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We simulate the flow of two immiscible and incompressible fluids separated by an
interface in a homogeneous turbulent shear flow at a shear Reynolds number equal
to 15 200. The viscosity and density of the two fluids are equal, and various surface
tensions and initial droplet diameters are considered in the present study. We show
that the two-phase flow reaches a statistically stationary turbulent state sustained by
a non-zero mean turbulent production rate due to the presence of the mean shear.
Compared to single-phase flow, we find that the resulting steady-state conditions
exhibit reduced Taylor-microscale Reynolds numbers owing to the presence of the
dispersed phase, which acts as a sink of turbulent kinetic energy for the carrier fluid.
At steady state, the mean power of surface tension is zero and the turbulent production
rate is in balance with the turbulent dissipation rate, with their values being larger
than in the reference single-phase case. The interface modifies the energy spectrum
by introducing energy at small scales, with the difference from the single-phase case
reducing as the Weber number increases. This is caused by both the number of
droplets in the domain and the total surface area increasing monotonically with the
Weber number. This reflects also in the droplet size distribution, which changes with
the Weber number, with the peak of the distribution moving to smaller sizes as the
Weber number increases. We show that the Hinze estimate for the maximum droplet
size, obtained considering break-up in homogeneous isotropic turbulence, provides
an excellent estimate notwithstanding the action of significant coalescence and the
presence of a mean shear.

Key words: drops, multiphase flow, turbulence simulation

1. Introduction
The understanding of liquid–liquid emulsions is important in many industrial

processes e.g. hydrocarbon separation, suspension crystallization and emulsion
polymerization. These flows are characterized by density and viscosity ratios of

† Email address for correspondence: merosti@mech.kth.se
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the order of unity (e.g. water and oil mixtures) and a source of agitation (e.g. an
impeller) that creates a turbulent two-phase mixture consisting of a dispersed phase
of droplets and a continuous phase. The resulting turbulence in the carrier phase is
altered directly by the droplet feedback on the surrounding fluid and indirectly by
droplet–droplet interactions. Many aspects of the complex interaction of the dispersed
phase with the continuous phase are not well understood. In particular, there are
questions related to the topological changes and to the role of the surface tension of
the dispersed phase, the stationarity of the turbulent statistics and the kinetic energy
budget.

Liquid–liquid emulsions have been the subject of numerous experimental (Berkman
& Calabrese 1988; Pacek, Man & Nienow 1998; Lovick et al. 2005) and computational
studies (Perlekar et al. 2012; Skartlien, Sollum & Schumann 2013; Komrakova, Eskin
& Derksen 2015; Scarbolo, Bianco & Soldati 2015; Dodd & Ferrante 2016). The
computational studies can be broadly categorized as forced homogeneous isotropic
turbulence (Perlekar et al. 2012; Skartlien et al. 2013; Komrakova et al. 2015),
decaying homogeneous isotropic turbulence (Dodd & Ferrante 2016) and turbulent
wall flows (Scarbolo et al. 2015). Forced homogeneous isotropic turbulence has the
advantage of producing a statistically homogeneous and isotropic flow field that,
in time, can reach a statistically stationary state. However, in forced homogeneous
isotropic turbulence, the turbulent kinetic energy must be induced artificially via a
forcing term in the Navier–Stokes equations. This is in contrast to a natural forcing
mechanism that produces turbulent kinetic energy from finite Reynolds stresses
interacting with a mean velocity gradient. While forcing homogeneous isotropic
turbulence may be appropriate for studying the droplet size distributions, it has been
argued that artificial forcing is inappropriate for studying two-way coupling effects
(Elghobashi 2019). Therefore, for studying the turbulent kinetic energy budget, either
decaying isotropic turbulence or turbulent shear flow might be preferable.

In decaying isotropic turbulence, it was shown that the presence of finite-size
droplets always enhances the decay rate of the turbulent kinetic energy (Dodd &
Ferrante 2016). Also, the deformation, break-up or coalescence of the droplets
introduces an additional term to the turbulent kinetic energy equation – the power
of the surface tension – termed Ψσ by Dodd & Ferrante (2016), which describes the
rate of change of the interfacial energy, balancing the kinetic energy transfer between
the external fluid and the flow inside the droplets. Correct identification of these
pathways for the turbulent kinetic energy exchange is fundamental to understand the
turbulence modulation by the droplets and then to model it.

Building upon previous studies, we consider finite-size bubbles/droplets of Taylor
length scale in homogeneous shear turbulence (Tavoularis & Corrsin 1981a,b;
Pumir 1996; Mashayek 1998; Sekimoto, Dong & Jimenez 2016). Homogeneous
shear turbulence flow is conceivably the simplest case in which the flow remains
statistically homogeneous in all spatial directions. Moreover, compared to forced
isotropic turbulence, it has a natural energy production mechanism via a mean velocity
gradient. We note that ideal homogeneous shear turbulence is self-similar, implying
an unbounded energy growth within infinite domains (Sukheswalla, Vaithianathan
& Collins 2013). This condition limits any numerical simulations to relatively
short times, concerning only the initial shearing of isotropic turbulence (Rogers
& Moin 1987; Lee, Kim & Moin 1990; Sukheswalla et al. 2013). However, as
demonstrated by Pumir (1996) and Sekimoto et al. (2016) in single-phase flow, the
finite computational box introduces a large-scale confinement effect similar to that
enforced by a wall; thus, a meaningful statistically stationary state can be reached
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over long periods, termed statistically stationary homogeneous shear turbulence
(SS–HST). In particular, Sekimoto et al. (2016) showed that long-term simulations
of HST are ‘minimal’ in the sense of containing on average only a few large-scale
structures: all the one-point statistics agree well with those of the logarithmic layer
in turbulent channel flows, particularly when scaled with the friction velocity derived
from the measured Reynolds stresses. The same holds for the wall-parallel spectra
of the wall-normal velocity. The authors concluded that the similarities between the
steady-state homogeneous shear turbulence and other shear flows, particularly with
the logarithmic layer of wall turbulence, make it a promising system to study shear
turbulence in general. These observations, combined with the insights recently gained
in the droplet–turbulence interaction in decaying homogeneous isotropic turbulence,
motivate us to further investigate turbulence modulation due to droplets/bubbles in
steady-state homogeneous shear turbulence.

