVP material. Figure 2 represents a mechanical description of this model, based
on the friction τ0, spring stiffness G and solvent ηs and polymer ηp viscosities. When
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FIGURE 2. Mechanical model schematic of an EVP material proposed by Saramito (2009).

the elastic strain energy of the system exceeds the threshold value (yield value), the
friction element breaks allowing viscous deformation. After yielding, the deformation
is unbounded in time, thus the system behaves as a nonlinear viscoelastic fluid. Before
yielding, however, the material behaves as a nonlinear viscoelastic solid.

2.2. Mathematical model
This section presents the governing equations in dimensionless form. Here, the
characteristic velocity scale is the uniform inflow velocity U∞, the characteristic
length scale is the particle diameter D, the characteristic time scale is D/U∞ (since
the uniform flow is the main flow) and η0U∞/D is the characteristic stress. Here, η0
is the total viscosity at zero shear-rate which is sum of the solvent ηs and polymer
ηp viscosities η0 = ηs + ηp. The continuity and momentum equations are as follows:

∇ · u= 0, (2.1)

Rep

(
∂u
∂t
+ u∇u

)
=∇ · (−pI + 2(1− β)D(u)+ τ )+ f , (2.2)

where u is the fluid velocity vector and D(u) is the rate of deformation tensor defined
as D(u) = 1/2(∇u + ∇uT). It is noteworthy to mention that, we subtract the static
pressure of the fluid and scale the remainder with the viscous stress scale. Therefore,
the dimensionless pressure p is the dimensionless dynamic pressure. Here, Rep is the
particle Reynolds number that is defined as the ratio of the inertial forces to viscous
forces: Rep= (ρf U∞D)/η0, where ρf is the fluid density. The retardation parameter, β,
is the ratio between the polymer and the total viscosities ηp/η0, f is an external body
force (IB force) used to model the presence of the particle. Here, τ is the extra stress
tensor due to the plasticity and elasticity of the EVP fluid.

The following constitutive equation is proposed to model the stress-deformation of
EVP materials (Saramito 2009):

Wi
∇

τ + κn(|τd|)ατ − 2βD(u)= 0, (2.3)

where Wi is the shear Weissenberg number, the ratio of the material relaxation time
scale λ to the cross-shear flow time scale 1/γ̇0. Therefore, Wi = λγ̇0. Note that
the material relaxation time λ is the ratio of polymer viscosity ηp to the elasticity
parameter G: λ= ηp/G. Here, α is another dimensionless parameter whose magnitude
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determines the primary and secondary flow; in particular, the ratio of the applied
shear rate γ̇0 to the shear rate induced by particle settling in the fluid γ̇sett is denoted
by α = γ̇0/γ̇sett. The settling shear rate is the ratio of the uniform inflow velocity to
the particle diameter, i.e. γ̇sett =U∞/D and thus α= γ̇0D/U∞. In the context of EVP
fluids, α can be viewed as the ratio between the shear Weissenberg number Wi and
the settling Weissenberg number, which is called ‘Wi∞’ in the present work and is
equal to (λU∞)/D.

The upper convected derivative of the stress field is
∇

τ ; it is computed based on the
following relation:

∇

τ =
∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · ∇u. (2.4)

In (2.3) κn(|τd|) is the plasticity criterion, defined by the following relation:

κn(|τd|)=max
(

0,
|τd| − Bi
(2β)1−n|τd|

n

)1/n

, (2.5)

where |τd| is the second invariant of the deviatoric part of the extra stress tensor,

τd = τ − 1
3 tr(τ )I, (2.6)

with I the unit tensor and n the power-law index. The Bingham number is Bi, which is
the ratio of yield stress to viscous stress, Bi= (τ0D)/(η0U∞). Here, τ0 is the material
yield stress. Note that throughout the paper Bi is the Bingham number defined based
on the particle settling shear rate. Polymer viscosity is computed via ηp=κ(U∞/D)n−1,
where κ is the consistency parameter.

The rotational particle velocity is computed by solving the Euler equation in the
body-fixed reference frame:

Is
dωc

dt
=

∮
∂Ω

r× (τ · n) d A. (2.7)

In (2.7), Is is the moment of inertia of the particle and is equal to 2/5ρsVsR2, where
ρs is the particle density, Vs is the particle volume and R is the particle radius. Here,
n is the unit normal vector at the particle surface ∂Ω and ωc is the particle rotational
velocity. Since our simulations are performed in a body-fixed reference frame, the
particle angular velocity is tracked in an inertial reference frame by adopting the
rotation matrix from Chen et al. (2006). For more details on the transformation the
reader is referred to Vázquez-Quesada, Bian & Ellero (2016).

2.3. Boundary conditions
The computational domain is a rectangular box with length 16D in the streamwise
y direction, 6D in the spanwise x direction and 12D in the wall-normal z direction.
The particle is located in the middle of the box with its centre as the origin of
the coordinate system. The inlet velocity boundary condition is a combination of
uniform velocity and the simple shear flow. Hence, at the inlet, the fluid velocity has
a component in both the streamwise and spanwise directions. The convective outflow
boundary condition is applied at the outlet where the fluid is leaving the domain in
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the y direction. The velocity is extrapolated by solving the convective equation at the
location of the outlet (Uhlmann 2003):

∂u
∂t
+U∞

∂u
∂n
= 0. (2.8)

In order to maintain the overall mass balance and satisfy the compatibility condition,
the convective velocity should be equal to the uniform inflow velocity U∞. A no-slip
boundary condition is applied at the top and bottom plates with the velocities of the
plates equal to u = −γ̇0Lzx̂ + U∞ŷ and u = γ̇0Lzx̂ + U∞ŷ. A homogeneous Neumann
condition is used for pressure at the two walls as well as the inlet and outlet
(∂p/∂n = 0). A no-flux condition is specified normal to the confinement walls
for the extra stress tensor. A periodic boundary condition is applied for the velocity,
pressure and extra stress tensor in the spanwise x direction. The no-slip/no-penetration
boundary condition is satisfied at the sphere surface implicitly by using the multidirect
forcing immersed boundary scheme (Breugem 2012).

We analytically solve the EVP constitutive equations of Saramito (2009) for the
combination of Couette and uniform flow at steady state in the absence of the
spherical particle and then apply this solution for the EVP stress tensor at the inlet.
At steady state the flow of EVP fluid is entirely yielded. Thus, the plasticity criteria
function is positive and non-zero (κn(|τd|) > 0). In this flow configuration, all the
components of the extra stress tensor are zero except the normal and shear stress in
the spanwise direction of the shear plane x–z. The non-vanishing value of the normal
stress difference, which is observed in practical yield stress fluids (e.g. Janiaud &
Graner 2005), is the result of incorporating the elastic stresses in the EVP constitutive
equation as the classical viscoplastic models (such as Bingham 1922 and Herschel &
Bulkley 1926) do not predict the first normal stress difference in shear flows. The
analytical solution is obtained by solving the following coupled nonlinear equations
for the normal and shear EVP stresses:(

|τd| − Bi
|τd|

)
τxz = 2αβ, (2.9)

τxz =

√
αβ

2Wi
τxx, (2.10)

where |τd| =
√

1/3τ 2
xx + τ

2
xz as τxx and τxz are the only non-zero elements of the stress

tensor. The nonlinear system of (2.9) and (2.10) is easily solved using the ‘fsolve’
routine of MATLAB. For the pure sedimentation simulations, the stress tensor at the
inlet and outlet is set equal to zero.

2.4. Computational matrix
In this study, all the simulations are conducted at α = 0.1, i.e. the particle settling
shear rate is ten times larger than the externally imposed shear rate. We will present
a series of simulations for the problem of single sphere settling through EVP fluid
in the absence and presence of simple cross-shear flow. The dimensionless parameters
used for the simulations presented here are reported in table 1.

2.5. Numerical method
The comprehensive details of the numerical algorithm are explained in Izbassarov
et al. (2018). In brief, the equations are solved on a Cartesian, staggered, uniform
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Shear-induced sedimentation Wi∞ Wi β n Rep Bi

0.1,1 0.01,0.1 0.8 1 1 0.05
0.1
0.13
0.5

1
Pure sedimentation 0.1 0 0.8 1 1 0.05

0.1
0.13
0.5

1

TABLE 1. Computational matrix.

grid with velocities located on the cell faces and all the other variables (pressure,
stress and material component properties) at the cell centres. All the spatial derivatives
are approximated with second-order centred finite differences except for the advection
terms in (2.4) where the fifth-order weighted essentially non-oscillatory (known as
WENO) scheme is adopted (Shu 2009). The time integration is performed with a
fractional-step method (Kim & Moin 1985), where all the terms in the evolution
equations are advanced in time with a third-order explicit Runge–Kutta scheme
except for the EVP stress terms which are advanced with the Crank–Nicolson method.
Moreover, a fast Poisson solver is used to enforce the condition of zero divergence
for the velocity field. The coupling of the fluid and particles is performed with the
immersed boundary method proposed by Breugem (2012).

