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The breakdown of Darcy’s law in a soft
porous material

Marco Edoardo Rosti, *a Satyajit Pramanik, b Luca Brandta and
Dhrubaditya Mitrab

We perform direct numerical simulations of the flow through a model of deformable porous medium.

Our model is a two-dimensional hexagonal lattice, with defects, of soft elastic cylindrical pillars, with

elastic shear modulus G, immersed in a liquid. We use a two-phase approach: the liquid phase is a

viscous fluid and the solid phase is modeled as an incompressible viscoelastic material, whose complete

nonlinear structural response is considered. We observe that the Darcy flux (q) is a nonlinear function –

steeper than linear – of the pressure-difference (DP) across the medium. Furthermore, the flux is larger

for a softer medium (smaller G). We construct a theory of this super-linear behavior by modelling the

channels between the solid cylinders as elastic channels whose walls are made of material with a linear

constitutive relation but can undergo large deformation. Our theory further predicts that the flow

permeability is an universal function of DP/G, which is confirmed by the present simulations.

1 Introduction

Percolation of water through soil is one of the oldest problems
in hydrodynamics. The fluid passes through a network of
irregularly arranged interstices between solid objects. Typically,
each individual thread of water passes through a narrow
channel in which the equations of viscous flow can be applied.
The difficulty arises from the fact that the detailed knowledge
of the channels is neither available nor useful due to their
complexity. We therefore typically take coarse-grained approaches,
averaging over a length-scale much larger than the individual
channels but still small compared to the scale of the medium.
We thus define a relation between the flux, q, and the pressure-
difference, DP. In the simplest case of a rigid isotropic medium,
this gives rise to Darcy’s law1

q ¼ �k
m
DP
L
; (1)

where m is the dynamic viscosity of the fluid, k is the perme-
ability of the porous medium, and L its length in the flow
direction. Henceforth we shall call q the Darcy flux. The
permeability has the same status as all transport coefficients
in hydrodynamics – for a real system it is very difficult to
calculate from first principles, but can be calculated in a model
system by first solving a problem at the pore-scale and then by

either analytical or numerical coarse-graining. This problem
develops an additional degree of complexity if we consider that
under the fluid stress the solid obstacles can move, i.e., the flow
itself can form channels. We treat the complication wherein the
solid skeleton is deformable, i.e., poroelasticity, the simplest
example of which is the kitchen sponge.

Poroelasticity play an important role in understanding the
transport through a wide range of materials ranging from
individual cells,2,3 to biological tissues, e.g., soft-tissues,4–6

bones,7 even to hydraulic fracture.8,9 The simplest poroelastic
problem is that of linear poroelasticity where we assume that
the flow of the liquid is governed by the Darcy’s law and the
solid skeleton not only has linear constitutive relation but also
undergoes small deformation. In reality, often the deformation
of the solid matrix is large consequently nonlinear elastic
effects have to be taken into account even if the constitutive
relation is linear. Such systems are notoriously difficult to study
both experimentally and numerically.10

The central question in this paper is how a coarse-grained
description of the Darcy type emerges from a pore-scale model.
As our model we choose a bed, a two-dimensional hexagonal
lattice with defects, of soft elastic cylinders immersed in a
liquid. Using both direct numerical simulations – a set of fully
coupled equations for a viscoelastic solid in contact with a
Newtonian fluid – and theory, we show that at scales that are
large compared to the diameter of a cylinder the flux versus
pressure-difference relationship in the system is a Darcy-like
equation. When the deformability is small, as measured by
the shear modulus of the solid, we obtain the Darcy equation
exactly: the permeability k is a constant, independent of the
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pressure-difference. However, as the solid skeleton becomes
more deformable, the permeability becomes a nonlinear func-
tion of the pressure difference, namely for the same pressure
drop we get a larger flux. Our theoretical calculations suggest
that this result is largely model independent. This behavior has
been already predicted from theoretical modelling at a coarse-
grained level11 but has never been observed before in simula-
tions or experiments.