In this paper, we present a direct numerical simulation of an emulsion created by
droplets dispersed in homogeneous shear turbulence. By changing the initial size of
the dispersed phase and the Weber number, we aim to answer the following questions:

(i) Can a statistically stationary state be reached when the dispersed phase actively
undergoes break-up and coalescence in homogeneous shear turbulence?

(ii) If so, what determines the steady-state size distribution of the dispersed phase?
(iii) How does the dispersed phase change the turbulent kinetic energy budget?

Homogeneous shear turbulence shares many similarities with other shear flows,
including turbulent wall flows (Sekimoto et al. 2016); therefore, by answering
these questions, we expect to improve our understanding of the droplet–turbulence
interaction and, hopefully, help future modelers gain intuition about more complex
conditions.

To capture the complex phenomena accurately in a direct numerical simulation of
turbulent two-phase flow, we need a numerical method that is reliable and possess the
following properties: (i) discrete mass, momentum and kinetic energy conservation,
(ii) ability to handle large jumps in density, (iii) ability to handle complex topologies
and separation of scales and (iv) accurate surface tension implementation (Mirjalili,
Jain & Dodd 2017). In the present work, we choose to use an algebraic volume of
fluid method known as THINC (tangent of hyperbola for interface capturing) method,
which is a sharp-interface method. This method is relatively new and has been
demonstrated to be as accurate as and also cost effective compared to the well-known
geometric volume of fluid methods in canonical test cases (Xie, Ii & Xiao 2014),
which makes it a good alternative. However, Mirjalili et al. (2017) indicate that
large-scale realistic simulations of turbulent two-phase flows using THINC methods
are still lacking in the literature and are crucial to fully evaluate the capabilities of
these methods (see Rosti, De Vita & Brandt (2019) for the use of the THINC method
for low Reynolds number flows). Hence we choose to use this method in the current
study, which will serve as an evaluation of the robustness of THINC methods for
complex realistic simulations.

This paper is organized as follows. In § 2, we first discuss the flow configuration and
the governing equations and then present the numerical methodology used. The results
on the fully developed two-phase homogeneous shear turbulent flow are presented in
§ 3, where we answer the questions discussed above based on our observations. In
particular, we first show how the turbulent flow is modified by the droplets and how
the droplets evolve in the turbulent flow, and then explain how these modifications
occur by studying the turbulent kinetic energy balance in the two-phase flow. Finally,
all the main findings and conclusions are summarized in § 4.
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FIGURE 1. (Colour online) Sketch of the computational domain and of the Cartesian
coordinate system. The visualization pertains to flow at Rez ≈ 15 000 with 5 % volume
fraction of the dispersed phase at Weλ ≈ 0.75. The blue colour is used to depict the
surfaces of the droplets.

2. Methodology
2.1. Governing equations and numerical methods

We consider the flow of two immiscible incompressible fluids in a periodic box subject
to a uniform mean shear S . Figure 1 shows a sketch of the geometry and the Cartesian
coordinate system, where x, y and z (x1, x2 and x3) denote the streamwise, shear and
spanwise coordinates, and u, v and w (u1, u2 and u3) denote the respective components
of the velocity field. Standard periodic conditions are applied in x and z, and a shear-
periodic boundary condition is enforced in y, i.e.

ui(x1 + Lx, x2, x3)= ui(x1, x2, x3), (2.1)
ui(x1, x2 + Ly, x3)= ui(x1 − StL2, x2, x3), (2.2)

ui(x1, x2, x3 + Lz)= ui(x1, x2, x3). (2.3)

The total velocity field ui can be decomposed for convenience into the sum of a
mean component 〈ui〉xz generated by the imposed shear S , i.e. 〈ui〉xz = Sx2δ1i where
δij is the Kronecker delta, and a fluctuating part u′i (u′i= ui− 〈ui〉xz). In this article we
indicate the spatial average in the x and z directions with 〈·〉xz, fluctuations with the
prime symbol (′), and the average in the full volume with 〈·〉. The time evolution of
the fluctuating velocity u′i is described by

ρ

(
∂u′i
∂t
+ ∂u′iu

′
j

∂xj
+ Sx2

∂u′i
∂x1
+ Su′2δi1

)
=− ∂p

∂xi
+ ∂τij

∂xj
+ fi, (2.4)

∂u′i
∂xi
= 0, (2.5)

where ρ is the fluid density,p is the pressure, τij= 2µDij with µ the dynamic viscosity
and Dij the strain rate tensor (Dij= (∂ui/∂xj+ ∂uj/∂xi)/2) and fi is the surface tension
force defined as fi= σκniδ, where δ is the Dirac delta function at the interface, σ the
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interfacial surface tension, κ the interface curvature and ni the normal to the interface.
This equation is written in the so-called one-fluid formulation (Tryggvason, Sussman
& Hussaini 2007) so that only one set of equations is solved in both phases. The
problem is solved by introducing an indicator function H to identify each fluid phase
so that H = 1 in the region occupied by the suspended dispersed fluid (fluid 1) and
H = 0 in the carrier phase (fluid 2). Considering that both fluids are transported by
the flow velocity, we update H in the Eulerian framework by the following advection
equation written in divergence form,

∂φ

∂t
+ ∂uiH

∂xi
= φ ∂ui

∂xi
, (2.6)

where φ is the cell-averaged value of the indicator function.
The above governing equations are solved numerically. First, the transport equation

for φ is updated following the methodology described by Ii et al. (2012) and Rosti
et al. (2019) in order to obtain φn+1, which is used to update the density and viscosity
of the fluids. In particular, the indicator function H is approximated as

H(X, Y, Z)≈ Ĥ(X, Y, Z)= 1
2(1+ tanh(β(P(X, Y, Z)+ d))), (2.7)

where X, Y, Z ∈ [0, 1] is a centred local coordinate system defined in each cell, P
is a three-dimensional quadratic curved surface function determined algebraically by
imposing the correct value of the three normal components and the six components
of the Cartesian curvature tensor in each cell, d is a normalization parameter used
to enforce that the integral of the indicator function in each cell equals φ and β is
a sharpness parameter; β is set equal to 1 in the present work, the smallest value
allowed by the method which ensures the sharpest possible interface for a given
mesh size. Second, the momentum equation and the incompressibility constraint are
solved following the method proposed by Gerz, Schumann & Elghobashi (1989)
and recently adopted by Tanaka (2017), in which the third term on the left-hand
side of the momentum equation (2.4), i.e. the advection due to the mean shear flow,
is solved separately using a Fourier approximation. In particular, the second-order
Adams–Bashforth method is applied for the convection and viscous terms in (2.4) to
obtain an intermediate velocity

u′i
∗ = u′i

n +1t
(

3
2 rhsn

i − 1
2 rhsn−1

i

)
, (2.8)

where 1t is the time step from time tn to tn+1 and

rhsi =−Su′2δi1 −
∂u′iu

′
j

∂xj
+ 1
ρ

∂τij

∂xj
. (2.9)