We have adopted a grid resolution of 32 Eulerian grid points for particle diameter.
Each simulation is performed on 128 cores working in parallel and the steady-state
solution is obtained after approximately 16 weeks, corresponding to approximately
2600 central processing unit (known as CPU) hours.

2.6. Code validation
The present three-dimensional numerical solver has been used and extensively
validated in the past for particulate flows (Lashgari et al. 2014), non-Newtonian
flows (Rosti & Brandt 2017; Alghalibi et al. 2018; Rosti et al. 2018; Shahmardi
et al. 2019) and multiphase problems in non-Newtonian fluids (De Vita et al. 2018).
In particular, the code has been recently validated for suspensions of rigid and
soft particles and droplets in EVP and viscoelastic fluids (Izbassarov et al. 2018).
Nonetheless, we report here a further validation case for a simple shear flow of EVP
fluid at different power-law indexes n.

2.6.1. EVP Couette flow
We consider the two-dimensional shear flow (Couette flow) of an EVP fluid.

Initially, the material is at rest and starts flowing due to an externally applied constant
shear rate γ̇0. The objective here is to track the time evolution of the shear stress
(τ12, with 1 and 2 being the streamwise and wall-normal directions, respectively)
for different values of the power-law index n and compare them with the analytical
solution provided by Saramito (2009).

The shear Weissenberg number is fixed to Wi = 1, the Bingham number Bi = 1
and the retardation parameter β = 1. The simulations are performed for the power-law
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n = 0.2
n = 0.5
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FIGURE 3. Time evolution of shear stress in a stationary simple Couette flow. The solid
lines and symbols represent the analytical solution given by Saramito (2009) and the
present numerical simulations, respectively.

index range 0.056n61. The time evolution of the shear stress τ12 and the comparison
with Saramito (2009) are depicted in figure 3. We observe that, initially, the shear
stress grows linearly, but as soon as the stress level achieves a threshold value, which
is called ‘yield stress’, the growth stops and a plateau is reached; this is expected
in the yielded state. Indeed as soon as the second invariant of the deviatoric stress
tensor exceeds the material yield stress (or Bi number in dimensionless context), the
plasticity criteria function κn(|τd|) becomes positive and non-zero in the constitutive
equation precluding the stress growth. Consequently, the solution remains bounded for
any positive value of the power-law index. As shown in the figure, we find a very
good agreement with the results by Saramito (2009).

3. Results and discussion

In this section, we first present the results of the pure sedimentation simulations,
i.e. in the absence of any external shear flow, and then those of the shear-induced
sedimentation, i.e. from the simulations involving cross-shear flow.

3.1. Pure sedimentation in EVP fluids
For the case of a sphere settling in an EVP fluid in the absence of cross-shear flow,
the dimensionless numbers have been chosen in such a way that the gravity number
(related to Bingham number, Yg, see (3.1)) remains smaller than its critical value Yc

g
reported by Fraggedakis et al. (2016a). Above the critical condition the yield stress
resistance overcomes the buoyancy force and, consequently, the particle is trapped
inside the yield stress fluid. The critical gravity number is found to be Yc

g = 0.143
for Bingham fluids (i.e. in the absence of elasticity) by Beris et al. (1985). However,
numerical simulations have demonstrated that this value increases with the material
elasticity.

Here, we show that the gravity numbers for the current simulations are smaller than
the critical gravity number presented as the stoppage criteria by Fraggedakis et al.
(2016a). To this end, we must first rescale our parameters following their definition.
Thus, for each simulation we must find the corresponding Deborah number, De, and
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FIGURE 4. (a) Normalized velocity magnitude around the particle settling in the y–z
centreplane (x = 3D) through Bingham fluid and (b) EVP material at Wi∞ = 0.1.
(c) Streamwise velocity around a particle settling in a Bingham fluid and an EVP material
at the channel centre line (x= 3D, z= 6D). In all figures, the Bingham number Bi= 0.5.

Wi∞ Bi De Yg Yc
g (3.2)

0.1 0.05 1.31 0.0071 0.1426
0.1 1.46 0.0128 0.1554

0.13 1.53 0.0159 0.1614
0.5 2.07 0.0453 0.2017
1 2.47 0.0758 0.2289

TABLE 2. Dimensionless numbers of the pure sedimentation simulations with associated
gravity number Yg, smaller than its critical value Yc

g .

gravity number, Yg, defined as

De=
λ1ρgR
ηp

, Yg = 1.5
τ0

1ρgR
, (3.1a,b)

where 1ρ is the density difference between the bead and the fluid. The critical gravity
number is obtained using nonlinear regression on the simulation data in Fraggedakis
et al. (2016a):

1
Yc

g

= 1.2+
1

0.176+ 0.135De
: (3.2)

The parameters of the simulations, including the Deborah and gravity numbers, and
the comparison with the critical gravity number predicted by (3.2) are shown in
table 2. According to this table, the gravity number in the present work is always
smaller than its critical value.

3.1.1. Velocity and stress fields
In this section the velocity and stress fields around a sphere are demonstrated to

show the effects of elasticity and plasticity on the flow dynamics. To better highlight
the elasticity effects on the flow features and the sphere drag, we have performed
the additional simulations of particle settling in a Bingham fluid, whose details are
presented in appendix A.

Figure 4 shows the contour plot of the velocity magnitude in the mid-y–z plane
around the surface of the particle settling in an otherwise quiescent EVP fluid. An
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analogous map for the Bingham fluid is included for the sake of comparison (see the
methods and details in appendix A). The Bi number is held fixed and equal to 0.5 for
both cases and the settling Weissenberg number Wi∞= 0.1 for the EVP material and 0
for the Bingham fluid. The magnitude of the velocity is normalized by the particle
settling velocity, usett. Note that we depict the flow only in a small window around
the particle to highlight the shape of the velocity contours.

We observe that the symmetry of the velocity field around the particle stagnation
points (north and south poles of the sphere) is broken and an overshoot in the
downstream velocity appears as soon as a small elasticity (Wi∞ = 0.1) is added to
the carrying fluid. This behaviour is quantitatively depicted in figure 4(c), where the
normalized streamwise velocity is plotted in the flow direction at the centre line of
the channel, i.e. as function of y for x= 3D, z= 6D.

The loss of the fore–aft symmetry in a yield stress fluid and the negative wake
formation have been previously observed in experiments (Gueslin et al. 2006; Putz
et al. 2008; Holenberg et al. 2012; Ahonguio et al. 2014). Fraggedakis et al. (2016a)
revealed that the elasticity of realistic yield stress fluids is the primary cause of
such phenomena. Indeed, these authors demonstrated that the thixotropy (aging of
yield stress materials) is not responsible for such behaviour as conjectured before. The
absence of this symmetry was also observed in the case of a neutrally buoyant sphere
in Carbopol gels subjected to simple shear flow (Firouznia et al. 2018). Therefore, to
correctly predict the behaviour of practical yield stress fluids, the effect of elasticity
should be taken into account. It is also worthwhile to mention that the loss of the
fore–aft symmetry is not due to the weak inertia of our simulations (Rep = 1), see
§ 3.1.3 for an explanation.

The velocity vector field around the particle settling in an EVP fluid is illustrated
in figure 5 for the same case as in figure 4.

For clarity, the recirculation zones (inside of the dashed red box) and flow
stagnation points (from the solid green box) are magnified. The negative wake is
observed where the fluid velocity is opposite the particle velocity, upstream of the
rear stagnation point. The overshoot in the stream velocity downstream of the particle
shown in figure 4(c) occurs in the same area. For a particle with no-slip boundary
condition, the recirculation zones arise close to the particle and in its equatorial plane
as previously observed experimentally (Holenberg et al. 2012), which could also be
captured computationally by adopting an extensive mesh refinement near the particle
surface (Fraggedakis et al. 2016a).

The interaction between shear and normal stresses upstream of the particle is shown
to be the main cause for the negative wake formation (Fraggedakis et al. 2016a). In
fact, the negative wake is due to the normal stress relaxing faster than the shear stress
away from the particle. This is shown in the colourmap of normal and shear stresses
around the sphere in figure 6(a,b). The stress relaxation away from the sphere, in
particular the shear and normal stresses, is also depicted along the ray at an angle
ζ = 30◦, measured from the rear stagnation point (sphere north pole) in figure 6(c)
(we define the north pole in the positive y direction).

Clearly, at r≈ 0.2D, the absolute value of the shear stress is twice as large as the
normal stress. Thus, the elastic shear stress, which is responsible for the creation of
a rotational force on the fluid element, contributes to the negative wake and to the
secondary flow upstream of the particle. For more details the reader is referred to
Fraggedakis et al. (2016a).
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FIGURE 5. Velocity vectors around the sphere settling in an EVP material in the central
y–z plane. The dashed red and solid green boxes magnify the recirculation zones and the
flow stagnation points. The dimensionless numbers are the same as figure 4.
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FIGURE 6. Stress fields around the particle settling in an EVP fluid in the y–z plane at
x=3D; (a) the τyz shear stress and (b) the τyy normal stress. The angle ζ is measured from
the north pole of the sphere. (c) Stress relaxation versus the distance from the particle, r,
at an angle ζ = 30◦ measured from the north pole of the sphere. Here, r= 0 corresponds
to the particle surface. The absolute value of the stresses are shown for the same case as
in figure 4.

