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a b s t r a c t 

The gravity-driven motion of rigid particles with a temperature difference with respect to the surrounding 

viscous fluid is relevant in many natural and industrial processes, yet this has mainly been investigated 

for spherical particles. In this work we study the influence of the Grashof number ( Gr ) on the settling 

velocity and the drag coefficient C D of a single spheroidal particle of different aspect ratios (1/3, 1 and 

3). The discrete forcing immersed boundary method ( IBM ) is employed to represent the fluid-solid in- 

teraction in both momentum and temperature equations, while the Boussinesq approximation is used 

for the coupling of momentum and temperature. The simulations show that the drag coefficient of any 

spheroidal particle below the onset of secondary motion can be predicted by the results of the settling 

spheres at the desired Grashof number as the main effect of the particle shape at low Galileo number 

( Ga ) and sufficiently small Gr / Ga 2 is found to be the change in the frontal area of the particle. Further- 

more, we identify the regions of stable sedimentation (vertical path) in the Ga − Gr/ Ga 2 plane for the 3 

particle shapes, investigated in this study. We show that the critical Ga beyond which the particle ex- 

hibits the zigzagging motion, is considerably smaller for oblate particles in comparison to prolate ones at 

low Gr / Ga 2 . However, both spheroidal shapes indicate a similar behavior as Gr / Ga 2 increases beyond 0.5. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Freely moving particles under gravity in a viscous quiescent

uid can be found in many environmental, biological and indus-

rial applications such as dispersion of soot particles in air, settling

f micro-organisms in oceans and fluidization of solid particles in

hemical reactors. In such applications, a wide range of parame-

ers affect the sedimentation of solid particles. Among those, the

article shape and the temperature difference with respect to the

urrounding fluid are emphasized in this work as they have a criti-

al role on the overall flow pattern. The particle wake is affected in

he latter due to the Buoyancy force that causes natural convection.

ccounting for these two parameters is crucial to provide more

eliable and realistic predictions. However, this parameter area is

arely covered in the literature and most of the numerical studies

onducted on this topic are limited to particles of spherical shape

1–3] . This is mainly due to the complexity of 3 D numerical algo-

ithms that are able to fully resolve the hydrodynamic and thermal

nteraction between the fluid and the solid phases with different

hapes. Hence, the main objective of the current study is to inves-
∗ Corresponding author. 
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igate settling non-spherical particles in the presence of heat trans-

er and compare the results among the cases with different shapes

nd thermal conditions. The understanding of such complex phe-

omena is of utmost importance for improving the current models

nd is crucial for a better design of related thermo-mechanical sys-

ems. 

Due to the complexity of particulate flows induced by natural

r mixed convection, the earlier numerical and experimental stud-

es used simpler theoretical approaches to investigate these chal-

enging physical phenomena. Most of these studies investigated a

ingle stationary particle of circular (2 D ) or spherical (3 D ) shape

t low Reynolds ( Re ) and Grashof ( Gr ) numbers [4–7] , while only a

ew reported information about non-spherical particles [8,9] . With

he rapid increase of the computational power and efficient nu-

erical algorithms, fully-resolved methods for the detailed simu-

ations of moving particles with heat transfer at higher Re and Gr

umbers have become available. Gan et al. [10] used the bound-

ry fitted approach to perform direct numerical simulations ( DNS )

f the heat transfer of 2 D solid particles, settling in a fluid at

oderate Reynolds numbers ( Re < 100). They found that the par-

icle is oscillating or migrating towards the wall at various Gr .

ecently, efficient numerical algorithms with non-boundary fitted

pproaches have significantly reduced the computational cost of

https://doi.org/10.1016/j.ijheatmasstransfer.2019.119206
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2019.119206&domain=pdf
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such simulations. Yu et al. [1] presented a new combination of

energy equation with distributed Lagrange-multiplier/fictitious do-

main ( DLM / FD ) method to study the motion of circular particles

with fixed and uniform temperatures. They analyzed the motion

of a catalyst particle and investigated the effect of Peclet and

Reynolds numbers on the heat conductivities of nano-fluids and

sheared non-colloidal suspensions. An immersed boundary method

( IBM ) was employed by Feng and Michaelides [2] to study the mo-

tion and heat transfer of hotter or colder circular particles at sig-

nificantly larger Reynolds and Grashof numbers. They found that

the drag coefficient of non-isothermal particles strongly depends

on the Grashof number at low and moderate Reynolds numbers.

According to this study, the hotter and colder particles experience

more and less drag force, respectively, due to the heat transfer be-

tween the solid and the fluid phase. Dan and Wachs [3] extended

the DLM / FD approach to investigate the heat transfer of 3 D parti-

cles for the first time. These authors obtained a similar physical

trend as in the 2 D results. To get more insight into the natural

convection flows, Wachs [11] extended their previous work by in-

vestigating various particulate flow cases. In particular, he exam-

ined a 3 D spherical catalyst rising in an enclosure, due to nat-

ural convection, while being heavier than the suspending fluid.