The time step 1t is chosen such that the Courant–Friedrichs–Lewy number
Umax1t/1x is smaller than unity, where Umax = SLy is the maximum of the mean
shear flow velocity inside the computational domain. The advection due to the mean
shear flow is then solved separately using a Fourier approximation as

u′i
∗∗
(x1, x2, x3)= u′i

∗
(x1 −1tSx2, x2, x3). (2.10)

Note that Tanaka (2017) modified the approach of Gerz et al. (1989) by performing
a similar additional step for the pressure. Our tests suggest that the original form
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by Gerz et al. (1989) is numerically more stable and physically consistent with the
incompressibility constraint because the pressure is not a transported quantity. The
surface tension term fi is then taken into account by updating the velocity field: we use
the continuum surface force model by Brackbill, Kothe & Zemach (1992) to compute
the surface tension force where the normals are obtained with the well-known Youngs
approach (Youngs 1982), i.e. fi = σκ∂φ/∂xi, thus giving

u′i
∗∗∗ = u′i

∗∗ +1t
f n+1
i

ρ
. (2.11)

Then, we enforce the zero divergence of the velocity field by solving the following
Poisson equation

∂2pn+1

∂xj∂xj
= ρ

1t
∂u′i
∗∗∗

∂xi
, (2.12)

which is solved with a standard fast-Fourier-transform-based solver by exploiting the
periodic and shear-periodic boundary conditions as detailed in Tanaka (2017). Finally,
we correct the velocity with pn+1 to enforce the incompressibility constraint

u′i
n+1 = u′i

∗∗∗ −1t
1
ρ

∂pn+1

∂xi
. (2.13)

Note that our numerical scheme discretely conserves both momentum and kinetic
energy (in the absence of viscosity and surface tension) since we use a second-order
centred finite difference on a staggered mesh and the divergence form of the
convective terms (Morinishi et al. 1998).

2.2. Set-up
The problem is governed by several dimensionless parameters, which define the
problem under consideration. First, the computational box is defined by two aspect
ratios Axz = Lx/Lz and Ayz = Ly/Lz which are fixed equal to 2.05 and 1.025,
respectively. These values have been chosen according to what was proposed by
Sekimoto et al. (2016) as ‘acceptable’ in the sense that they fall within the range of
parameters in which the flow is as free as possible from box effects and can thus be
used as a model of shear-driven turbulence in general. Indeed, homogeneous shear
turbulence in an infinite domain evolves towards larger and larger length scales while
simulations in a finite box are necessarily constrained to some degree by the box
geometry. These authors noticed that the effect of the geometry can be reduced by
ensuring that Lz is the main constraint, thus resulting in the flow being ‘minimal’ in
the spanwise direction. Next, once the size of the numerical box is fixed, to fully
characterize the problem we define the shear Reynolds number based on the box
width

Rez = SL2
z

ν
, (2.14)

the Weber number based on the initial droplet diameter D0

WeS0 =
ρS2D3

0

σ
, (2.15)
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Case Symbol D0/Lz N0 WeS0 Werms0 We0 Weλ Reλ

1 — — — — — — — 145
2 (blue circle) 0.36 4 0.2 0.04 0.5330 0.0220 83
3 (green circle) 0.16 51 0.2 0.2 0.8000 0.0776 101
4 (brown circle) 0.08 564 0.2 1 2.0943 0.9339 111
5 (blue square) 0.36 4 1 0.2 2.0944 0.6773 113
6 (green square) 0.16 51 1 1 4.0156 0.7536 117
7 (brown square) 0.08 564 1 5 10.4717 4.9313 132
8 (blue triangle) 0.36 4 5 1 4.1890 2.0103 122
9 (green triangle) 0.16 51 5 5 7.9999 4.0868 131
10 (brown triangle) 0.08 564 5 25 20.9432 13.3057 142

TABLE 1. Summary of the direct numerical simulations performed with different initial
droplet sizes D0, numbers of droplets N0 and surface tension σ , all at a fixed Reynolds
number Rez = 15 200 and volume fraction Φ = 5 %. r.m.s., root mean square.

and the ratio of the initial droplet diameter to the box size ADz = D0/Lz. In the
following, we consider one case of single-phase flow as reference and nine cases of
two-phase flows, all at the same Reynolds number equal to 15 200; in the multiphase
cases, we vary the ratio ADz and WeS0 , as summarized in table 1. Note that the Weber
number here is mainly determined by the interfacial surface tension σ . Two other
non-dimensional parameters are the density and viscosity ratios, which are fixed to
unity to study the individual effect of the Weber number (interfacial surface tension).

Besides the parameters just defined and based on the geometrical dimensions
and initial and boundary conditions alone, in the following discussion we will use
other non-dimensional numbers because they turned out to be more relevant to
understand the problem at hand; in particular, the two non-dimensional parameters
which characterize the single-phase homogeneous shear turbulent flows, the Taylor-
microscale Reynolds number Reλ and the shear-rate parameter S∗, defined as

Reλ =
(

2K
3

)1/2
λ

ν
=
(

5
3νε

)1/2

2K, (2.16)

and

S∗ = 2SK
ε
, (2.17)

where λ=√10νK/ε is the Taylor microscale (Sekimoto et al. 2016), K = 〈ρu′iu
′
i〉/2

is the turbulent kinetic energy per unit volume and ε = µ〈∂u′i/∂xj∂u′i/∂xj〉 is the
dissipation rate of the fluctuating energy. These two non-dimensional numbers can be
interpreted as the ratio of the eddy-turnover time τ0= (2K)1/2/ε and the Kolmogorov
time scale τK = (ν/ε)1/2 and the mean shear time scale τS = 1/S , respectively.