2 Numerical method

We first describe our Direct Numerical Simulations (DNS). The
deformable cylinders in the Newtonian fluid are modeled with
a two-phase approach, defined by a variable f = 0 inside the
viscoelastic solid phase and f = 1 in the fluid phase, with an
evolving interface. The cylinders are organized on a hexagonal
lattice, see Fig. 1. If all the lattice sites are filled we reach the
maximum solid volume fraction.† In the rest of this paper we
use a porosity F, which is the fraction of the total volume
occupied by the fluid, equal to 0.42 by removing a certain
number of randomly selected cylinders. The cylinders are made
of a hyper-elastic Mooney–Rivlin12 material characterized by a
shear elastic modulus, G. We emphasize that the full non-linear
structural response of the elastic solid is included in the
simulations. The theoretical model considered later in this
paper, however, is simpler. The motion of the fluid and of
the viscoelastic material are governed by the conservation of

momentum and the incompressibility constraint:

@ui
@t
þ @uiuj

@xj
¼ 1

r
@sij
@xj

and
@ui
@xi
¼ 0; (2)

where the Cauchy stress tensor sij has contributions from both
solid and fluid stresses with a weight set by the phase variable
f, i.e.,

sij = fsf
ij + (1 � f)ss

ij, (3)

with suffixes f, s used to distinguish the two phases, fluid f and
elastic solid s. The fluid is assumed to be Newtonian and the
solid is an incompressible viscous hyper-elastic material with
constitutive equations:

sf
ij = �pdij + 2mDij, (4a)

ss
ij = �pdij + 2mDij + te

ij. (4b)

Here p is the pressure, r and m are respectively the density and
the dynamic viscosity both of which are assumed to be the
same in the two phases,‡ Dij the rate-of-strain tensor and dij is
the Kronecker delta. The last term in ss

ij, eqn (4b), is the hyper-
elastic contribution te

ij, here modeled as a neo-Hookean
Mooney–Rivlin material with the constitutive relation te

ij = GBij,
where Bij is the left Cauchy–Green tensor sometimes also called
the Finger tensor. The full set of equations can be closed in
a purely Eulerian manner by updating Bij and f with the
following transport equations12–15

@Bij

@t
þ @ukBij

@xk
¼ Bkj

@ui
@xk
þBik

@uj
@xk

(5)

Fig. 1 From left to right, a snapshot of the cross-section of one of our simulation under different levels of magnification. We magnify twice into a part of
the domain to show first a sub-domain and then a channel. We apply the lubrication theory to study the flow thorough this channel, which implies that
the flow inside the channel is assumed to be parabolic.

† Actually we reach a packing fraction slightly lower than the maximum possible
one by reducing the diameter of the cylinders such that they are initially placed in
a manner that the surfaces of neighboring cylinders do not touch – i.e. there is a
small gap between their surfaces.

‡ Note that, deformation of the solid becomes stationary and the value of its
viscosity does not matter anymore since the solid viscosity only contributes when
the solid is undergoing deformation prior to reaching the steady state.
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@f
@t
þ @ukf

@xk
¼ 0: (6)

The algorithms have been described, used and validated against
standard test cases in several earlier publications,16–18 and more
details can be found in these references.

We use a rectangular domain of size MD � ND, where D is
the diameter of an undeformed cylinder, for three different sets
of values for M and N. We apply periodic boundary conditions
in the stream-wise x-direction, and no-slip/no-penetration
boundary conditions on the two rigid walls bounding the
domain in the y-direction. We consider 6 different values for
the shear elastic modulus G, and for each one of them we
impose 6 different pressure differences from 0.5 to 50 to drive
the flow and measure the resulting flux, resulting in a Reynolds
number varying in the range Re = rqD/m A [10�5 : 10�4]
(in particular, we used r = 1, D = 0.22 and m = 1 in our
simulations). In all the cases, the numerical domain is dis-
cretised with 68 grid points per diameter D. After a short
transient time, the flow and the deformation of the solid
skeleton reach a stationary state (see Fig. 1). As G decreases –
the solid skeleton is more deformable – the flow changes the
width and nature of the channels through which the liquid
flows. We observe a general tendency of the flow to exploit the
defects of the underlying lattice, by generating preferential
channels which transport most of the fluid.