3.1.2. Yielded/unyielded regions
In this section, we show the shape and extent of the yielded/unyielded zones around

a sphere at different Bi numbers in an EVP material. To our knowledge, the unyielded
regions have not been previously reported in three dimensions. Figure 7 displays the
surfaces delimiting the yielded regions at different Bi numbers and constant elasticity
(Wi∞ = 0.1), where unyielded surfaces are plotted with lower transparency for higher
Bi numbers (Bi = 0.5, 1) for the sake of clarity. In the figure, red represents the
unyielded regions, while grey depicts the yielded surface boundary and the particle.
For completeness, figure 8 shows the projection of unyielded surfaces onto the
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x
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z

(a) (b) (c)

(d) (e)

FIGURE 7. Surfaces of unyielded regions around the particle in an EVP material at
Wi∞ = 0.1 in the absence of cross-shear flow for various Bi: (a) Bi= 0.05, (b) Bi= 0.1,
(c) Bi=0.13, (d) Bi=0.5, (e) Bi=1. Red represents the unyielded zone, while grey shows
the yield surface boundary.

mid-y–z and x–y planes. In this figure, blue and grey colours denote the yielded and
unyielded zones, respectively.

The simulations reveal the existence of two unyielded zones: the first is the
unyielded envelope that surrounds the fluid zone and the second is the unyielded ring
located in the yielded zone surrounding the sphere. The projection of this ring in the
central y–z and x–y planes is shown in figure 8. These are the two unyielded islands
in the yielded region located at the equator and on either side of the sphere. It is
noteworthy to mention that these solid islands are the regions in which the second
invariant of the shear rate is almost zero as shown in figure 9. Therefore, unlike the
case of 2-D cylinders, these solid rings are not rotating solid islands; note also that,
at steady state, the sphere-rotating velocity is zero in the pure sedimentation cases.

We note that the outer unyielded envelope grows progressively as the Bi number
increases and the yield surface boundary approaches the surface of the particle from
the equator plane causing the particle to stop settling. A similar arrest mechanism
has been captured previously in axisymmetric particle-settling simulations in an EVP
material (Fraggedakis et al. 2016a). Moreover, figure 8 shows that there exists yielded
regions in the vicinity of the channel walls for Bi= 0.1 and 0.13. These are associated
with the wall effects and had also previously been observed by Blackery & Mitsoulis
(1997) in the Bingham fluid flow past a sphere contained in a tube with a diameter
that is 10 times larger than that of the sphere.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) ( j)

g

g

y

y

z

x

FIGURE 8. Evolution of the unyielded zones for flow of an EVP material around a particle
for various Bi numbers at Wi∞ = 0.1; (a,f ) Bi= 0.05, (b,g) Bi= 0.1, (c,h) Bi= 0.13, (d,i)
Bi= 0.5, (e,j) Bi= 1. The first (a–e) and second rows ( f–j) represent the unyielded zones
in the central y–z and x–y planes, respectively. Blue and grey represent the yielded and
unyielded regions.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(a) (b) (c) (d) (e)

(f) (g) (h) (i) ( j)

FIGURE 9. Colourmaps of the second invariant of the shear rate for the flow of an
EVP material around a particle for various Bi numbers at Wi∞ = 0.1; (a,f ) Bi = 0.05,
(b,g) Bi= 0.1, (c,h) Bi= 0.13, (d,i) Bi= 0.5, (e,j) Bi= 1. The first (a–e) and second rows
( f–j) represent the shear rate in the central y–z and x–y planes, respectively.

3.1.3. Drag coefficients
In our simulations we fix the particle and compute the drag exerted on the particle

by the surrounding fluid. Since the settling rate is inversely proportional to the drag,
drag enhancement is equivalent to settling rate reduction (Padhy et al. 2013b). The
drag coefficient Cd is defined as follows:

Cd =
2Fd

η0U∞D
, (3.3)

where Fd is the total drag force exerted on the particle in the streamwise (y) direction.
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To investigate the dependency of the drag change on the flow and fluid parameters,
we decompose the total drag force on the particle into its individual components,
which are associated with the different stress contributions. As we assume a finite
particle Reynolds number (Rep= 1), the total drag consists of four components: ‘form
drag’ (Ff

d), ‘viscous drag’ (Fv
d), ‘polymer drag’ (Fp

d) and ‘inertia drag’ (FI
d). The

different components are computed from the following definitions:

Ff
d =−

∫∫
∂Ω

pny dS, (3.4)

Fv
d = (1− β)

∫∫
∂Ω

(
∂uy

∂xj
+
∂uj

∂y

)
nj dS, (3.5)

Fp
d =

∫∫
∂Ω

τyjnj dS, (3.6)

FI
d = Rep

∫∫
∂Ω

uj
∂uy

∂xj
nj dS, (3.7)

where ∂Ω is non-dimensionalized by D2. The details of the numerical integration
procedure are given in appendix B.

The form drag (3.4) is the drag component resulting from the distribution of the
dynamic pressure on the sphere. It is noteworthy to mention that in the Saramito’s
model (Saramito 2009) the extra elastic stress tensor is not traceless, i.e. tr(τ ) is not
zero. Thus, the pressure field p obtained in the numerical solution is basically the
field of p̄= p+ (1/3tr(τ )). However, in all of our simulations, the absolute value of
the 1/3trτ at the surface of the sphere is negligible when compared to the absolute
value of p̄= p+ (1/3trτ). In addition, unlike p̄, the sign of 1/3trτ does not change
at the stagnation points. Therefore, we conclude that the contribution of 1/3trτ to the
drag is negligible as compared to the contribution of the dynamic pressure field p for
the simulations conducted in this work.

To significantly reduce the time of each computation, we have assumed small but
finite inertia, Rep= 1, and still expect inertial effects to be negligible. To a posteriori
check this, we have compared the sum of the form, viscous and polymer drag force
to the IB force f j, i.e. the total drag, and found a difference of approximately 1.5 %,
which indeed indicates negligible inertial drag, FI

d.
Figure 10 illustrates the variation of the total drag coefficient and its individual

contributions (form, viscous and polymer drag) experienced by the sphere settling
in an EVP fluid as a function of the Bi number. The total drag increases as the
material yield stress is increased, as observed in the past for the particle settling in a
purely viscoplastic fluid (Beris et al. 1985; Atapattu et al. 1995; Blackery & Mitsoulis
1997; Tabuteau et al. 2007; Holenberg et al. 2012; Ahonguio et al. 2014; Wachs &
Frigaard 2016) as well as in an EVP fluid (Fraggedakis et al. 2016a). Here, the key
finding of our 3-D simulations is that the drag contribution from the dynamic pressure
distribution on the particle (form drag) is dominant. Additionally, the viscous drag
increases with Bi, whereas the drag contribution due to the polymer stresses remains
almost constant with Bi.

The dynamic pressure and the three components of the viscous stress distribution
(τxy, τyy, τyz) are computed on the surface of the sphere and are shown in figure 11
(the computational procedure is explained in detail in appendix B). Note that in this
study we are dealing with a complex flow, i.e. the type of flow is in general different
at each point, e.g. predominantly shear, extensional, nearly rigid-body motion or a
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10010-1
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Total
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Polymer
Form

FIGURE 10. Total drag coefficient and its individual components for a sphere settling in
an EVP fluid as a function of the Bi number at Wi∞ = 0.1.

Drag EVP fluid Viscoplastic fluid

Total 22.03 27.15
Form 12.14 11.26
Viscous 9.05 15.89
Polymer 0.84 —

TABLE 3. Comparison the total drag coefficient and its components on the surface of the
sphere settling in a viscoplastic and in an EVP fluid at Bi= 0.05. The settling Weissenberg
number Wi∞ = 0.1 for EVP material.

combination of these. However, our goal is to show the components of the stress that
contribute to the drag force, i.e. Fi=

∫
∂Ω
τij · nj dA. For a drag force in the y direction,

the relevant components of the stress tensor are τyx, τyy and τyz, so we just examine
these components of the viscous stress tensor, since figure 10 shows the polymer stress
contribution to the drag force is negligible.

The visualizations in figure 11 confirm that the magnitude of the pressure on the
particle surface increases with Bi. Moreover, the fore–aft symmetry in the pressure
distribution around the particle stagnation points breaks leading to further drag
enhancement. Increasing the Bingham number, on the other hand, merely magnifies
the value of the shear and normal viscous stresses around the poles and on either
side of the sphere and does not break the fore–aft symmetry. Hence, in the presence
of elasticity, the sphere drag increases through modification of the dynamic pressure
distribution by both breaking its fore–aft symmetry with respect to its north and south
poles and by magnifying its magnitude.