Weber numbers can be defined in several ways. In (2.15) we defined the Weber
number based on the mean shear, but it can also be defined based on the velocity
fluctuations, thus giving

Werms0 =
2ρKD0

σ
. (2.18)
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FIGURE 2. (Colour online) The ratio of the two Weber numbers introduced here, one
based on the mean shear WeS0 and one on the velocity fluctuations Werms0 , as a function
of the Weber number based on the initial droplet size, We0. The circle, square and
triangle symbols are used to distinguish cases with different surface tension but same
ratio WeS0/Werms0 , while the brown, green and blue colours represent cases with the ratio
WeS0/Werms0 equal to 1/5, 1 and 5, respectively. These symbols and colour scheme will
be used throughout the rest of the paper.

Note that the latter definition is the one usually used in homogeneous isotropic
turbulent flows in the absence of a mean flow (Dodd & Ferrante 2016). Both the
Weber numbers WeS0 and Werms0 are of interest since they are based on two different
mechanisms that may affect the droplets dynamics: on large scales (large droplets) the
effect of the mean shear is dominant, while on small scales (small droplets) the flow
is mainly dominated by the isotropic turbulent fluctuations. Our set of parameters is
chosen such that the ratio of these two Weber numbers WeS0/Werms0 equals 1/5, 1
and 5, as reported in figure 2. In general both the mechanisms are present together
and hence we can define a Weber number which incorporates both effects as

We0 = ρ(
√

2K+ SD0)
2D0

σ
. (2.19)

Finally, we can define a Weber number based on λ as

Weλ = ρ(
√

2K+ Sλ)2λ
σ

. (2.20)

The choice of using λ in the definition of the Weber number instead of a dimension
associated with the suspended phase is due to the fact that the interface is not
only deforming, thus losing its original spherical shape, but also actively undergoing
merging and break-up processes, which makes the definition of a unique dimension
difficult. Therefore, we propose to rely on a fluid length scale, which, as shown below
in the results, yields a good collapse of our data. In the following discussion, we use
Weλ to discuss the results; the value of We0 is reported in order to fully characterize
the initial conditions of the present simulations.
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FIGURE 3. (Colour online) (a) Time history of the turbulent kinetic energy
K = 〈u′iu′i〉/2 (black line) and enstrophy Ω (grey line), normalized by their mean
values. (b) Normalized histogram of the streamwise (red) and shear (orange) components
of the velocity fluctuations, u′ and v′. The lines and symbols are used to distinguish our
results (lines) from those by Pumir (1996).

2.3. Code validation
The numerical code used in this work has been extensively validated in the past for
multiphase turbulent flows simulations (Rosti & Brandt 2017; Rosti et al. 2018a,b).
Here, we provide one more comparison with literature results for the specific case
of HST. The single-phase homogeneous shear turbulence has been validated by
reproducing one of the cases investigated by Pumir (1996); in particular, we simulated
the Run No. 2 in that paper. The initial condition at t= 0 is a homogeneous isotropic
turbulent field at Reλ = 50.8, obtained in a square computational box of size 2π
discretized with 256 grid points in each direction. From the time history of the
turbulent kinetic energy K and of the enstrophy Ω = 〈ωiωi〉, shown in figure 3(a),
we observe a first transient phase for 0 6 tS 6 30, where the kinetic energy and
enstrophy grow rapidly, followed by a statistically stationary state characterized by
a cyclic succession of turbulent kinetic energy peaks rapidly followed by a peak
in enstrophy with a time lag of approximately 5S . This behaviour is well captured
in our simulation. A quantitative validation is performed first by comparing the
mean components of the velocity anisotropy tensor, bij = 〈uiuj/u′ku

′
k − δij/3〉 computed

in our simulations (b11 = 0.231, b22 = 0.129, b33 = 0.101, b12 = 0.147) with the
data reported by Pumir (1996), and we found that the differences are below 5 %.
A further comparison is shown in figure 3(b) where the normalized histograms of
the streamwise and shear components of the velocity obtained with the present
simulations are compared with the results reported in the literature (Pumir 1996);
again we observe a very good agreement.

3. Results
3.1. Statistically stationary state

We start our analysis by considering the single-phase flow at Rez = 15 200. The
problem is solved numerically on a computational mesh of 1312 × 640 × 624 grid
points and the simulation is run for approximately 250S time units. Note that
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FIGURE 4. (Colour online) (a) Time history of the ratio between the turbulent production
P = −〈u′v′〉d〈u〉/dy and the turbulent dissipation rate ε = µ〈∂u′i/∂xj∂u′i/∂xj〉. The black
and green lines represent the single and multiphase flows (D0 = 0.16Lz and Weλ ≈ 0.75),
respectively. (b) Spectrum of the mean turbulent kinetic energy (black solid line) and its
three spatial components (black dashed, dotted, and dashed-dotted lines) for the single-
phase flow. The other three coloured solid lines (blue, green and brown) are used for the
spectra of the two-phase flows with Weλ= 0.02, 0.75 and 5. The grey line is ∝ k−5/3, and
the three vertical dashed lines represent the initial size of the droplets. The spectra are
normalized by multiplying by ε−2/3.

the grid spacing is chosen sufficiently small for good resolution of the smallest
turbulent scales as indicated by 1x/η ≈ 0.7, where η is the Kolmogorov scale
defined as η = (µ/ρ)3/4/ε1/4. The initial flow field is fully developed single-phase
homogeneous isotropic turbulence, and the mean shear S is applied from t = 0.
As shown in figure 4(a), once the shear is applied, the flow undergoes an initial
transient characterized by a strong increase in the production of turbulent kinetic
energy, which is not in balance with the dissipation rate. After some time, however,
the turbulent kinetic energy K decreases owing to an increase in the dissipation,
reaching a new statistically steady state where, on average, the production balances
the dissipation (P ≈ ε). This state, called steady-state shear turbulence, was first found
and characterized by Pumir (1996) and later investigated by others (e.g. Sekimoto
et al. 2016). The resulting Taylor-microscale Reynolds number at the steady state is
equal to Reλ≈ 145 with the averaged spectrum of the turbulent kinetic energy reported
in figure 4(b). Owing to the high Reynolds number, a clear k−5/3 regime develops at
intermediate scales. We also observe that the spectra of each individual component of
the velocity are different at small wavenumbers because of the large-scale anisotropy,
while all spectra coincide at higher wavenumbers, consistently with what was observed
by Pumir (1996).