Hashemi et al. [12] employed the Lattice Boltzmann method ( LBM )

to investigate the effects of Reynolds, Prandtl and Grashof num-

bers on the sedimentation of an isolated spherical particle with a

fixed or varying temperature. These authors also performed sim-

ulations of 30 hot spherical particles settling in an enclosure and

studied the hydraulic and heat transfer interactions with the sur-

rounding fluid. Xu et al. [13] further showed the application of LBM

to study transport phenomena in multiphase flows. Recently, Es-

hghinejadfard and Thevenin [14] combined the thermal IBM with

LBM to resolve the interactions between circular/spherical parti-

cles and the fluid in the presence of heat transfer among the two

phases. 

Although the physical understanding of the heat transfer in

particulate flows has been significantly improved in recent years,

these findings are mostly restricted to the particles with a spher-

ical shape and only a few studies are devoted to the shape effect.

Among these studies, Tavassoli et al. [15] and He and Tafti [16] nu-

merically investigated the heat transfer in flow through fixed ran-

dom arrays of non-spherical particles. Xu et al. [17] performed

particle-resolved direct numerical simulations to study the motion

of elliptical particles in the presence of heat transfer for the first

time. They analyzed the sedimentation of cold and hot elliptic par-

ticles in a viscous fluid and found three additional settling modes

arising from thermal effects. Walayat et al. [18] further studied the

effects of the fluid thermal properties on the sedimentation of el-

liptic particles under different thermal conditions via the multi-

grid finite-element fictitious boundary method. These authors re-

visited the case study of Xu et al. [17] and found a new settling

mode for a hot elliptical particle. They concluded that the trajec-

tory and the orientation of the settling particle depends on the

Grashof number and the density ratio as well as on the other phys-

ical properties of the fluid. 

Despite all studies on this subject, fully resolved simulations of

heat transfer of moving 3 D non-spherical particles are still miss-

ing in the literature. Therefore, in this work we perform direct nu-

merical simulations of free-falling spheroidal particles with fixed

temperature in a viscous fluid and compare the results with the

data obtained for spherical particles. For this purpose, we have ex-

tended the immersed boundary method ( IBM ) in [19] to account

for the heat transfer in the presence of non-spherical particles with

fixed temperature. The numerical code has been previously used

to study the settling of spherical and spheroidal particles in qui-

escent fluids [20–22] and the heat transfer in particle suspensions

[23,24] . We hope that this study lays the ground for further pa-
ameter studies in this complex subject, such as the effect of heat

apacity and conductivity ratio. 

The paper is organized as follows. The governing equations and

he numerical implementations are explained in Section 2 , fol-

owed by a validation study in Section 3 . The results of the numeri-

al simulations are discussed in Section 4 and the final conclusions

nd remarks are drawn in Section 5 . 

. Methodology 

Uhlmann [25] developed a computationally efficient IBM to

ully resolve particle-laden flows. Breugem [19] introduced im-

rovements to this method, making it second order accurate in

pace while increasing the numerical stability for mass density

atios (particle over fluid density ratio) near unity [see also 26] .

rdekani et al. [20] extended this method to account for non-

pherical particles and heat transfer in particulate flows [23,24] .

n this work we use the same numerical code to study the free

alling spheroidal particles with constant temperature in a viscous

uid. IBM is used here to represent particles in both momentum

nd temperature equations [27] . 

.1. Governing equations 

The non-dimensional equations below describe the momentum

nd heat transfer in particulate flows with a constant temperature

ssumed on the surface of the particles: 

∂ u 

∂t 
+ ∇ · u � u = −∇ p + 

1 

Re 
∇ 

2 u − Gr 

Re 2 
T ̂  e g + f , (1)

∂T 

∂t 
+ u · ∇ T = 

1 

P r Re 
∇ 

2 T + S T , (2)

 · u = 0 , (3)

ith u the fluid velocity, p the pressure, T the temperature and

ˆ  g denoting the unit vector in the gravity direction. Re, Gr and

r are the Reynolds, Grashof and Prandtl numbers, defined below.

he extra terms f and S T on the right hand side of the equations

re the source terms, given by IBM and active in the immedi-

te vicinity of the particles to enforce the boundary conditions at

he surface. The non-dimensional temperature T in the equations

bove is normalized with the two reference temperatures ˜ �p and
˜ 

f ( T = (� − ˜ � f ) / ( ̃  �p − ˜ � f ) ). ˜ �p and ˜ � f are the initial tempera-

ures of the particles and the fluid phase, respectively. The Boussi-

esq approximation is used here to account for the effect of tem-

erature variation on the flow field. The influence of temperature

n the properties of fluid medium is assumed negligible, except for

he density in the gravitational term which has the form: 

B = ρ f 

[
1 − β f 

(
� − ˜ � f 

)]
, (4)

here β f represents the fluid thermal expansion coefficient and ρ f 

enotes the fluid density at � = 

˜ � f . The Boussinesq approxima-

ion contribute to the momentum transfer in the gravity direction

ia GrT / Re 2 on the right hand side of the non-dimensional Navier-

tokes equations. 