Table 3 compares the total drag coefficient and its individual components for a
sphere settling in an ideal viscoplastic (Bingham) fluid and an EVP material. Three
features are evident here. First, adding a small amount of elasticity to an ideal-yield
stress fluid causes a total drag reduction of approximately 20 %, in agreement with the
observations by Fraggedakis et al. (2016a). Second, adding elasticity to the purely
viscoplastic fluid (Bingham fluid) modifies the stress fields on the sphere surface.
Table 3 indeed shows that the dominant drag component for the Bingham fluid case
is the viscous drag, while it is the form drag in an EVP fluid. Third, although the
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FIGURE 11. Contour plots of the dynamic pressure and the three components of the
viscous stress distribution on the surface of the particle settling in an EVP fluid at different
Bi numbers and Wi∞=0.1. First, second, third, fourth and fifth rows show the distributions
at Bi = 0.05, 0.1, 0.13, 0.5 and 1, respectively. Axes information in all panels can be
extrapolated from panel (a).

polymer drag contribution is small compared to the other components, the total drag
is indirectly affected by the presence of the polymers through modification of the
form and viscous stresses.

Given the total drag, we compute the elastic contribution (elastic drag) for a sphere
settling in a yield stress fluid using the following relation:

(η0U∞D)CEVP
d = (η0U∞D)CVP

d − (η0U∞D)Ce
d, (3.8)

where η0U∞D is the viscous force scale, and CEVP
d and CVP

d the total drag coefficient
on the sphere settling in an EVP material and a viscoplastic fluid, respectively. Thus,
(η0U∞D)Ce

d quantifies the indirect effect of adding polymers to a yield stress fluid by
modifying the dynamic pressure and viscous stresses.

Note that throughout this manuscript we use the formulation ‘adding polymers to
a Bingham fluid’ to indicate adding a finite elasticity to a Bingham fluid, although
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FIGURE 12. Total drag coefficient of a particle settling in a Bingham fluid from Blackery
& Mitsoulis (1997) and that of a particle settling in an EVP material (with elasticity
Wi∞ = 0.1) as well as the elastic drag resulting from (3.8).

the elastic effects can be present in practical yield stress fluids also in the absence of
polymers, e.g. in emulsions. Moreover, in this manuscript we use the term ‘polymer
drag’ to denote the drag contribution due to the extra elastic stress tensor and the
term ‘elastic drag’ as introduced by (3.8) to indicate the total change in the drag
force (through modifying the pressure and viscous stresses as well as the addition of
the polymer stresses) due to the addition of a finite elasticity to the ideal yield stress
fluids.

The variation of the total drag for a sphere settling in a Bingham fluid as a function
of Bi is then found using the correlation given by Blackery & Mitsoulis (1997), which
is described in § A.2, assuming the coefficients in (A 4) a = 2.343 and b = 0.879
corresponding to a confinement ratio of 12 (Blackery & Mitsoulis 1997). The total
drag coefficient for settling in Bingham and EVP fluids along with the elastic drag
Ce

d defined above are displayed in figure 12 versus the Bingham number. Clearly, the
elastic drag is an increasing function of Bi for a particle settling in EVP material at
constant Wi∞. Moreover, the drag reduction through introduction of elasticity, which
was shown in table 3 for a single Bi number (Bi = 0.05) applies to a range of Bi
numbers (0.05 6 Bi 6 1).

We can relate the sphere drag reduction in the EVP material to the volume of the
yielded region around the sphere; indeed, increasing the Deborah number at a fixed
Bingham number results in an increase of the yielded region around the sphere, as
previously shown by Fraggedakis et al. (2016a). Consequently, elasticity helps the
sphere to translate faster in the EVP material by reducing the drag at high elasticity.

To gain further insight, we display in figure 13 the contour plots of the dynamic
pressure and of the τxy, τyy and τyz components of the viscous stress distributions on
the sphere surface for the case of a Bingham fluid (a–d) and those of an EVP fluid
(e–h). The pressure distribution and its magnitude are not affected by the presence of
the polymers as seen in table 3 where the form drags are found to be close to each
other. Nevertheless, the magnitudes of the viscous shear and normal stresses drop by
adding polymers to the pure Bingham fluid.

This behaviour can be better understood by looking at figure 14, where the pressure
and the τxy and τyy components of the viscous stresses are plotted around the sphere
stagnation points (at zero polar angle ψ = 0 and as a function of azimuthal angle φ,
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FIGURE 13. Contour plots of the dynamic pressure and of three components of viscous
stress distribution on the surface of the particle settling in a Bingham fluid (a–d) at
Bi = 0.05 and in the EVP fluid (e–h) at Bi = 0.05, Wi∞ = 0.1. Axes information in all
panels can be extrapolated from panel (a).
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FIGURE 14. Pressure and viscous stress distributions on the surface of the sphere settling
in Bingham and EVP fluids for the same cases depicted in figure 13. (a) Spherical
coordinate system, (b) pressure, (c) τxy, (d) τyy, (e) τyz. The pressure, τxy and τyy,
distributions are plotted for ψ = 0, while the τyz is plotted at φ = 0.

see coordinate system in panel a). Figure 14 also shows the τyz component of the
viscous stresses on either side of the sphere at φ = 0 and as a function of polar
angle ψ . Polymers affect the viscous stresses on the sphere surface, which results in
total drag reduction compared to the case of a Bingham fluid. Furthermore, the slope
of the τyz contribution of the viscous stress changes in the case of an EVP fluid.

3.2. Shear-induced sedimentation
In this section, we present the results of the simulations of shear-induced sedimentation
of a sphere in an EVP material. In our set-up, the only non-zero component of the
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FIGURE 15. (a) Normalized velocity colourmaps in the y–z centreplane (x = 3D) for
the case of pure sedimentation of a single sphere in an EVP material. (b) The same as
panel (a), but for the case of shear-induced sedimentation. (c) Streamwise fluid velocity
in the flow direction at the channel centreline (x = 3D, z = 6D) for the cases of pure
sedimentation (orange markers) and shear-induced sedimentation (blue markers) in an EVP
material. In all figures the dimensionless numbers are Bi= 0.5, Wi∞ = 0.1.

particle rotational velocity is ωy, owing to symmetry. The simulations are performed
at a constant ratio of shear to sedimentation Weissenberg number α =Wi/Wi∞ = 0.1.
Equivalently, the ratio between the externally imposed cross-shear rate to the shear
rate induced by settling is kept fixed and equal to 0.1 (γ̇0/γ̇sett= 0.1). This means that
the cross-shear flow is always a secondary flow and the uniform flow is the primary
flow.

3.2.1. Velocity field
The velocity field around a sphere settling in a sheared and quiescent EVP fluid

is presented in this section. Figure 15 illustrates the velocity magnitude normalized
by the particle settling velocity in the mid-plane between the two walls; results are
presented for settling both in the presence and absence of an externally imposed cross-
shear flow.

We observe that the fore–aft asymmetry of the velocity field around the sphere
is less pronounced when the shear flow is superimposed on the uniform flow. This
feature is further clarified in figure 15(c), which illustrates the differences due to the
presence of the cross-shear flow in terms of streamwise velocity. Clearly, the velocity
overshoot downstream of the sphere disappears once the secondary orthogonal cross-
shear flow is superimposed to the primary uniform flow.

Furthermore, the negative wake is eliminated by imposing the cross-shear flow, as
demonstrated in figure 16 by the velocity vector field around the settling sphere.

3.2.2. Yielded/unyielded regions
It should be noted that all the regions that remain unyielded in the case of pure

sedimentation in figures 7 and 8 yield as soon as the fluid is sheared. Further, in all
of the shear-induced sedimentation simulations, the material (either pure viscoplastic
or EVP) is yielded when it enters the computational domain. In other words, the
components of the polymer stress tensor satisfy the von Mises yielding criterion at
the inlet. These components are obtained by solving (2.1)–(2.3) at steady state for
the uniform and Couette flow of Bingham and EVP fluid analytically (see § 2.3 and
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FIGURE 16. Velocity vectors around the sphere settling through an EVP material
(Bi= 0.5 and Wi∞ = 0.1) in the centre y–z plane for the case of (a) pure sedimentation,
(b) shear-induced sedimentation. The blue boxes magnify the flow upstream of the sphere.

appendix A for the analytical solution of the stress tensor components in the case of
EVP and Bingham fluid, respectively).

3.2.3. Drag coefficients
The objective here is to study how the sphere drag coefficient is influenced by the

nonlinear coupling of the primary uniform flow and the secondary linear cross-shear
flow. The drag force is computed as the volumetric sum of the IB forces from the
numerical implementation and, from this, the drag coefficient using (3.3).