We now consider the multiphase problem. After around 100S , when the single-
phase flow has already reached a statistically steady state, we inject spherical droplets
into the domain at random locations, globally enclosing a volume fraction of the
carrier phase of 5 %. The initial droplet diameter D0 is in the inertial range, as
shown in figure 4(b) with the vertical dashed lines. In particular, three different
initial diameters are chosen, D0/Lz ≈ 0.08 (brown), 0.16 (green) and 0.32 (blue),
corresponding to approximately 1.1, 2.5 and 5.6 times the single-phase Taylor
microscale λ. After the introduction of the dispersed phase, a new short transient

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

58
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
88

.1
51

.1
92

.3
9,

 o
n 

11
 A

ug
 2

01
9 

at
 1

6:
11

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.581
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


972 M. E. Rosti, Z. Ge, S. S. Jain, M. S. Dodd and L. Brandt

102101100

We0

We¬ Re¬

10-1 102101100

We0

10-2 10-1

102(a) (b)

101

100

10-1

10-2

150

125

100

75

FIGURE 5. (Colour online) (a) Weber numbers based on the Taylor microscale, Weλ, as a
function of the initial Weber number We0 and (b) Reynolds numbers based on the Taylor
microscale, Reλ, as a function of Weλ. The grey solid line in (a) is a fit to our data in
the form of Weλ ∝We2

0, while the grey solid line in (b) represents the Taylor-microscale
Reynolds number Reλ of the single-phase flow.

arises lasting approximately 50S , eventually leading to a new statistically steady
state, as depicted in figure 4(a). Also, in the multiphase case, we observe that, at
steady state, the turbulent production balances on average the dissipation rate (P ≈ ε).

The presence of the droplets modifies the flow profoundly. The averaged spectrum
of the turbulent kinetic energy in both phases in the two-phase case is reported in
figure 4(b), where we observe that the interface mostly affects the large wavenumbers
(small scales) for which higher levels of energy are evident, while slightly lower
energy is present at the large scales. Note that the result is analogous to what was
observed in decaying homogeneous isotropic turbulence for solid particles (Lucci,
Ferrante & Elghobashi 2010) and bubbles (Dodd & Ferrante 2016); the increased
energy at high wavenumbers has been explained by the break-up of large eddies
due to the presence of the suspended phase and the consequent creation of new
eddies of smaller scale. In the same figure we can also observe that the effect of the
droplets decreases as the Weber number increases; in other words, the spectra of the
multiphase cases approach the single phase one as We increases, while for low We
the spectra depart from the single-phase case at smaller and smaller wavenumbers.

As already discussed above, We0 is the Weber number based on the initial
droplet size, but since the droplets break-up or coalesce, this measure is not fully
representative of the final state of the multiphase problem; because of this, in the
following sections we prefer to use the Weber number based on a flow length scale,
Weλ, reported in figure 5(a) as a function of We0. We can observe that the two
Weber numbers are well correlated, with Weλ scaling approximately as the square of
We0, i.e. Weλ ∝ We2

0. The good level of correlation between the two definitions is a
further demonstration that for the parameter range considered here the Weber number
variations are mainly due to the changes of the interfacial surface tension rather than
the chosen length scale.

We quantify the turbulence modulation by examining the resulting Reλ, shown for
all our simulations in figure 5(b) as a function of the Weber number based on the
Taylor microscale Weλ, and also reported in table 1. We can observe that the Reynolds
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number grows with Weλ and that all the two-phase flow cases exhibit lower Taylor-
microscale Reynolds numbers than the single-phase case. Moreover, we observe that
the difference decreases as the Weber number increases, with the two-phase flow cases
approaching the single-phase one as Weλ increases, consistently with what was already
observed in figure 4(b). Indeed, the Reynolds number for the case with the most rigid
droplets (Weλ ≈ 0.02) is approximately half the single phase value (−41 %), while
the difference with the single-phase flow is only 2 % in the most deformable case
(Weλ ≈ 13). Note that, in the context of unbounded forced turbulent flows, such as
homogeneous isotropic turbulence and homogeneous shear turbulence, a reduction of
the Reynolds number can be interpreted as a drag increase, contrary to what is usually
found in wall-bounded flows with constant flow rates where a reduction in the friction
Reynolds number leads to drag decrease.

As a first noteworthy result, the above data demonstrate that a statistical stationarity
is not unique to single-phase homogeneous shear turbulent flows, but it is also
realizable in the presence of a second, dispersed phase. Here, we have defined the
stationary state in terms of the statistical properties of the flow averaged over both
phases, but since the droplets can also break-up or coalesce, it is natural to ask what
the steady-state size distributions are and how that relates to the turbulence features.
These questions are answered in the following sections.

3.2. Size distribution
We now study the transient and steady-state property of the interface separating the
two fluids. Figure 6 shows instantaneous snapshots of the two-phase flow at the
statistically steady state, which is characterized by droplets with different sizes and
shapes: in general we can observe that small droplets are approximately spherical,
while the largest ones have very anisotropic shapes and show a preferential alignment
with the direction of the mean shear. Also, as the Weber number decreases, the
droplets size increases and larger droplets can sustain the spherical shape.

Figure 7(a) shows the temporal evolution of the number of droplets (N ) under
various Weλ and initial sizes D0. The counting of the droplets is conducted
automatically by checking the connectivity of the local volume of fluid field (φ) using
a n-dimensional image processing library (scipy.ndimage, https://docs.scipy.org/doc/
scipy/reference/ndimage.html). We observe that N has an initial transient phase
of same duration as the fluid transient phase observed previously in figure 4(a)
(tS . 50), before the droplets count approaches a statistically steady value for all
the cases considered, consistently with the statistically stationarity of the averaged
global flow quantities. Note that the final state is a statistically steady state since the
number of droplets N is not constant but continuously varies and oscillates around
a mean value, denoted later on as Ns. From the figure we observe also that the
initial transient phase differs among the cases, with three distinct behaviours evident:
(i) in most of the cases, N increases rapidly after the injection (within tS ≈ 10);
however, the growth slows down and N reaches its final steady-state value almost
monotonically; (ii) cases 4 and 5 exhibit a significant overshoot of the number of
droplets N for short times before N reduces to the final regime values due to the
coalescence; and (iii) case 3 shows an initial decrease of the number of droplets
followed by an increase. Notwithstanding the different behaviours, in all the cases
the final number of droplets is always larger than the initial one.