The non-dimensional parameters defining the problem are the

ensity ratio ρr , Grashof number Gr , Prandtl number Pr and Galileo

umber Ga . These parameters are defined as follows: 

r ≡ ρp 

ρ f 
& Gr ≡ ρ2 

f 
β f D 

3 
eq g ( ̃ �p − ˜ � f ) 

μ2 & P r ≡ μC p f 
k f 

 Ga ≡
√ 

ρ2 
f 
| ρr −1 | gD 3 eq 

μ2 , 

(5)

here the subscripts f and p denote the fluid phase and the par-

icle phase. μ, C p f and k f are the dynamic viscosity, heat capacity
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o  
nd heat conductivity of the fluid. g is the gravitational accelera-

ion and D eq is the equivalent diameter of a sphere with the same

olume as the particle. 

D eq is considered as the reference length and a reference veloc-

ty U ref is defined similarly to Dan and Wachs [3] . Therefore, the

onvective time scale D eq / U ref is employed to nondimensionalize

ime. The reference velocity U ref is calculated from a balance be-

ween inertial and buoyancy forces: 

 re f = 

√ 

4 D eq 

3 

(ρr − 1) g . (6) 

he Reynolds number of the flow, calculated based on U ref and D eq 

s denoted by Re ref : 

e re f ≡ ρ f U re f D eq 

μ
= 

2 

√ 

3 

3 

Ga . (7) 

t should be noted that the coefficient 2 
√ 

3 / 3 is used in the defini-

ion of U ref for a better comparison with the results in the litera-

ure [3,11] . An additional Reynolds number ( Re t ) based on the par-

icle terminal velocity, U t , is also defined in this study to present

he results. Note that the terminal Reynolds number is different

han Re ref . 

The motion of rigid spheroidal particles are described by

ewton-Euler Lagrangian equations, 

p V p 
d U p 

d t 
= 

∮ 
∂S p 

τττ · n d A + 

∫ 
V p 

( ρp − ρB ) g + F c , (8)

d ( I p ���p ) 

d t 
= 

∮ 
∂S p 

r × ( τττ · n ) d A −
∫ 

V p 

r × ρB g + T c , (9)

here U p and ���p are the particle translational and the angular

elocity. ρp , V p and I p are the mass density, volume and moment-

f-inertia tensor of a spheroidal particle. Here, r indicates the po-

ition vector with respect to the center of the spheroid and n is

he outward unit normal vector at the particle surface ∂S p where

he stress tensor τ = −p I + μ f 

(∇ u + ∇ u 

T 
)
, acting on the surface

f the particle is integrated. The volume integration of force term

ρp − ρB 

)
g account for buoyancy and gravity forces, acting on

he particles. F c and T c are the force and torque resulting from

article-particle (particle-wall) collisions. 

.2. Numerical algorithm 

A brief summary of the employed numerical scheme is given

ere; more details and validations can be found in [19–21,27,28] .

n this method the flow field is resolved on a uniform ( �x = �y =
z), staggered, Cartesian grid while particles are represented by a

et of Lagrangian points, uniformly distributed on the surface of

ach particle. The number of Lagrangian grid points N L on the sur-

ace of each particle is defined such that the Lagrangian grid vol-

me �V l becomes equal to the volume of the Eulerian mesh �x 3 ,

here the Lagrangian grid volume is defined by assuming a par-

icle as a shell with thickness �x . The Eqs. (1) and (2) are dis-

retized using a second order central finite-difference scheme, ex-

ept for the temperature advection term in Eq. (2) where the fifth-

rder weighted essentially non-oscillatory ( WENO ) scheme is ap-

lied ( [29,30] ). An explicit third-order Runge-Kutta scheme ( [31] )

s used for the time integration of all terms except the pressure

radient in the Navier-Stokes equations. For the latter the Crank-

icolson scheme is used. The advancement of the solution is per-

ormed via the pressure-correction scheme used in [19] to project

he velocity field in the divergence-free space. 

The IBM source terms f and S T on the right hand side of

qs. (1) and (2) are obtained by spreading the source points F and
l 
 l from the Lagrangian to the Eulerian grid, using the regularized

irac delta function δd of Roma et al. [32] : 

 

∣∣∣
i jk 

= 

N L ∑ 

l=1 

F l δd 

(
x i jk − X l 

)
�V l (10) 

 T 

∣∣∣
i jk 

= 

N L ∑ 

l=1 

S l δd 

(
x i jk − X l 

)
�V l (11) 

ith the multi-direct forcing scheme [33] employed to iteratively

etermine the IBM source term with a better accuracy. 

The point force F l is calculated at each Lagrangian point using

he difference between the particle surface velocity ( U p + ���p × r )

nd the interpolated first prediction velocity at the same point,

hile S l is obtained based on the difference between the parti-

le surface temperature and the interpolated prediction tempera-

ure. The first prediction velocity and the prediction temperature

re computed by advancing Eqs. (1) and (2) in time without con-

idering the IBM source terms f and S T . 

Accounting for the inertia of the fictitious fluid phase inside the

article volume, Eqs. (8) and (9) are rewritten as: 

p V p 
d U p 

d t 
≈ −ρ f 

N L ∑ 

l=1 

F l �V l + ρ f 

d 

d t 

(∫ 
V p 

u d V 

)

+ 

∫ 
V p 

( ρp − ρB ) g + F c , (12) 

or the linear momentum and 

d ( I p �p ) 

d t 
≈ −ρ f 

N L ∑ 

l=1 

r l × F l �V l + ρ f 

d 

d t 

(∫ 
V p 

r × u d V 

)

−
∫ 

V p 

r × ρB g + T c , (13) 

or the angular velocity. 