Figure 17 shows the drag coefficients for the cases of pure sedimentation (circular
markers) and shear-induced sedimentation (triangular markers) of a single sphere in an
EVP material. The total drag is an increasing function of the Bingham number, which
is similar to the general trend shown in figure 10 for the case of pure sedimentation.
Clearly, superimposing a cross-shear flow on the uniform flow results in the drag
reduction on the sphere settling in an EVP fluid (see red triangular markers in
figure 17). This is a result of the fact that shearing the yield stress fluid in the
orthogonal direction with respect to the uniform flow caused the whole medium
to become fully yielded. It is intuitive that the overall viscosity of a yield stress
fluid reduces as we impose a cross-shear flow and the settling particle experiences a
lower viscous resistance. In addition, a sphere settling in a yield stress fluid without
any cross-shear flow experiences a larger confinement compared to settling in the
presence of external shear flow because the unyielded zones in the EVP fluid act
as elastic walls and it is well known that increasing the confinement ratio results in
drag enhancement in Newtonian (see Faxén 1922) and viscoelastic fluids (see e.g.
Lunsmann et al. 1993; Harlen 2002).

The total and individual drag contributions for the case of shear-induced sedimenta-
tion, computed using (3.4)–(3.6), are compared with the results pertaining pure
sedimentation in figure 18.
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FIGURE 17. Drag coefficient for a settling sphere in an EVP fluid (Wi∞= 0.1, Wi= 0.01)
for the case of pure sedimentation (blue circular markers) and shear-induced sedimentation
(red triangular markers) as a function of the Bingham number. The green square markers
represent the drag coefficient deduced from the pure sedimentation simulations data by
taking into account the second invariant of the shear rate tensor.
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FIGURE 18. Total and individual drag components on the sphere settling in an EVP fluid
at Wi∞ = 0.1 in the absence of cross-shear flow (dark markers) and in the presence of
cross-shear flow (light markers) as a function of Bi number.

According to the data in the figure, the form drag is also the dominant component
in the case of shear-induced sedimentation, as documented for a particle settling
in the absence of an externally imposed shear flow in figure 10. The viscous drag
is the second largest contribution whereas the polymer drag provides the smallest
contribution to the total drag in both cases. The form and viscous drag components
are both an increasing function of Bi at constant sedimentation Weissenberg number,
Wi∞, in which case the polymer drag remains nearly constant as Bi is increased.

In summary, in pure sedimentation flows, adding small amounts of elasticity to the
ideal yield stress fluid indirectly modifies the dynamic pressure and viscous stress
distributions on the surface of the sphere such that form and viscous drag contributions
are responsible for the observed total drag enhancement. Moreover, by superimposing
a relatively weak cross-shear flow to the primary settling flow, the form and viscous
drag components drop, while the polymer drag remains almost the same.

To further clarify the source of drag reduction resulting from the external cross-
shear flow, we examine in detail the case Bi= 1. The distribution of dynamic pressure
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FIGURE 19. Contour plots of the pressure and viscous stress components on the surface of
the sphere settling in an EVP fluid at Bi= 1, Wi∞= 0.1. The first row corresponds to pure
sedimentation (Wi = 0) and the second row to shear-induced sedimentation (Wi = 0.01).
Axes information in all panels can be extrapolated from panel (a).

Drag Pure sedimentation Shear-induced sedimentation

Total 27.15 25.55
Viscous 15.89 14.95
Form 11.26 10.60

TABLE 4. Comparison of the drag coefficient and its individual components on a sphere
settling in the absence and the presence of cross-shear flow in a Bingham fluid at
Bi= 0.05.

as well as the viscous stress components that cause drag are therefore displayed in
figure 19 for pure sedimentation and shear-induced sedimentation.

This figure shows that the magnitude of the pressure and viscous shear stresses
decrease as soon as the cross-shear flow is superimposed on the uniform flow, whereas,
the viscous normal stress, τyy, remains almost unaffected.

3.3. Shear-induced sedimentation in a Bingham fluid
In this section, we study the effect of superimposing the simple cross-shear flow on
the orthogonal uniform flow of a Bingham fluid over a single sphere. As the material
is sheared, the whole medium becomes yielded and there is no rigid zone left in the
medium.

Table 4 shows the total drag coefficient and its components (form and viscous drag)
on the sphere settling in a Bingham fluid in the absence and the presence of an
externally imposed cross-shear flow.

In both cases, the viscous drag component is the dominant one. Furthermore, the
presence of the cross-shear flow results in the reduction of both viscous and form drag.
This behaviour can be inferred from the pressure and viscous stress distributions in
figure 20.

We next compare the drag on a sphere settling in a Bingham fluid to that of a
sphere settling in an EVP fluid where both fluids are subjected to cross-shear flow at
the same Bi number. This would be useful to study the effect of elasticity on the
sphere drag settling in sheared yield stress fluid as the elasticity is absent for the
Bingham fluid. Table 5 provides this comparison.
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FIGURE 20. Contour plots of the dynamic pressure and of the three components of the
viscous stress on the surface of the particle in the case of pure sedimentation (a–d) and
shear-induced sedimentation (e–h) in a Bingham fluid at Bi= 0.05. Axes information in
all panels can be extrapolated from panel (a).

Drag EVP fluid Bingham fluid

Total 20.16 25.55
Form 11.02 10.60
Viscous 8.35 14.95
Polymer 0.79 —

TABLE 5. Comparison of the drag coefficient and its individual components on a sphere
settling in sheared viscoplastic (Bingham) fluid at Bi=0.05 and EVP material at Wi∞=0.1,
Bi= 0.05.

By introducing the elasticity, the total drag coefficient is reduced. The drag
reduction is mainly due to a decrease in viscous drag, while the form drag is hardly
affected by the elasticity. Adding polymers to a Bingham fluid indirectly decreases
the sphere drag by reducing the viscous stresses on the sphere surface.

3.4. Nonlinear coupling
The Bingham number can be defined in two ways depending on how one selects the
scale of the shear rate that can be either the one induced by the settling of the sphere
(γ̇sett) or by the scalar shear rate that includes both the shear and the settling flow. For
the latter choice, the following second invariant of the deformation rate tensor (γ̇inv)
can be defined:

γ̇inv =

√
γ̇ 2

sett + γ̇
2
0 =

U∞
D

√
1+ α2. (3.9)

This is due to the fact that the cross-shear flow results in an additional off-diagonal
element of the strain rate tensor. Therefore, Bi and Biinv can be defined by the
following relations:

Bi=
τ0

η0γ̇sett
, Biinv =

τ0

η0γ̇inv
. (3.10a,b)

In the shear-induced sedimentation simulations, the shear flow is secondary to the
sedimentation flow, and one might try to deduce the drag coefficient from the pure
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FIGURE 21. Drag coefficient versus the Bingham number for a sphere settling in sheared
EVP fluid at different settling Weissenberg numbers, Wi∞.

sedimentation simulations data. This means that, having the relationship between Cd
and Bi for settling flows, one can estimate the drag coefficient for shear-induced
sedimentation flows by replacing Bi with Biinv, with the green square markers in
figure 17 representing the result of such an estimation. Because in our simulations
the shear flow is secondary, and consequently Bi ∼ Biinv, the mentioned estimate
results in a drag coefficient that is almost the same for the settling and shear
induced sedimentation flows (as in figure 17 the blue circles are very close to the
green squares). However, our simulations show that the drag coefficients for the
shear-induced sedimentation (red triangles in figure 17) are much smaller than the
values of Cd in the pure sedimentation simulations (blue circles in figure 17). This
implies that the coupling of the two orthogonal flows play a significant role in
determining the sphere drag and the mentioned estimate is not valid even when one
of the flows is one order of magnitude smaller than the other.

To expand on the above discussion, our simulations show that the changes in
pressure and viscous stresses are not linear with respect to changes in the second
invariant of shear rate. For instance at Bi= 0.5 for a settling flow, a relative increase
of 0.5 % in γ̇inv by superimposing a secondary shear flow contributes to approximately
a 28 % relative decrease in the dynamic pressure, and 18 % in all of the viscous stress
components. This is due to the nonlinear coupling of the secondary simple cross-shear
flow to the primary uniform flow of the EVP fluid.

3.5. Shear-induced sedimentation at higher elasticity
In this section, we show the results of the simulations of a single spherical particle
settling in a sheared EVP fluid at higher elasticity, i.e. at Wi∞= 1. These simulations
were performed for the same range of Bi number, i.e. 0.05 6 Bi 6 1. Note again that
the ratio between shear and settling Weissenberg number (α =Wi/Wi∞) is kept fixed
to α = 0.1. Therefore, the shear Weissenberg number Wi= 0.1.

The drag coefficient for a sphere settling in an EVP fluid subject to an externally
imposed shear flow at these two different settling Weissenberg numbers is reported
in figure 21 as a function of Bi. For both values of Wi∞ considered, the drag is
an increasing function of Bi, while it is a decreasing function of Wi∞ for all Bi
examined. In other words, the drag reduces as the material elasticity increases at
constant plasticity.
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FIGURE 22. Contour plots of pressure and viscous stress components projected on the
surface of the sphere settling in sheared EVP fluid at Bi= 1. The first row corresponds
to Wi∞= 0.1 (Wi= 0.01) and the second row to Wi∞= 1 (Wi= 0.1). Axes information in
all panels can be extrapolated from panel (a).