The steady-state value of the number of droplets Ns as a function of Weλ is
reported in figure 7(b); we observe that Ns grows monotonically with Weλ (see also
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(a) (b)

(c) (d)

(e) (f)

FIGURE 6. Visualization in the x–y plane of the interface in the homogeneous shear
turbulent flow for different Weλ: (a) Weλ≈ 0.02, (b) 0.08, (c) 0.8, (d) 4, (e) 5 and ( f ) 13.
In the panels the flow is from left to right.
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FIGURE 7. (Colour online) (a) Time history of the number of droplets N in the domain
for different Weber numbers. The rhombus symbols at t= 0 represent the initial number of
droplets. (b) The mean number of droplets Ns at the statistically steady state as a function
of the Weber number Weλ. The grey solid line in (b) is a fit to our data in the form of
Ns ∝Weλ.
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FIGURE 8. (Colour online) (a) Normalized cumulative volume distributions V/Vtot of
the dispersed phase at the steady state as a function of the equivalent spherical droplet
diameters D. The horizontal grey line corresponds to the level V = 0.95Vtot. (b,c) Contour
of the temporal evolution of the normalized cumulative volume distributions of the
dispersed phase as a function of the equivalent spherical droplet diameter for cases 4 (b)
and 5 (c).

the visualizations in figure 6) and that the growth is nearly linear over the three
decades spanned in the present study, i.e. a fit to our data produces Ns ∝Weλ with
an exponent of 1. Since a high Weber number corresponds to a low surface energy,
we conjecture that Ns grows indefinitely with Weλ. Note also that cases 5 and 6
which have different initial droplet diameters, have almost the same final count
of droplets Ns as well as Weλ. This provides additional evidence that the droplet
statistics are better defined by the Weber number Weλ based on the flow quantities
rather than by that based on the initial droplet size We0. These results suggest that
the relative strength between the break-up and coalescence reflects the history of the
flow features, and at equilibrium measurable quantities depend only on the global
physical parameters.

Next, we aim to characterize the steady-state size distribution of the emulsion.
Thus, we first examine the cumulative volume, V , as a function of the equivalent
spherical diameter D defined as the diameter of the sphere occupying the same
volume, see figure 8(a). Specifically, figure 8(a) shows the steady-state distributions
of all cases, where each point on the curves represents the total volume of the
droplets with equivalent diameter lower than D. In the figure, both V and D are
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normalized by the global maximal values so that the curves are bounded uniformly
from above by 1. The figure shows that the cumulative volume distribution only
has one inflection point (d2V/dD2 = 0), thus indicating that the probability density
plot (dV/dD) is single peaked. In figure 8(a) the Weber number Weλ grows from
right to left, as indicated by the list of symbols, suggesting that small droplets tend
to be more common at high Weber numbers. Additionally, the range of the droplet
diameters also narrows with increasing Weλ, since the cumulative volume grows faster
to unity, as visually confirmed in figure 6. Case 2, blue line with circle, is the only
simulation exhibiting a double peak (i.e. dV/dD has two local maxima): this is due
to the presence of very small droplets together with few large ones, as can be seen
in figure 6(a). Nevertheless, the overall trend of decreasing size for increasing Weber
number is still consistent with the linear scaling between Ns and Weλ, as already
observed in figure 7(b). Figures 8(a) and 8(c), are contours of V/Vtot as a function
of the equivalent diameter D and time, and can thus be interpreted as a cumulative
spectrogram with most of the droplets centred in the region where the gradient of the
colour is the largest. In particular, we selected two specific cases, with same initial
Weber number We0 ≈ 2, but different initial droplet size and surface tension, thus
leading to different Weλ. The two figures show the transient behaviour for cases 4 and
5, respectively: in figure 8(b) the mean size distribution remains relatively unchanged
over time but it is subject to strong fluctuations, while figure 8(c) shows a clear shift
of the population from large droplets to small ones, with a statistically steady state
characterized by small fluctuations.

Another important parameter related to the size distribution is the largest droplet
size, Dmax. Assuming break-up of droplets due to the dynamic pressure (∼ρU2),
Hinze (1955) proposed that the largest possible droplet in a turbulent emulsifier is
determined by the velocity fluctuation across Dmax, i.e. one can define a critical
Weber number Wecrit = ρu′2Dmax/σ , above which the droplet breaks up. Hinze (1955)
showed that simple dimensional analysis leads to Dmax ∝ ε−2/5, if isotropy prevails
and the scaling by Kolmogorov (1941) is assumed valid. Dmax can be in general
approximated by the diameter of the equivalent droplet occupying 95 % of the total
dispersed volume, i.e. Dmax≈D95, which is represented in figure 8(a) with the dashed
grey line. The symbols in the same figure provide the values of D95 for our data.
Figure 9(a) shows the normalized D95 as a function of the scaled energy input,
and indeed we can observe that our data scale with an approximately −2/5 slope.
We remark that, although Hinze developed his theory considering only isotropic
turbulent flows dominated by the break-up process and neglected the coalescence,
he hypothesized that the same scaling law might still hold for non-isotropic flows
provided that the droplet sizes fall within the inertial range, such as in all our cases.
More importantly, the success of the Hinze theory relies on the central assumption
that break-up results from the dynamic pressure force, corresponding to a fixed critical
Weber number. This is clearly shown in figure 9(b), which shows the Weber number
based on D95 as a function of Weλ. For all our cases, we obtain that Wecrit ≈ 1. Our
results thus confirm that the −2/5 scaling between the maximum droplet diameter
and the turbulence dissipation applies not only to isotropic turbulence, but also to the
homogeneous shear turbulence that we have analysed.