3 Numerical results

In Fig. 2 we show how the Darcy flux, q, depends on the
pressure-difference, DP, across the domain: the most rigid case
(black line) shows a linear increase of the flow rate with the

pressure difference – the standard Darcy’s law for rigid porous
materials. By contrast, as the material becomes more elastic,
we observe a non-linear growth of the Darcy flux steeper than
for its rigid counterpart, i.e., a super-linear dependence of
the Darcy flux on the pressure-difference. A different way to
interpret the same result is to say that the permeability of the
porous medium, k, is itself a nonlinear function of the pressure
difference (or the flow rate).

We check how robust this result is in the following ways.
We run simulations in three domain sizes, the smallest one
being, M = 8 and N = 9, in the next one we double the size in
each direction, M = 16 and N = 18 and then obtain the largest
one by again doubling the size, M = 32 and N = 36. We obtain
the same result in all the three cases. Next, in the largest
domain, we select sub-domains of the same size as the smallest
domain and the relationship shown in Fig. 2 remains the same
for these sub-domains too. Note that, we can reach the same
porosity in different ways, depending on the position of the
defects in the material; we have checked that our results remain
unchanged in two different realisations of the random defects.

4 Theoretical model

Next we construct a theory for this behavior. Our specific
numerical simulations act as a motivation for the theory
but the theory is not necessarily limited to our numerical
model. Typically, the theory of porous media involves multiple
scales,11,19–24 ours is no exception.

In Fig. 1 we show a two-dimensional cross-section of our
domain on three different spatial scales, from left to right we go
from the full domain (size L) down to the scale of sub-domains
(L), smaller than the full domain but still much larger than the
size of a single deformable circle, down to the scale of a single
channel (c) between the elastic cylinders, such that c{L{ L.
Our first step is to derive a relation between the flux and
pressure difference across a deformable two-dimensional
channel, e.g., we solve the microscale problem sketched in
the rightmost panel of Fig. 1.

Let c be the length of this channel, Dp the pressure-
difference across the channel and h(x) the width of the channel
as a function of the stream-wise coordinate, x. Within the range
of parameters used in our simulations, we can safely assume
that within this channel the Reynolds number is so low that
the flow can be described by the Stokes equations. In fact,
we shall go one step further and assume that it is safe to use
the lubrication approximation.1 In particular, we assume that
within a channel the pressure is a function of the stream-wise
direction alone, i.e., p = p(x), the wall-normal component of the
velocity is zero, and the velocity gradient along the stream-wise
direction is much smaller than that in the wall-normal direction.
In addition, the flow velocity must go to zero at the boundaries
of the channel, hence the flow-rate through the channel is
given by

q = �[h3/(12m)](dp/dx). (7)

Fig. 2 The Darcy flux q as a function of the overall pressure difference
DP/L for different values of the deformability of the medium, G A [0.5,50].
In particular, the red, brown, orange, green, blue and black colors are used
for G = 0.5, 1, 1.5, 3, 6 and 50, respectively. We also plot the results for
different domain sizes (grey squares and cross). In the inset we plot the
permeability k normalized with Kt = CD2F3 versus the dimensionless
variable b = DP/G. C is a constant coming from the theory, equal to 0.1808
for the present cases.
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The flow-rate must be a constant, independent of x. The width
of the channel, h(x), is determined by the mutual interaction
between the flow and the elastic property of the walls of the
channel. To make further progress, we assume a Hookean
response of the boundary of the channel, often called Winkler
foundation25,26 in other context. In this framework, the
undeformed width of the channel is h0, which together with
the deformation w(x) sets the total width of the channel,
h(x) = h0 + w(x); the elastic property of the channel walls is
parameterized by a Hookean spring with a spring constant k,
such that the force-per-unit-area necessary to generate a defor-
mation w is given by kw. Hence the pressure and the deforma-
tion are related by w(x) = p(x)/k. This allows us to write a
differential equation for p(x) where the flow-rate, q, appears
as a parameter – the equation has the general form of
q = �s(p)(dp/dx).27 We integrate it and enforce the result to
conform to the form of Darcy’s law, q = (K/m)(Dp/c) with

K = h0
3f (b), (8)

where

f ðbÞ ¼ 1

12
1þ 3

2
bþ b2 þ 1

4
b3

� �
: (9)