The first terms on the right-hand-side of the equations above

escribes the IBM force and torque as the summation of all the

oint forces F l on the surface of the particle, the second terms

ccount for the inertia of the fictitious fluid phase trapped in-

ide the particle and the third terms consider the correction due

o applying the buoyancy force to the whole computational do-

ain (including the fictitious fluid phase trapped inside the par-

icle). F c and T c are the force and the torque due to the particle-

article/wall interactions. When the distance between particles (or

 particle and a wall) are smaller than one Eulerian grid size, the

ubrication force is under-predicted by the IBM . To compensate for

his inaccuracy and to avoid computationally expensive grid refine-

ents, a lubrication model based on the asymptotic analytical ex-

ression for the normal lubrication force between unequal spheres

 [34] ) is used; here we approximate the two spheroidal particles

ith two spheres with same mass and radius corresponding to the

ocal curvature at the points of contact. Using these approximating

pheres, a soft-sphere collision model with Coulomb friction takes

ver the interaction when the particles touch. In the current study,

nly single particles are investigated in a numerical domain with-

ut walls, therefore F c and T c vanish in the equations above. How-

ver, the numerical algorithm is designed to capture these solid-

olid interactions. More details about the interaction models and

alidations can be found in [20] and [35] . Eqs. (12) and (13) are in-

egrated in time with the same Runge-Kutta method used for the

avier–Stokes equations. 

.3. Flow configuration 

In the present work, we investigate the effect of heat transfer

n the sedimentation of isolated particles with different shapes:
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Fig. 1. Schematic of the flow configuration with a single prolate particle falling in 

the computational domain. 
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Fig. 2. Time variation of the settling velocity for an isolated sphere falling in an 

enclosure at various Reynolds numbers against the experimental data of TenCate 

et al. [42] and the numerical results of Wachs [11] . 

t  

[  

o

3

 

o  

s  

e  

a  

o  

w  

fi  

t  

u

3

4  

n  

c

 

d  

d  

d  

p  

V  

n  

1  

3  

e  

s  

T  

m

3

fi

 

o  

i  

i  
sphere, oblate spheroids (aspect ratio 1/3) and prolate (aspect ra-

tio 3). Various parameters such as the drag coefficient and the

terminal velocity are studied and compared for different shapes

at different Grashof and Galileo numbers. A numerical domain of

12 D eq × 24 D eq × 12 D eq is considered in the x, y and z directions

with gravity acting in the negative y direction. D eq is the parti-

cle equivalent diameter, computed from the diameter of a sphere

with the same volume as the ellipsoidal particle. A semi-infinite

boundary condition is considered in the y direction, modelled by a

finite computational domain that moves with the particle and en-

sures that the particle is always located at a certain distance from

the bottom of the computational box. This method forces the cen-

ter of the particle to displace only within one Eulerian grid cell,

as the particle and the flow field translate one grid cell upwards

whenever the particle crosses the bottom boundary of this speci-

fied Eulerian grid cell. Since the quiescent fluid, far from the par-

ticle (at the bottom of the computational box), is undisturbed by

the particle motion, an inflow boundary condition with zero veloc-

ity is considered at the bottom together with an outflow condition

at the top boundary. Employing these boundary conditions allows

for the translation of the grid upwards and updating it with zero

velocity at the bottom of the box, whenever the particle crosses

the specified grid cell, without creating any discontinuity in the

fluid and in the particle motion. More details on this treatment can

be found in [3,36,37] . Periodic boundary conditions are considered

in the directions, perpendicular to the gravity. A schematic of the

flow configuration is demonstrated in Fig. 1 . The spheroid aspect

ratio AR is defined as the ratio of the polar symmetric semi-axis

a to the equatorial radius b and D eq , the characteristic length is

obtained as: 

D eq = 2 

(
ab 2 

)1 / 3 
. (14)

A grid resolution of 32 grid cells per D eq , similar to Ardekani

et al. [20] , Fornari et al. [21] , is used for all simulations and parti-

cle aspect ratios AR . It should be noted that the thickness of the

momentum and the temperature boundary layers can be estimated

from D eq / 
√ 

Re and D eq / 
√ 

ReP r , respectively [38] . Therefore, a grid

resolution of 32 grid cells per D eq is adequate to fully resolve both

boundary layers within the parameter space considered here. All

spheroidal particles are released in the domain with their major

axis perpendicular to the gravity direction, as other initial orien-
ations are not stable for the free moving spheroidal particles, see

39] , and the particle eventually falls with the mentioned stable

rientation. ρr and Pr are set to 1.1 and 1 in all simulations. 

. Validation 

Before examining the effect of heat transfer on the settling

f rigid particles of different shapes, we validate our results ver-

us other existing data in the literature. As there is no available

xperimental and numerical data on the 3 D thermal convection

round non-spherical particles during sedimentation, the settling

f spherical particles is considered for the validation of the present

ork in the two different cases of isothermal and non-isothermal

elds. Note that the numerical code has been fully validated for

he isothermal sedimentation of non-spherical particles [20] and

sed in previous works on spheroidal particles [21,40,41] . 