Finally, we can further characterize the size distribution of the emulsion by
inspecting the total surface area A of the dispersed phase. This quantity is very
important when studying multiphase flows with interfaces, since the rate of work due
to the surface tension is equal to the product of the surface tension coefficient and
the rate of change in interfacial surface area (Dodd & Ferrante 2016); also, for many
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FIGURE 9. (Colour online) (a) Normalized maximum droplet size D95 as a function of
the energy input ε. The grey solid line is the relation ρσD95/µ

2 = 0.725(µ5ε/ρσ 4)−2/5

proposed by Hinze (1955). (b) Critical Weber number WeD95 based on the maximum
droplet size D95 for all the cases considered.
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FIGURE 10. (Colour online) Total interfacial area A as a function of the Weber number
Weλ. The grey solid line is a fit to our data in the form of A∝We1/3

λ .

industrial applications, the total surface area is often the most important parameter as
surfactants tend to reside on the interface or it determines the chemical reaction rate.
Figure 10 reports the steady state surface area A as a function of the Weber number
Weλ and clearly shows that the surface area increases monotonically with the Weber
number. As we have shown above, N ∝ Weλ, combined with mass conservation,
i.e. ND3 ∝ 1, leads to the following relation for the total area: A ∝ ND2 ∝ We1/3

λ .
In other words, the surface area of the droplets shall also increase with the Weber
number defined by the Taylor length of the flow, with a slope of 1/3. Figure 10
verifies this scaling. We remark that in the derivation above, we have assumed that
the droplets are spherical, which is not always true in our cases. However, provided
the linear scaling between N and Weλ remains valid, we expect the 1/3 scaling law
to hold for a wide range of emulsions.
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3.3. Turbulent kinetic energy budget
We now study how the multiphase nature of the problem affects the turbulent kinetic
energy. To do so, we derive the turbulent kinetic energy evolution equation by first
multiplying the momentum conservation equation (2.4) by the velocity fluctuation u′i,

ρ

(
∂u′iu

′
i/2
∂t

+ ∂u′iu
′
iu
′
j/2

∂xj
+ Sx2

∂u′iu
′
i/2

∂x1
+ Su′1u′2

)
=−∂u′ip

∂xi
+ u′i

∂τij

∂xj
+ u′i fi. (3.1)

We make use of

u′i
∂τij

∂xj
= ∂u′iτij

∂xj
− τij

∂u′i
∂xj
= ∂u′iτij

∂xj
− τijDij, (3.2)

to obtain

ρ

(
∂u′iu

′
i/2
∂t

+ ∂u′iu
′
iu
′
j/2

∂xj
+ Sx2

∂u′iu
′
i/2

∂x1
+ Su′1u′2

)
=−∂u′ip

∂xi
+ ∂u′iτij

∂xj
− τijDij + u′i fi. (3.3)

Equation (3.3) can then be either volume averaged over both phases to obtain the total
kinetic energy equation, or phase averaged over the phase m (e.g. carrier or dispersed
phase) to obtain the turbulent kinetic energy evolution equation for one phase only.

The equation for the two-fluid mixture is obtained by applying the volume averaging
operator

〈·〉 = 1
V

∫
V
· dV, (3.4)

leading to

dK
dt
=P − ε+Ψσ , (3.5)

where the different terms indicate the rate of change of turbulent kinetic energy K,
the turbulent production rate P , the dissipation rate ε and the power of the surface
tension ψσ , defined as

K= 〈ρu′iu
′
i〉/2, P =−S〈ρu′1u′2〉, ε= 〈τijDij〉, Ψσ = 〈u′i fi〉. (3.6a−d)

Here, Ψσ is the rate of work performed by the surface tension force on the
surrounding fluid. It represents exchange of turbulent kinetic energy and interfacial
surface energy and can be either positive or negative and thus a source or sink
of turbulent kinetic energy. In particular, Ψσ is proportional to the rate at which
surface area is decreasing, i.e. Ψσ ∝−dA/dt (Dodd & Ferrante 2016), and therefore
decreasing (increasing) interfacial area through droplet restoration (deformation) or
coalescence (break-up) is associated with Ψσ being a source (sink) of turbulent kinetic
energy. Note that all the transport terms in (3.3) vanish due to the homogeneity of
the domain. On the other hand, if we apply the phase average operator

〈·〉m = 1
Vm

∫
Vm

· dV, (3.7)
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FIGURE 11. (Colour online) (a) Turbulent kinetic energy production P and (b) dissipation
ε rates averaged over both phases as a function of the Weber number Weλ, normalized by
their value in the single-phase flow (P0 and ε0).

we obtain

dKm

dt
=Pm − εm + T ν

m + T p
m , (3.8)

where the different terms now indicate the rate of change of turbulent kinetic energy
Km, the turbulent production rate Pm, the dissipation rate εm and the viscous T ν

m and
pressure T p

m powers of the phase m, defined as

K= 〈ρu′ju
′
j〉m/2, Pm =−S〈ρu′1u′2〉m, ε= 〈τijDij〉m, (3.9a−c)

T ν
m =

〈
∂u′iτij

∂xj

〉
m

, T p
m =−

〈
∂u′ip
∂xi

〉
m

. (3.9d,e)

In this case, the viscous and pressure transport terms are retained to account for a net
flux of turbulent kinetic energy from one phase to the other caused by the coupling
between the droplets and the carrier fluid (this physical interpretation can be seen
more clearly by applying Gauss’s theorem to rewrite the terms as surface integrals,
thus resulting in surface integration over the droplet surface). Note finally that the
convective transport terms are zero because the two fluids are immiscible and therefore
turbulent eddies cannot transport turbulent kinetic energy across the interface.

First, we focus on the equation for K obtained by averaging over the whole volume
and over both phases (3.5). At steady state, the rate of change of K is obviously
zero and the remaining terms are the production and dissipation rates and the
power of surface tension. Figure 11 shows the production P and dissipation ε rates,
normalized by their single-phase values P0 and ε0, for all the simulations performed
in the present study as a function of the Weber number Weλ. We observe that both
the normalized production and dissipation rates are greater than unity and decrease
monotonically as the Weλ increases, indicating that the presence of the droplets leads
to turbulence augmentation. As Weλ decreases, the droplets become increasingly rigid,
and therefore they exert a blocking effect on the surrounding turbulent flow. This
effect abruptly re-orients the turbulent eddies leading to an increase in the magnitude
of the Reynolds stress, 〈u′1u′2〉, causing an increase in P , which also leads to an
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FIGURE 12. (Colour online) (a) Turbulent kinetic energy production Pm and
(b) dissipation εm rates averaged over the two phases separately as a function of
the Weber number Weλ for cases 2, 6 and 10. The left and right columns are used to
distinguish the dispersed and carrier phases, respectively.

increase in the magnitude of the velocity gradients Dij, associated with an increase
in ε relative to the single-phase flow, as shown in figure 11. Moreover, the two
quantities have approximately the same value (the difference is less than 3 %), thus
indicating that at steady state the production balances the dissipation and that the
power of surface tension is on average zero (i.e. P ≈ ε and Ψσ ≈ 0). These results are
consistent with what was previously observed in figure 4(a) and indirectly confirm
the relation Ψσ = −σ/Vm dA/dt derived by Dodd & Ferrante (2016). Indeed, this
relation implies that at steady state Ψσ is zero since the rate of change of A is null.