Here, b � Dp/(kh0) and we have used the boundary conditions
p(0) = Dp and p(c) = 0. To build a connection to our simulations
it is appropriate to choose k such that kh0 = G. The use of the
lubrication approximation coupled with the elastic properties
of solid is quite commonly used to analyze flows in deformable
channels, see e.g., Davis et al.,28 Grotberg and Jensen,29 Gomez
et al.,30 Christov et al.31 Christov et al.31 contains derivation
of a similar relationship using a systematic application of
asymptotics for a three dimensional channel. The only difference
is that in Christov et al.31 a different model for the elastic wall –
isotropic quasi-static bending of a plate under a transverse load
due to the fluid pressure – is used.

In the next step we consider the mesoscopic scale, larger
than the size of single cylinders but still smaller than the scale
of the whole bed, see the middle panel in Fig. 1. The large
domain contains many such mesoscopic domains of the same
size. In the event of no defects, each of these subdomain
contains m � n cylinders organized on a regular hexagonal
lattice and the channels between the cylinders form a regular
honeycomb lattice. In this case, each subdomain has exactly the
same porosity and the same permeability.

Recall that we have randomly removed few cylinders from a
regular hexagonal lattice to create our porous medium. Thus,
the porosity at the scale, L, FL, is different in different
sub-domains. In the inset of Fig. 3 we show a representative
plot of FL, the porosity averaged over a domain of size, L,
extracted from the DNS with the largest domain. In particular,
we perform a volume average of the local fluid fraction f on a
domain of size L resulting in the porosity FL. We incorporate
this randomness into our model by choosing different values of
h0 – undeformed width of the channel – in different sub-
domains. Thus at this mesoscale our model is a honeycomb
network of channels. The length of the channels is same in all

subdomains and within each subdomain all the channels
have the same width set by the subdomain porosity FL.
Consequently, the width of the channels is different in different
subdomains.

For a single subdomain, our task is to calculate the effective
permeability of a network of channels, KL, where the flow rate
in each channel is given as function of the pressure drop by
q = [K(Dp)/m](Dp/c), where the permeability of each channel
K(Dp) is the nonlinear function, f (b) in eqn (9). Given a
nonlinear function f (b) there is no general method of attack
known to us. We proceed therefore by assuming that K is
independent of Dp. In this case, the problem corresponds to
that of the effective conductivity of a honeycomb network of
resistors by mapping the q to current, Dp/c to the voltage drops
across the bonds of the network, and K/m to the conductivity of
each of the bond, in bus-bar geometry32 – the network is
connected to two parallel lines and the battery is connected
across the two lines. We solve this linear problem by matrix
inversion to obtain KL = gK(L/W) where W is the width of the
sub-domain and g is a constant that depends on m and n. In
particular, we use m = 8, n = 9 and obtain g = 3.047.

Thus, we obtain KL = CD2FL
3f (b), with a constant

C = g(3/8)3(L/W). Here we have used L = 8D, and L/W = 1.125.
The form of the function in eqn (9) suggests that the effective
permeability, KL, is solely a function of the dimensionless
parameter, b = DP/G, where DP is the pressure-difference across
the sub-domain. In Fig. 3 we show a scatter plot of KL versus FL

for different sub-domains and observe that KL grows as FL
3,

although with some scatter of the data. Notwithstanding this,
when we plot the values of KL normalized by CD2FL

3 as a
function of b for the different sub-domains, we obtain a reason-
able data-collapse in agreement with our theory.

There is another, equivalent, way to calculate the effective
permeability of a mesoscale subdomain, which also requires
the assumption of linearity. In particular, we incorporate the

Fig. 3 A scatter plot of the local permeability KL in each sub-domain
normalized with CD2 as a function of the corresponding local porosity FL.
The inset shows a snapshot of porosity (averaged over the scale L), FL.
The color scale goes from 0.3 (black) to 0.6 (white).
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random removal of cylinders by mapping to the problem
of a honeycomb network of resistors such that each bond in
the network has a conductance of K with probability P or
infinite conductance (zero resistance) with probability 1 � P

This probability, P, is different in each sub-domain. Using
the expression for effective resistance of infinite but
random lattices,32 we obtain the effective permeability to be