Drag EVP fluid (Wi∞ = 0.1) EVP fluid (Wi∞ = 1)

Total 35.49 20.40
Form 23.58 11.14
Viscous 11.41 8.87
Polymer 0.50 0.39

TABLE 6. Comparison of the drag coefficient and its individual components on a sphere
settling in a sheared EVP fluid at Bi= 1 for two values of Wi∞.

Drag reduction for a particle settling in an EVP material at higher elasticity
was previously observed in the computations of Fraggedakis et al. (2016a) of pure
sedimentation. In this case, the particle translates in a yielded envelope; as the
material elasticity is increased, the volume of this envelope increases while the rigid
polar caps shrink because the von Mises yielding criterion is satisfied more easily
due to the larger elastic stresses in the medium. Consequently, the elastic walls
move further away from the particle surface at larger values of Wi∞ and the particle
experiences lower confinement at higher elasticity, which results in drag reduction
(Fraggedakis et al. 2016a).

As far as the mechanism of the drag reduction due to the elasticity in a
shear-induced sedimentation case is concerned, we display the total drag as well
as its components for Wi∞ = 0.1, 1 at Bi = 1 in table 6. As the material elasticity
is increased, all of the drag components decrease. Nevertheless, our simulations
show that the form and viscous drag reduction is more pronounced and they are the
dominant drag components.

To gain further insight, the pressure and viscous stress distributions on the sphere
surface are displayed in figure 22 for the same two cases above, i.e. for Bi= 1 and
Wi∞= 0.1, 1. It can be seen that the asymmetry in the positive and negative pressure
distributions around the sphere stagnation points at zero polar angle is enhanced at
higher elasticity. Moreover, the absolute value of the pressure on the sphere surface
is reduced causing form drag reduction at higher elasticity. The normal viscous stress
is relaxed at higher shear Weissenberg number. The loss of symmetry of the positive
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and negative viscous shear stresses, τxy and τyz, is more noticeable around the north
and south poles of the sphere, at zero polar angle, and in the equatorial plane on
either side of the sphere at zero azimuthal angle. Note that the breaking of the fore–
aft symmetry of the velocity magnitude around the sphere by elasticity in a yield
stress fluid was observed previously experimentally (see e.g. Holenberg et al. 2012;
Firouznia et al. 2018) and computationally (Fraggedakis et al. 2016a).

4. Conclusion

Direct numerical simulations are performed to study the sedimentation of a single
sphere confined in a quiescent and a sheared yield stress fluid at small particle
Reynolds number (Rep = 1). The 3-D simulations are performed for both ideal yield
stress fluids (using Bingham model) and EVP materials as the carrying fluid. The
former fluids exhibit viscous and plastic behaviours while EVP materials also display
elastic effects. Consequently, we investigate the impact of elasticity on the flow
behaviour and dynamics of particle settling. In all of the simulations the ratio of the
constant externally imposed shear rate (γ̇0) to the shear rate induced by the particle
settling (γ̇sett), defined as the ratio of particle settling velocity to its diameter (U∞/D)
is fixed and equal to 0.1. For the simulations of EVP materials, the ratio of the shear
to sedimentation Weissenberg number (Wi/Wi∞) is held constant and equal to 0.1.

The constitutive equations from Saramito (2009) are implemented to model the
EVP material. The non-Newtonian stress tensor is fully coupled with the flow
equations that are solved with a fast and highly scalable finite-volume method with
fast Fourier transform-based pressure solver. The immersed boundary method, with a
computationally efficient multidirect forcing scheme, is adopted to represent the rigid
spherical particle. The no-slip/no-penetration boundary condition on the surface of
the particle are therefore implicitly imposed by adding a virtual body force to the
right-hand side of the momentum equations.

As concerns the flow and particle dynamics, the fluid velocity distribution around
the particle is symmetric with respect to the sphere equatorial plane for pure
sedimentation in a Bingham fluid. However, the fore–aft symmetry breaks and the
formation of a negative wake observed as the sphere settles in an otherwise quiescent
EVP material. Since the thixotropy of the yield stress fluid is not considered in the
Saramito (2009) constitutive equation for EVP fluids, elasticity is the primary cause
of both the fore–aft asymmetry in the velocity field and the negative wake. This
is in line with the recent computations of Fraggedakis et al. (2016a) and several
previous experiments (see e.g. Gueslin et al. 2006; Putz et al. 2008; Holenberg
et al. 2012). Here, we show that, superimposing the secondary cross-shear flow, the
fore–aft asymmetry in the velocity field becomes less pronounced. Furthermore, the
negative wake generated downstream of the sphere during sedimentation in an EVP
material disappears in shear-induced sedimentation. The present 3-D numerical solver
enables us to extract the yielded isosurfaces around the sphere. The yielded surface
approaches the particle surface from the equatorial plane as Bi increases, which
eventually causes the sphere to stop settling.

We have also examined the total drag on the particle, along with its individual
contributions. The total drag is calculated from the numerical data as the volumetric
sum of the IB forces and the drag components computed by performing the numerical
integration of the corresponding stress fields on the surface of the sphere. As
previously reported by Fraggedakis et al. (2016a), the drag coefficient for the settling
in an EVP fluid increases when increasing plasticity and decreases when increasing
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elasticity. This trend is found to hold also in a sheared EVP fluid. In addition,
the drag decreases considerably once the cross-shear flow is superimposed on the
uniform flow for both Bingham and EVP material at constant plasticity and elasticity.
The key finding is that the drag coefficient for a sphere settling in a sheared EVP
fluid cannot be obtained from the drag coefficient pertaining a sphere settling in an
otherwise quiescent fluid. This implies that the coupling of the cross-shear flow and
the uniform flow is nonlinear and plays a major role in determining the sphere drag
in yield stress fluids.

In this study, as the particle settles in a sheared yield stress fluid, the second
invariant of the deformation rate tensor is increased by only 0.5 % compared to
settling in the absence of cross-shear flow. This 0.5 % increase in the shear rate
induces an approximately 5 % decrease in dynamic pressure, 4 % reduction of viscous
normal stress, τyy, and 3 % and 16 % decrease in the τxy and τyz components of the
viscous shear stress. Interestingly, however, the change in the dynamic pressure and
the viscous stresses on the surface of the sphere settling through an EVP material
is more than 18 % for the whole range of Bi investigated (except for the change
in viscous normal stress, τyy, at Bi = 1 which is approximately 2 %). Therefore, the
coupling between the cross-shear flow and the uniform flow past a sphere affects the
stress fields and the drag significantly.

By decomposing the total drag coefficient for a sphere settling in an otherwise
quiescent EVP fluid into its components, it becomes evident that the form drag
(resulting from the dynamic pressure on the particle surface) is the dominant
component and the primary cause of drag enhancement with increasing Bingham
number. Nevertheless, the viscous drag is the largest component in a Bingham fluid
at very small Bi number (Bi = 0.05). The dynamic pressure and stress fields on
the surface of the sphere are comprehensively analysed. We find that, for the EVP
fluid, as Bi increases, the magnitude of the dynamic pressure also increases while
its symmetry around the sphere stagnation points breaks, resulting in further drag
enhancement with the material plasticity. Adding a small degree of elasticity to the
purely Bingham fluid modifies the viscous stresses on the surface of the sphere
settling in both quiescent and sheared EVP fluids. However, the pressure distribution
remains almost unaffected. The viscous stresses are modified so as to give viscous
drag reduction. Consequently, the total drag is less in the case of the EVP fluid
than for the Bingham fluid, regardless of the existence of an externally imposed
cross-shear flow. Thus, adding polymers to an ideal yield stress fluid causes drag
reduction through the modification of the viscous stresses on the surface of the
particle settling in both quiescent and sheared EVP fluids.

We have also performed simulations of a sphere settling in a sheared EVP material
at higher elasticity (Wi∞ = 1) and found that the drag coefficient is lower than that
at lower elasticity (Wi∞ = 0.1). This drag reduction is mainly due to a decrease
of both the form and viscous drag components, while the polymer drag remains
almost unaffected. Moreover, the longer relaxation time of the macromolecular chains
affects the normal viscous stresses, reducing their magnitude on the sphere surface.
Conversely, the magnitude of the viscous shear stresses, τxy and τyz, slightly increases
at the particle surface; this is, however, not sufficient to overcome the decrease in
viscous normal stress, τyy, so that the viscous drag is lower at higher Wi. Note also
that the asymmetry in the dynamic pressure and viscous stress distributions is more
pronounced at higher elasticity (Wi∞ = 1).