.1. Isothermal case: settling of a sphere in a closed system 

Similar to other numerical simulations in the literature ( [11,43–

5] ), the experimental data of TenCate et al. [42] together with the

umerical results of Wachs [11] are chosen to validate the results

oncerning the hydrodynamic part. 

The original experiment [42] consists of an enclosure with the

imension of 100 × 100 × 160 mm in x, y and z (gravity direction)

irection, filled with a viscous fluid. A solid spherical particle with

iameter of 15 mm and density of 1120 Kg/m 

3 is released from the

osition (50, 50, 120) mm and settles in the negative z direction.

arious types of silicon-oil fluids with different density and dy-

amic viscosity are used to vary the Reynolds number in the range

 − 32 . Here, the 4 different Reynolds numbers of 1.5, 4.1, 11.6, and

1.9 are simulated and the results are depicted in Fig. 2 against the

xisting data in the literature [11,42] . The grid resolution of these

imulations is set to 32 Eulerian grid cells per particle diameter.

he results of these test cases in the figure show a good agree-

ent with the existing data. 

.2. Non-isothermal case: sedimentation of a spherical particle with 

xed temperature in a semi-infinite channel 

Settling spherical particles with constant temperature, as previ-

usly studied by Dan and Wachs [3] , are considered here to val-

date the numerical code. Spherical particles sediment in a semi-

nfinite domain, surrounded by 4 solid walls, where the size of
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by Dan and Wachs [3] are indicated with the dashed lines. 
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he numerical domain in the transverse directions is set to 4 par-

icle diameters. Different cases with the reference Reynolds num-

er ( Re re f ≡
ρ f U re f D eq 

μ , where U re f = 

√ 

4 D 
3 (ρr − 1) g ) varying in the

ange of [20 − 140] are considered for three different thermal con-

itions: an isothermal field ( Gr = 0 ), a hotter particle ( Gr = 100 )

nd a colder particle ( Gr = −100 ). Pr is set to 1 in these simula-

ions. The terminal velocity U t , normalized by U ref and the drag co-

fficient of the particle are depicted in Fig. 3 for various Reynolds

umbers and 3 different thermal conditions. The drag coefficient

 D is defined as: 

 D = 

2 F D 

ρ f U 

2 
t A s 

, (15) 

here F D denotes the drag force exerted on the particle when it

eaches the terminal velocity and A s is the frontal surface area of

he particle. Therefore, it can be shown [46] that: 

 D = 

U 

2 
re f 

U 

2 
t 

. (16) 

Fig. 3 shows the comparison of our IBM results with that ob-

ained by Dan and Wachs [3] . It is seen that the results of the two

ethods are in good agreement, providing a validation for the heat

ransfer algorithm. 

. Results 

In this section, we first study the influence of the Grashof num-

er on the settling velocity and the drag coefficient C D of a sin-

le particle with different shapes. Next, we examine the onset of

he secondary motion for sedimenting oblate, prolate and spheri-

al particles in the presence of a temperature field. 

.1. Effect of heat transfer on the sedimentation of single spherical 

nd non-spherical particles 

Three different thermal conditions are considered here for dif-

erent shape of settling particles: ( a ) isothermal field ( Gr = 0 ), ( b )

otter particle ( Gr = 100 ) and ( c ) colder particle ( Gr = −100 ) with

alileo number varying between 10 to 90. The values of the Galileo

umbers investigated in this section are chosen below the onset of

econdary motion for these particles ( [20,47,48] ). 

Fig. 4 (a)–(c) show the terminal velocities, normalized by U ref ,

gainst the Galileo number Ga for the different shapes and dif-

erent Gr under investigation. The particle settling velocity is ob-

erved to increase with respect to the isothermal condition when
r is negative (the particle is colder than the surrounding fluid)

nd to decrease when Gr is positive (the particle is hotter than

he surrounding fluid), independently of the shape. This is due to

he buoyancy force that increases when Gr is above 0. Interest-

ngly, the results in the panels (a)-(c) indicate a local minimum

ettling speed for the colder particles around Ga ≈ 30, regard-

ess of the particle shape. For values below Ga ≈ 30, the buoy-

ncy force appears stronger than the viscous force, hence enhanc-

ng the particle terminal velocity. On the other hand, at larger

alileo numbers ( Ga ≈ 90) the buoyancy effect due to the change

n the temperature field is negligible and barely affects the ter-

inal velocity. To show the effect of Gr number on the accelera-

ion or retardation of the cold ( Gr < 0) and hot ( Gr > 0) parti-

les, the terminal velocity of these, normalized by their terminal

elocity at Gr = 0 , is depicted in Fig. 4 (d) for all shapes consid-

red here. It can be observed that for each particle shape the ratio

f the non-isothermal to the isothermal terminal velocity deviates

rom 1 when the Ga number decreases, implying that the effect of

emperature difference on the particle motion is more pronounced

t smaller Galileo numbers. It should be noted that Gr / Ga 2 ap-

roximates the ratio of the natural convection to the gravitational

orces, therefore increasing Ga diminishes the buoyancy effect con-

iderably faster than decreasing Gr . Fig. 4 also indicates that the

ffect of the Grashof number Gr on the terminal velocity is more

ronounced for non-spherical particles (oblates are the most af-

ected). This can be associated with the larger surface area of non-

pherical particles, which contributes to an increased heat transfer

etween the two phases. 