Next, we focus on the equation obtained by phase averaging in one of the two fluids
(3.8). Again, at steady state the time derivative on the left-hand side is zero and the
relation states that the production and dissipation are balanced by the two transport
terms T ν

m and T p
m . Figure 12 shows histograms of the production Pm and dissipation

εm rates in the two phases for three selected Weber numbers Weλ (cases 2, 6 and 10).
We observe that the production rate is lower in the dispersed phase than in the carrier
phase, while the dissipation rate is higher in the dispersed fluid than in the carrier
fluid. These results indicate that the total transport term Tm = T ν

m + T p
m is positive in

the dispersed fluid and negative in the carrier, corresponding to a turbulent kinetic
energy transfer from the carrier to the dispersed phase. In other words, the presence
of the droplets is overall a sink for the turbulent kinetic energy of the bulk fluid Kc.
In addition, we observe that the difference in Pm and εm decreases with Weλ.

Finally, figure 13 shows the decomposition of the total transport term Tm into its
pressure and viscous contributions, T p

m and T ν
m . In the dispersed phase shown in

(a), the pressure transport term is very small and almost negligible, with most of
the transport of turbulent kinetic energy (90–95 %) due to the viscous contribution
T ν

d . On the other hand, an opposite behaviour is evident in the carrier phase shown
in (b): the pressure transport term T p

c is dominant one and accounting for most of
the transport of turbulent kinetic energy (65–80 %), while the pressure contribution
is small. Moreover, we can observe that all the transport terms reduce for increasing
Weber number, consistently with the discussion concerning figure 12.

The different mechanism of transport of turbulent kinetic energy between the carrier
and dispersed phase is due to the different kind of flow experienced by the two fluids.
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FIGURE 13. (Colour online) (a) Dispersed and (b) carrier transport terms Tm, averaged
over the two phases separately as a function of the Weber number Weλ for cases 2,
6 and 10. The left and right columns are used to distinguish the pressure and viscous
contributions, respectively.
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FIGURE 14. (Colour online) Probability density function of the flow topology parameter
Q for three different Weber numbers: cases 2 (blue line), 6 (green line) and 10 (brown
line), same as figure 13. The solid and dashed lines are used for the dispersed and carrier
phase, respectively.

This is discussed in figure 14 where the so-called flow topology parameter Q (see e.g.
De Vita et al. 2018) is presented. The flow topology parameter is defined as

Q= D2 −Ω2

D2 +Ω2
, (3.11)

where D2 = DijDji and Ω2 = ΩijΩji, with Ωij the rate of rotation tensor,
Ωij = (∂ui/∂xj − ∂uj/∂xi)/2. When Q = −1 the flow is purely rotational, regions
with Q = 0 represent pure shear flow and those with Q = 1 elongational flow. The
distribution of the flow topology parameter for three selected cases is reported in
figure 14. Note that in the figure we show the probability density function (p.d.f.) of
Q in the two liquid phases separately. We observe that in the carrier fluid (dashed
lines) the flow is mostly a shear flow as demonstrated by a single broad peak at
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Q= 0, and that little changes when changing the Weber number. On the other hand,
the flow of the dispersed fluid (solid lines) still shows a broad single peak, now
shifted towards negative values of Q, meaning that the flow is more rotational. Also,
the relevance of the rotational flow is more and more evident as the Weber number
increases. This is caused by the increased number of droplets and their consequent
reduction in size: indeed, as the droplets size reduces the effect of the shear reduces
as well.

4. Conclusions
We perform direct numerical simulations of two-phase homogeneous shear turbulent

flows at Rez = 15 200, where the two-phase nature of the problem is tackled
numerically using the MTHINC volume of fluid method recently developed. The
droplets are initially spheres providing 5 % volume fraction of the suspended phase
and various Weber numbers and droplet initial diameters are investigated.

We show that the two-phase flow is able to reach a statistically steady state as
indicated by a balance of turbulent kinetic energy production and dissipation. The
results show that the presence of the droplets leads to turbulence augmentation
by increasing the dissipation and production rates of the turbulence relative to the
droplet-free flow. In particular, we find that as the Weber number decreases (higher
droplet surface tension), the dissipation rate increases, causing the Taylor-microscale
Reynolds number to decrease. This is explained by the surface tension force exerting
a blocking effect on the surrounding turbulent flow. The turbulent production and
dissipation rates are on average equal and in balance, with values larger than their
single-phase counterparts. Also, the surface tension power is on average zero. The
flow modifications are caused by the presence of the dispersed phase, which acts as a
sink of turbulent kinetic energy for the carrier phase, with a net flux going from the
bulk of the fluid to the dispersed phase where it is dissipated. Moreover, the transport
of turbulent kinetic energy in the carrier fluid is mainly due to the pressure transport,
while the one inside the dispersed phase is dominated by the viscous contribution.
This difference is explained by the different nature of the flow in the two phases:
the carrier fluid is mainly a shear flow, while the dispersed fluid is more rotational
owing to its smaller length scales where the effect of the mean shear is reduced.

In addition to the flow properties, the droplet distribution eventually reaches a
statistically stationary condition. Indeed, we show that the flow reaches a condition
where the number of droplets remains almost constant, due to a balance between
the break-up and coalescence mechanisms, and that the number of droplets grows
approximately linearly with the Weber number. A similar trend is found for the
averaged surface area which also grows monotonically with the Weber number, but
the growth rate is less than linear (the surface area grows with the Weber number to
the power of 1/3, at least for moderately large Weber numbers). With the exception
of one case, the droplet size distribution is single peaked, with the mean droplet size
reducing with the Weber number. Based on the size distribution data, we show that
the maximum droplets size scales well with the energy input as proposed by Hinze
(1955), although the possibility of a coalescence mechanism and the presence of a
mean shear were not considered in the original formulation by Hinze (1955).
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