This study opens an avenue in answering many fundamental questions involving
particles in practical yield stress fluids, i.e. the effects of shear thinning and solvent
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to polymer viscosity ratio on the drag, the drag laws when multibody interactions
between particles are present, confinement effects, lubrication forces between particles,
lift forces and particle migration when inertia becomes more relevant, etc. In addition,
performing experiments and comparing the results with the simulations, simulations
would help us to refine the constitutive laws of practical yield stress fluids as in reality
thixotropy, elasticity and plasticity coexist in such materials. We hope this work will
provide new insights to help tackling these challenging problems.
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Appendix A. Bingham fluid modelling
To model the stress-deformation behaviour of a viscoplastic fluid, the Bingham

constitutive equation was first proposed (Bingham 1922; Bird, Dai & Yarusso 1983).
These relations are recovered by setting Wi= 0, β = 1 and n= 1 in (2.1)–(2.3).

In our simulations, all boundary conditions remain the same as described in § 2.3 for
the case of an EVP material, except the inlet condition where we use the components
of the viscoplastic stress tensor. As mentioned in the text, these are obtained by
analytically solving the Bingham fluid for the combined Couette and uniform flow
at steady state in the absence of the particle. In this case, the only non-vanishing
component of the stress tensor is the shear stress in the spanwise direction of the
shear plane (τxz) which is obtained via

τxz = 2α + Bi. (A 1)

Note that contrary to an EVP material, the first normal stress difference is zero for
the case of a Bingham fluid. Here, we perform the simulations at two Bi numbers
(Bi = 0.05, 0.5) for pure sedimentation and at one Bi number (Bi = 0.05) for shear-
induced sedimentation of a single sphere, with α = 0 and 0.1, respectively.

A.1. Numerical Method
The Bingham fluid constitutive equation has an inherent discontinuity as the state of
stress is undetermined before the material yielding point. To overcome the difficulty
associated with the numerical treatment of the yield stress constitutive equation, we
use the regularization method with the modification proposed by Papanastasiou (1987)
where the exponential growth of the extra stress tensor is controlled by the material
parameter, m; consequently, we can apply the same equation to the rigid and deformed
regions of the medium. The viscous stress and the deformation rate tensors are related
to each other via the apparent viscosity

ηapp = ηp +
τ0

|γ̇ |
(1− exp(−m|γ̇ |)), (A 2)
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where |γ̇ | is the second invariant of the shear rate tensor and m is the stress growth
exponent. The stress tensor is then τ = ηapp · γ .

In order for this equation to mimic the ideal Bingham fluid, m should be chosen
to be sufficiently large (see e.g. Blackery & Mitsoulis 1997; Zisis & Mitsoulis
2002; Mitsoulis 2004; Tokpavi et al. 2008). It is worth mentioning that the yield
surface location as predicted by the regularized viscosity function is a strong function
of the regularization parameter m and the behaviour of the true yield stress fluid
is recovered when (m → ∞). Here, we have adopted a value of 1000 for the
regularization parameter m except for the validation case when we chose a value of
200 for consistency with the simulations performed by Blackery & Mitsoulis (1997).
Moreover, we have checked that results for values of m= 500 and m= 1000 are in
close agreement for the cases considered. The stress tensor components are advanced
in time with the same Crank–Nicolson scheme used for the EVP fluid and the spatial
derivatives computed using second-order central differences.

A.2. Validation case
We validate our implementation against the results by Blackery & Mitsoulis (1997)
for the case of the uniform flow of Bingham fluid past a single sphere held stationary
in a rectangular channel. The computational domain has a confinement ratio similar
to Blackery & Mitsoulis (1997) with domain size Lx = 6D, Ly = 16D and Lz = 4D,
discretized with 192 × 512 × 128 points. Note that Blackery & Mitsoulis (1997)
performed the simulations in a tube by adopting the axisymmetric boundary condition
rather than a rectangular channel. The boundary conditions are described in § 2.3. In
our simulation, the particle Reynolds number is chosen to be 1 and the Bingham
number Bi= 0.108.

Blackery & Mitsoulis (1997) proposed a correlation for the drag of a sphere settling
in a Bingham fluid as a function of Bingham number and confinement ratio. Defining
the Stokes drag as

Cs =
2Fd

6πηpU∞D
, (A 3)

the following correlation is given by Blackery & Mitsoulis (1997):

Cs =Cs,N + aBib, (A 4)

where Cs,N is the Stokes drag coefficient for a sphere settling in a Newtonian fluid
at the same confinement ratio, which can be obtained using Bohlin’s approximation
(see e.g. Miyamura, Iwasaki & Ishii 1981; Zheng, Phan-Thien & Tanner 1991). The
coefficients a and b depend on the tube to sphere radius ratio. For a confinement ratio
of 4, these constants take the value of 1.92 and 0.92, respectively. Table 7 compares
the Stokes drag coefficient resulting from the present work with the predictions of
(A 4), showing that the present results predict the Stokes drag coefficient with a
relative difference of less than 0.5 %.

In figure 23, we compare the size and shape of the yielded/unyielded zones around
the sphere with the data from Blackery & Mitsoulis (1997).

The agreement between our results at Rep = 1 and the computations of Blackery
& Mitsoulis (1997) at Rep = 0 is quite satisfactory. The slight zigzagging of the
yielded surface boundary results from adopting a large value for the regularization
parameter (m = 200) in the Bingham fluid constitutive equation, which generates
non-smooth lines in the solution. For more details, the reader is referred to Zisis
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g

y

z

(a) (b)

FIGURE 23. Comparison of the yielded/unyielded zones around a particle settling in a
Bingham fluid at the confinement ratio of 4 and at Bi = 0.108; (a) computations of
Blackery & Mitsoulis (1997) at Rep = 0, (b) present work at Rep = 1. White and black
colours represent the yielded and unyielded zones, respectively.

Lz/D Cs Cs (Blackery & Mitsoulis 1997) % difference

4 2.235 2.227 0.360

TABLE 7. Comparison of Stokes drag coefficient of a sphere settling in a Bingham fluid
resulting from the present work (second column) and the computations of Blackery &
Mitsoulis (1997).

& Mitsoulis (2002). As the Stokes drag coefficient and the size and shape of the
yielded/unyielded zones at Rep = 1 are in very good agreement with the results for
creeping flow conditions, we expect the effect of inertia to be negligible at Rep = 1.
See § 3.1.3 for further discussion.

Appendix B. Numerical integration procedure
In this section, the surface integration procedure implemented to evaluate the

integrals in (3.4)–(3.6) along with the interpolation scheme used to compute the
pressure and stress fields on the surface of the particle are described in detail.

In the IB method, the first prediction velocity is interpolated from a Eulerian grid
cell (used for the fluid phase) to the Lagrangian grid (used for the particle phase).
Then, the IB force, computed on the Lagrangian grid from the difference between
the actual particle velocity of each Lagrangian force point and the interpolated
first prediction velocity, is interpolated back to the Eulerian grid. These are called
‘interpolation’ and ‘spreading’ operations (Peskin 2002; Uhlmann 2005; Breugem
2012) and are performed using the regularized Dirac delta function (δd) from Roma,
Peskin & Berger (1999). This function, which extends over three grid cells in each
coordinate direction, is approximated in three-dimensional space by the following
product:

δ3
d(xijk −Xl)= δ

1
d(xijk − Xl)δ

1
d( yijk − Yl)δ

1
d(zijk − Zl), (B 1)
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where xijk and Xl denote the Eulerian grid point with index (i, j, k) and the Lagrangian
marker point position with index l. Here, δ1

d(xijk − Xl) is an one-dimensional
approximation of the delta function

δ1
d(xijk − Xl)=

1
1x
φ

(
xijk − Xl

1x

)
. (B 2)

In (B 2), 1x is the Eulerian grid size and φ is a continuous function that is chosen
to satisfy the discrete version of the Dirac delta function properties and is obtained
from the following equation (Roma et al. 1999):

φ(r)=


1
6(5− 3|r| −

√
−3(1− |r|)2 + 1), 0.5 6 |r|6 1.5,

1
3(1+

√
−3r2 + 1), |r|6 0.5,

0, otherwise,

(B 3)

with r= (xijk − Xl)/1x. The one-dimensional approximations for the delta function in
the y and z directions (i.e. δ1

d( yijk − Yl), δ1
d(zijk − Zl)) are defined similarly to (B 2) by

replacing the grid spacing, and Eulerian and Lagrangian grid point positions in the
corresponding coordinate direction.

If the dimension of the Eulerian grid cell in each direction is spatially uniform then
the regularized Dirac delta function proposed by Roma et al. (1999) ensures that the
total hydrodynamic force and torque that the fluid and particles exert onto each other
are preserved in the interpolation and spreading operations (Uhlmann 2003; Breugem
2012). Thus, in the present work the Eulerian grid is considered to be a Cartesian
grid with uniform size in each coordinate direction, i.e. 1x=1y=1z. For improved
accuracy, the Lagrangian points should be uniformly distributed all over the surface
of the sphere, with a spacing of the order of the Eulerian grid. In the present work,
3219 Lagrangian points are therefore used to match the Eulerian grid resolution.