The time variation of the particle settling velocity at Ga = 20

s depicted in Fig. 5 for different thermal conditions and parti-

le shapes. It can be observed that the steady-state condition is

chieved faster in the iso-thermal cases. This can be explained by

he slower formation of the temperature wake, which delays the

ffect of buoyancy forces. Results for the cases with Gr = 100 con-

rms this explanation as the particles experience larger settling ve-

ocities initially, before the terminal velocity converges to a smaller

alue. 

The effect of Gr on the particle wake is shown in Fig. 6 for par-

icles with different shapes by means of contours of vertical ve-

ocity at settling Reynolds number Re t ≈ 30. Indeed, the Galileo

umber for each case is chosen in such a way that the terminal ve-

ocity converges to a similar value. Interestingly, the particle wake

ppears longer and wider as the Gr changes from −100 in the left

olumn to 100 in the right one. This figure clearly shows how the

uoyancy forces lift up the hotter fluid in the vicinity of hot par-



6 M. Majlesara, O. Abouali and R. Kamali et al. / International Journal of Heat and Mass Transfer 149 (2020) 119206 

Fig. 4. The particle terminal velocity U t , normalized by U ref at three values of the Grashof number Gr for ( a ) spheres, ( b ) oblates and ( c ) prolates, and ( d ) normalized by the 

corresponding U t at Gr = 0 against the Galileo number Ga for different shapes. 

Fig. 5. Time variation of the particle settling velocity for different shapes at Ga = 20 

and Grashof numbers 100, 0 and −100 . 
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ticles and therefore increase the size of the particle wake with re-

spect to the iso-thermal condition (middle column). The opposite

holds when the particle is colder and the buoyancy forces push

down the cold fluid, instead, and reduce the wake size. The alter-

ation in the wake size, caused by the buoyancy forces, changes the

drag that the particles experience while settling in a viscous fluid,

even with the same terminal velocity. 

The effects of heat transfer on the drag coefficient C D of par-

ticles with different shapes are depicted in Fig. 7 versus termi-
al Reynolds number Re t for the different Gr studied here. The

ata show that at each Gr and Re t , oblate particles experience the

argest C D among the different shapes, while the drag coefficient

or spheres is the smallest one. This is consistent with the mea-

ure of the frontal area as oblates, prolates and spheres have the

argest to the smallest frontal area respectively. 

Ardekani et al. [20] proposed a simple model to predict the ter-

inal Reynolds number Re t for spheroidal particles at low Galileo

umbers in the case Gr = 0 . This model assumes that for oblates,

pheres and prolate particles the steady flow (wake) regime is sim-

lar. The assumption in this model is that for small Galileo num-

ers, the main effect of a change in spheroid aspect ratio (with re-

pect to a perfect sphere) is the change in the frontal surface area,

hile the modified C D remains the same when defining the termi-

al Reynolds number based on the equivalent sphere diameter D eq .

ere we extend this model for non-isothermal conditions, when Gr

s not negligible, in order to eliminate the shape effect from the

overning parameters. The drag coefficient is therefore computed

s follows: 

 D = 

2 F D 

ρ f U 

2 
t A 

∗
s 

, (17)

here F D denotes the drag force exerted on the particle in a steady

tate condition when the particle reaches the terminal velocity. A 

∗
s 

s the new frontal area of the particle which can be written as 

 

∗
s = 

πD 

2 
eq 

4 

AR 

n , (18)

here D eq is the equivalent diameter of a spherical particle with

he same volume and n is equal to −2 / 3 , 1/3 and 0 for oblate,

rolate and sphere respectively. Therefore, the new modified C is
D 
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Fig. 6. Contours of vertical velocity, divided by the viscous scale ν/ D eq , for settling spheroids of aspect ratios AR = 1 (first row), 1/3 (second row) and 3 (the last row). The 

Grashof number Gr is −100 , 0 and 100 from left to right. The Galileo number Ga is chosen in a way to obtain the same terminal Reynolds number of approximately 30. 
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t  

l  
alculated based on the multiplication of the drag coefficient and

R 

n as: 