KL ¼
a

aþ 1ð ÞP� 1
K, where a is a geometric parameters that

depends on the lattice.
In the last and final step, we average over different

sub-domains to obtain an effective permeability for the whole
domain. Taking the divergence of the Darcy’s flux in a
sub-domain, we obtain

r�[KL(FL)rp] = 0, (10)

which is a steady-state heat equation with variable diffusivity
KL(FL), function of a fast variable FL. Straightforward appli-
cation of the method of multiple scales see, e.g., ref. 33, Section
9.6.2 shows that the effective permeability k is the harmonic
mean of the effective permeability of each sub-domain:

1

k
¼
ð
dFL

P FLð Þ
KL FLð Þ; (11)

where P(FL) is the probability density function of the porosity
of a sub-domain, FL. The data in Fig. 3 justify treating P(FL) as
a Gaussian with mean value equal to the mean porosity
calculated over the full domain so that eqn (11) is integrable.
As the Gaussian is sharply peaked, the integral is well-approximated
by its leading order contribution, i.e., k E KL(F) where
F = hFLi is the mean porosity of the whole domain. This
implies that the collapse we have observed for each sub-domain
should also work if we plot the permeability k of the full
domain as a function of b = DP/G where the pressure-
difference, DP, now is across the whole domain. This is
confirmed by the results in the inset of Fig. 2.

5 Discussion and conclusions

Several comments are now in order. For the analytical calcula-
tions we have used a simple model, the Winkler foundation,
whereas we have used the hyper-elastic Mooney–Rivlin model
for the cylinders in our DNS. The qualitative agreement
between the two shows the robustness of our results. Different
elastic models will result in different expression for the func-
tion f (b) in eqn (9). A crucial result of our work is to show that
such a function exists, which implies that data on permeability
collapse to a single function when plotted as a function of b.

The enhanced flux, which is the most striking result of our
work, has not been observed in experiments but is found
analytically for certain classes of models. In particular, two
among the five models discussed in Macminn et al.11 – these
models start from the intermediate scale denoted as L here –
show the possibility of super-linear response because of
the nonlinear elastic behavior of the solid skeleton. These
two models further assume that KL is independent of FL.

In experiments,34,35 when a fluid is forced through a deform-
able porous medium, the boundary between the porous
material and the fluid on the inlet is normally left unconstrained.
Hence under fluid pressure the boundary moves and squeezes the
porous material. This decreases the permeability – often modeled
by the empirical Kozeny–Carman formula36 – of the porous
material. Two of the models in Macminn et al.,11 which include
the Kozeny–Carman formula, show nonlinear but sub-linear
behavior. Recent experimental measurements by Song et al.35 also
exhibit such behavior. In our case, both theory and the DNS
approximate the behavior of the Kozeny–Carman function for
small FL, KLBFL

3. Indeed, in our simulations the boundaries
are held fixed, hence by construction fluid-driven compaction is
missing from our simulations. Hence, we also expect that it is
possible to observe the enhanced Darcy flux in experiments,
but not for very large pressure-differences where fluid-driven
compaction dominates. We hope our work will encourage further
experimental and numerical explorations.

Most studies in this field using homogenization to under-
stand the fluid flow through rigid/deformable/active porous
media,19–24 adopt a continuum description for both the solid
and fluid phase and couple them through the kinematic inter-
face conditions. The constitutive equations for the pore-scale
description of the problem are coarse-grained to obtain a
description of the equivalent fluid–solid interaction. The trans-
port coefficients of the resultant equations depend on the
solvability conditions (closure problem) of the homogenization
techniques. However, the closure problem remained unsolved
in all these models, thus no explicit Darcy-like relation was
obtained. Our theory stands apart from such models. We write
down a Darcy-like relation between flow-rate and pressure-
difference with an explicit expression for the permeability
that depends on the shear modulus of the solid skeleton.
Furthermore, we show that the nonlinear flow-rate versus
pressure-difference relation is an intrinsic property of the
medium rooted in the pore scale rearrangement induced by
fluid flow. The weakest link in our theory is the assumption of
linearity to calculate the effective permeability of a network of
channels.
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