Since the Lagrangian cells are evenly distributed over the surface of the sphere, the
surface of the sphere is partitioned into regions of equal area in such a way that
the unity between domains is null, while the union of them constitutes the entire
sphere surface area. We use the quadrature rule to evaluate the surface integral (see e.g.
Atkinson 1982; An & Chen 2016; Reeger & Fornberg 2016). The centre position of
each Lagrangian partition is chosen as the quadrature node. Hence, the weight of the
corresponding quadrature rule is positive and equal, and the integral of any quantities
over the surface of the sphere can be estimated by the following equation:∫∫

S
fnj dS≈

Nl∑
l=1

flnj,lSl, (B 4)

where fl can be any quantity (e.g. pressure, viscous and polymer stresses) of the lth
force point, l is the Lagrangian point index, Nl is the total number of Lagrangian
grid points (total number of equally partitioned subareas on the surface), nj,l is the
unit normal vector directed outward on the lth Lagrangian point of the sphere. Here,
Sl is the surface area of the lth partition which is equal to (4πR2)/Nl for a sphere
with radius R.

Therefore, we only need the pressure, viscous/polymer stresses and the unit normal
vector on each Lagrangian force point to compute the surface integrals in (3.4)–(3.6)
by using (B 4) to find the drag components.
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Computing the form, viscous and polymer drag components is performed in several
steps. In the first step, the solid volume fraction (αijk) in the grid cell with index
(i, j, k) around the collocation points of the velocities (u, v, w) and the pressure (p)
are computed. This should be done at each Runge–Kutta step.

The solid volume fraction αijk in the Eulerian cubic grid cell with index (i, j, k) is
determined from the level-set function ψ obtained by calculating the signed distance
of each Eulerian grid point to the particle surface S (Kempe, Schwarz & Fröhlich
2009),

αijk =

∑8
k=1 −ψkH(−ψk)∑8

k=1 |ψk|
. (B 5)

In (B 5), the sum is over all eight corner nodes of the cubical Eulerian grid cell
and H is the Heaviside step function. The signed distance function ψ represents the
position of the Eulerian grid cell with respect to the sphere with ψ > 0 outside and
ψ < 0 inside the particle. Since we use a fully staggered Cartesian grid, the velocity
components are computed at the cell faces while the pressure and the stress fields
are calculated at the cell vertex. Hence, the collocation points of the ζ -component of
the velocity collocation points in the γ direction and the collocation points for the
pressure are given by the following equations:

xζγ (k)= (k− 1− 1
2δγ ζ )1xγ ; k= 1, 2, . . . , nγ + δγ ζ , (B 6)

xp
γ (k)= (k− 1)1xγ ; k= 1, 2, . . . , nγ . (B 7)

In (B 6) and (B 7), 1xγ is the size of the grid cell in the γ direction and nγ is the
number of pressure grid points in the γ direction. The use of the staggered grid results
in different solid volume fractions depending on the variable considered. Figure 24
depicts three different solid volume fractions (highlighted areas) for the grid cells
around p(i, j), u(i+ 9/2, j+ 2) and v(i+ 2, j+ 1/2). The sphere boundary is shown
by the red dashed line.

Finally, the fluid velocity in each coordinate direction (u, v,w) and the pressure at
each Runge–Kutta step are obtained by

u fq
ijk = (1− α

u
ijk)u

q
ijk, (B 8)

v
fq
ijk = (1− α

v
ijk)v

q
ijk, (B 9)

w fq
ijk = (1− α

w
ijk)w

q
ijk, (B 10)

p fq
ijk = (1− α

p
ijk)p

q
ijk, (B 11)

where u fq
ijk, v

fq
ijk, w fq

ijk and p fq
ijk are the velocity components in the x, y and z directions

and the pressure after direct accounting for the inertia of the fluid contained within the
sphere at the Runge–Kutta step q. Here, αu

ijk, α
v
ijk, α

w
ijk are the solid volume fractions

around the velocity collocation points in the x, y and z directions (Eulerian cell face)
and αp

ijk is the solid volume fraction around the pressure collocation point that is at the
Eulerian grid cell vertex (see figure 24). Here, uq

ijk, v
q
ijk, wq

ijk and pq
ijk are the velocity

components in the x, y and z directions and the pressure before direct accounting of
the inertia of the fluid in the volume of the particle at the qth Runge–Kutta step. It
should be noted that, as the polymer stresses are computed at the cell centre, the same
solid volume fraction that is obtained around the pressure collocation point is used for
the polymer stress components.
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Particle interior

Particle exterior

p(i, j)

u(i + 2,  j +    )1
2

u(i +    ,  j + 2)9
2

FIGURE 24. Solid volume fractions (highlighted area) for grid cells around p(i, j),
u(i+ 9/2, j+ 2) and v(i+ 2, j+ 1/2). The sphere boundary is shown by the red dashed
line.

In the second step, the viscous stresses are computed on each grid cell

τ vij = (1− β)

(
∂u fq

i

∂xj
+
∂u fq

j

∂xi

)
; i, j= 1, 2, 3, (B 12)

where the spatial derivatives are estimated with the central differencing scheme.
So far the pressure, viscous and polymer stresses are computed at each Eulerian

grid cell with index (i, j, k) considering the solid volume fraction around the pressure
and velocity component collocation points. In the third step, the pressure, viscous and
polymer stresses should be projected to the corresponding Lagrangian grid cell. This
interpolation is done using the same Dirac delta function defined in (B 1)–(B 3):

Pl =
∑

ijk

p fq
ijkδ

3
d(xijk −Xl)1x1y1z; l= 1, 2, . . . ,Nl, (B 13)

τ v,lpq =
∑

ijk

τ v,ijkpq δ3
d(xijk −Xl)1x1y1z; l= 1, 2, . . . ,Nl; p, q= 1, 2, 3, (B 14)

τ Po,l
pq =

∑
ijk

τ Po,ijk
pq δ3

d(xijk −Xl)1x1y1z; l= 1, 2, . . . ,Nl; p, q= 1, 2, 3, (B 15)

where Pl, τ v,lpq and τ Po,l
pq are the interpolated pressure, viscous and polymer stress

components at the Lagrangian point l.
In the last step, we compute the unit normal vector on the lth Lagrangian point.

This is easily done once the position of the centre of the particle is known

nj,l =
∇G
|∇G|

, (B 16)
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D/Lz Cs (PW) Cs (Faxén 1922) Cf
s (Theory) Cv

s (Theory) Cf
s (PW) Cv

s (PW)

0.2 1.65 1.67 0.55 1.12 0.56 1.09

TABLE 8. Comparison of drag coefficient and drag components from the present work,
PW, with Bohlin’s approximation and theoretical solutions for Newtonian fluids.

where

G= (Xl − Xc)
2
+ (Yl − Yc)

2
+ (Zl − Zc)

2
− R2
; l= 1, 2, . . . ,Nl, (B 17)

and Xc, Yc and Zc are the coordinates of the sphere centre. Finally, we are able to
estimate the pressure, viscous and polymer stresses at the Lagrangian points. Given
the unit normal vector, the form, viscous and polymer drag components (3.4)–(3.6)
are found from the following relations:∫∫

S
pny dS≈

4πR2

Nl

Nl∑
l=1

Plny,l, (B 18)

(1− β)
∫∫

S

(
∂uy

∂xq
+
∂uq

∂y

)
nq dS≈ (1− β)

4πR2

Nl

Nl∑
l=1

τ v,lyq nq,l, (B 19)

∫∫
S
τyqnq dS≈

4πR2

Nl

Nl∑
l=1

τ Po,l
yq nq,l. (B 20)

B.1. Validation case
In order to validate the numerical integration scheme that we have implemented in
this study, we compute the drag and its components in the case of the Newtonian fluid
past a sphere in a finite domain. For this test, the domain size is Lx = 6D, Ly = 8D
and Lz = 5D, with inflow–outflow boundary conditions applied in the streamwise y
direction, no-slip enforced in the wall-normal z direction and the periodic boundary
conditions in the spanwise x direction. The simulation is performed at Rep = 1.

In this simulation the total Stokes drag along with the form and viscous drag
components are computed and compared with the theoretical solution (Leal 2007).
Confinement effects are taken into account with the wall-correction factor given by
Miyamura et al. (1981). Note that at the confinement ratio of 0.2, the wall-correction
given by Miyamura et al. (1981) converges to the Faxen law (Faxén 1922).
A comparison between the present results and the Faxén (1922) approximation is
presented in table 8, where the Stokes drag coefficient

Cs =
Fd

6πηU∞R
, (B 21)

with η the viscosity of the Newtonian fluid.
The agreement in the total Stokes drag is satisfactory with a relative difference of

approximately 1.5 %. The relative difference in the form drag and the viscous drag
is around 2 % and 3 %, respectively. The small discrepancy between the numerical
integration of the dynamic pressure and the stress fields on the surface of the sphere
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and the theoretical predictions is primarily due to the Lagrangian grid resolution.
Increasing the number of Lagrangian force points, the integration scheme becomes
more accurate and converges towards the theoretical solution.
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