 D AR 

n = 

2 F D 

ρ f U 

2 
t A s 

, (19) 

here F D and A s are obtained employing D eq . The results of the

odified drag coefficient are depicted in Fig. 8 versus the parti-

le terminal Reynolds number for the three studied thermal condi-
ions and particle shapes. The drag coefficient corrected to account

or the particle shape, oblate, prolate and sphere, follows a master

urve at each Gr , provided Gr / Ga 2 is small. The empirical relation

roposed by Clift et al. [49] , for the drag coefficient of an isolated

phere is also plotted in this figure: this well collapses on the re-

ults of the isothermal cases. The proposed new scaling shows that

he shape can be eliminated from the governing parameters be-

ow the onset of the particle secondary motion and the drag coef-
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Fig. 7. The drag coefficients of oblate, prolate and spherical particles as a function of terminal Reynolds number Re t for different thermal conditions of (a ) Gr = 100 , (b) Gr = 0 

and (c) Gr = −100 . 
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Fig. 8. (Color online) Comparison of the modified drag coefficients (See text) for the 

three different particle shapes under investigation and various thermal conditions. 
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ficient for any spheroidal particle can be predicted from the data

of settling spheres at the desired Grashof number. This implies that

for sufficiently small values of the Galileo number and of the ratio

Gr / Ga 2 , the particle shape can be parametrised by the frontal area
nd the drag coefficient of a spheroid can be estimated from the

rag coefficient C D of a sphere with the same volume as the origi-

al spheroid. 

.2. Stability analyzing of single spherical and non-spherical particles 

n the presence of heat transfer 

Jenny et al. [50] performed a parametric study for sedimenting

pheres, reporting a diagram of flow regimes in the Ga − ρr pa-

ameter plane. These authors identified the critical Ga ≈ 155 for

he onset of secondary motion for spheres with similar density ra-

io as in the present study. Below Ga ≈ 155 a spherical particle

ettles steadily on a straight vertical path with an axisymmetric

ake, consisting of a single toroidal vortex. Chrust [47] studied the

nfluence of the aspect ratio AR , density ratio ρr and Ga on the

ettling state of oblate particles, indicating four different states for

he oblate particle motion. Ardekani et al. [20] revealed that the

nset of secondary motion for spheroidal particles occurs at con-

iderably smaller values of Ga : ≈ 120 ( Re t ≈ 92) for oblate par-

icles with AR = 1 / 3 and ≈ 70 ( Re t ≈ 55) for prolate particles

ith AR = 3 . In this section, we investigate the effect of varying

r on the settling state of isolated oblates ( AR = 1 / 3 ), prolates

 AR = 3 ) and spheres with fixed temperatures. To this purpose,

ifferent combinations of Gr and Ga to identify the region of sta-

le motion (vertical steady path) in the Ga − Gr/ Ga 2 plane, with

r / Ga 2 representing the ratio of the natural convection to the grav-
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Fig. 9. (Color online) Comparison of the particle trajectory for a ( a ) spherical, ( b ) oblate and ( c ) prolate particle for two different cases of isothermal and non-isothermal 

flows: Gr = 0 , Ga = 60 , blue line with circle scatters and Gr/Ga 2 = 0 . 5 , Ga = 60 , red line. 
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Fig. 10. (Color online) Snapshots of temperature fields for an oblate particle, experiencing a ( a ) stable path (Gr/Ga 2 = 0 . 05 , Ga = 60 : t = 270) , and (b) − ( f ) zigzagging 

motion (Gr/Ga 2 = 0 . 5 , Ga = 60 : t = 250 , t = 255 , t = 260 , t = 265 , t = 270) . Panel ( g ) indicates the history of the particle settling velocity in the two cases. 
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tational forces. For this analysis, particles are released from the

op of the domain and their paths are tracked for a period of 300

on-dimensional time units (300 D eq / U ref ). Since the particle tem-

erature is kept constant during the time integration, the strong

uoyancy of the fluid around the hot particles (positive Grashof

umber) causes them to reverse the direction of their motion and

o move upwards. Therefore, we just study cold particles (negative

rashof numbers) and compare their settling to the iso-thermal

ases. 

To demonstrate the effect of Grashof number on the particle

ath, the particle trajectory of the isothermal ( Gr = 0 , Ga = 60 )

ases with different shapes are depicted in Fig. 9 against those

f the colder particles ( Gr/Ga 2 = 0 . 5 , Ga = 60 ). It is observed that

he cold particles, under the influence of buoyancy forces, exhibit

 path instability at considerably smaller Galileo numbers. There-
ore in addition to the density ratio and the Galileo number, the

atio Gr / Ga 2 is also playing an important role for the particle path

tability. 

Fig. 10 shows the temperature contours for a falling oblate,

here Gr is increased from Gr/Ga 2 = 0 . 05 ( 10 (a)) to Gr/Ga 2 = 0 . 5

n panels (b)-(f). The time history of the settling speed for the two

ases is depicted versus time in Fig. 10 (g). The data clearly show

hat the particle stable vertical path observed at low Gr turns into

 zigzagging motion with oscillating terminal velocity when Gr in-

reases. Given the definition of U ref in Eq. (6) and Ga in Eq. (5) , the

erminal Reynolds number can be calculated as below: 

e t = 

U t 

U re f 

2 Ga √ 

3 

. (20) 
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It should be mentioned here that the settling Reynolds number of

the 2 cases in Fig. 10 is well below the onset of secondary mo-

tion ( Re t ≈ 92) for iso-thermal oblate particles with AR = 1 / 3 . This

implies that buoyancy effects not only increase the particle termi-

nal velocity but also trigger the transition to unsteady settling at

Reynolds numbers well below those of iso-thermal particles. This

can be observed in Fig. 10 (g), where the path instability occurs

at Re ≈ 62.35, before it reaches to the terminal Reynolds num-

ber of ≈ 46.5. The path instability is closely related to the wake

instability behind the particle [51,52] and the presence of buoy-

ancy forces in the flow can trigger the wake instability at lower

terminal Reynolds numbers. Moreover, it is observed in the study

of settling spheroids in isothermal flows [20] that the exact value

of Ga at which the vortices in the particle wake become unstable

depends on the ambient noise, suggesting that there exists a sub-

critical instability that can be triggered by disturbances in the flow.

Motivated by this observation, we have performed a series of ad-

ditional simulations with different Ga and Gr to identify the onset

of unsteady settling: in Fig. 11 we report the regions of stable sed-

imentation (vertical path) in the Ga − Gr/ Ga 2 plane. These maps

are generated for the 3 particle shapes investigated in this study.

The pink color in the figures indicates the region where the par-

ticle falls with a straight vertical path. This pink region is consid-

erably larger for the spherical particles than for spheroidal shapes.

In other words, the spheroidal particles start the zigzagging motion

at considerably lower Ga and Gr / Ga 2 . Oblate particles ( AR = 1 / 3 )

are observed to be the most sensitive shape to varying Gr ; i.e. the

critical Ga after which the particle exhibits the zigzagging motion

t  
s considerably smaller for oblate particles than for prolates at low

r / Ga 2 . However, the two spheroidal shapes have a similar behav-

or as Gr / Ga 2 increases beyond 0.5. Another striking finding is that

hen Ga exceeds the critical value, all particles studied here per-

orm a zigzagging motion. In fact, the oblique wake regime, pre-

iously observed for spheres and oblates at Gr = 0 [20,50] , disap-

ears in the presence of temperature driven buoyancy forces. 

. Final remarks 

We have presented results from fully resolved simulations of

ettling isolated spherical and non-spherical particles with a tem-

erature difference with respect to the surrounding viscous fluid.

he particle temperature is assumed constant in this study to avoid

dditional parameters such as heat capacity and thermal diffu-

ion ratio between the two phases. The discrete forcing immersed

oundary method ( IBM ) is employed in this study to represent the

uid-solid interaction in both momentum and temperature equa-

ions, while the Boussinesq approximation is used for the cou-

ling of momentum and temperature. The results of our numerical

ode are first validated against available experimental and numeri-

al data for various cases of isothermal and non-isothermal settling

pherical particles. 

We first study the influence of the Grashof number on the set-

ling velocity and the drag coefficient C D of a single spheroidal par-

icle of different aspect ratios. The results of the simulations show

hat the particle settling velocity increases with respect to the

sothermal conditions when Gr is negative (the particle is colder

hat the surrounding fluid) whereas it decreases when the parti-



M. Majlesara, O. Abouali and R. Kamali et al. / International Journal of Heat and Mass Transfer 149 (2020) 119206 11 

c  

i  

i  

p  

e  

t  

w  

(  

t  

t  

f  

a  

m  

t

 

d  

m  

G  

s  

i  

t  

G  

m  

p  

o  

s  

b

 

n  

g  

r  

s

D

C

m  

a  

W  

i  

B

A

 

G  

c  

f  

F

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

 

 

[  

[  

 

 

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

 

[  

 

 

[  

 

[  

[  

 

le is hot, i.e. positive Grashof numbers. The ratio Gr / Ga 2 , indicat-

ng the ratio of the natural convection to the gravitational forces,

s found to play an important role in the particle dynamics; in

articular, we show that increasing Ga diminishes the buoyancy

ffect considerably faster than decreasing Gr . This explains why

he settling velocity of cold particles at a constant Gr increases

hen reducing Ga in a sufficiently small range of Galileo numbers

 Gr = −100 and Ga < 30). As regards the particle shape, we show

hat for any spheroidal particle below the onset of secondary mo-

ion, at low Ga and Gr / Ga 2 , the drag coefficient can be predicted

rom that of the settling spheres at the desired Grashof number

nd the spheroidal particle frontal area: in other words, the main

odifications due to the particle shape can be accounted for by

he change of the particle frontal area. 

Next, we conduct an extensive campaign of simulations with

ifferent Ga and Gr in order to identify the areas of stable sedi-

entation (vertical steady path) and of zigzagging motion in the

a − Gr/ Ga 2 plane for the 3 particle shapes investigated in this

tudy. Interestingly, this region is considerably larger for the spher-

cal particles than for spheroidal shapes. Hence, the spheroidal par-

icle settling bifurcates to unsteady motions at considerably lower

a and Gr / Ga 2 . Oblate particles ( AR = 1 / 3 ) are observed to be the

ost sensitive to varying Gr ; i.e. the critical Ga beyond which the

article exhibits the zigzagging motion is considerably smaller for

blate particles than for prolates at low Gr / Ga 2 . However, both

pheroidal shapes display a similar behavior as Gr / Ga 2 increases

eyond 0.5. 

With the behaviour of single particles studied in this work, the

ext step would therefore be to investigate the sedimentation of a

roup of non-spherical particles in quiescent and turbulent envi-

onments and to address the thermal effects on the global suspen-

ion behaviour. 
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