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We present a numerical study of the rheology of a two-fluid emulsion in dilute
and semidilute conditions. The analysis is performed for different capillary numbers,
volume fractions and viscosity ratios under the assumption of negligible inertia
and zero buoyancy force. The effective viscosity of the system increases for low
values of the volume fraction and decreases for higher values, with a maximum for
approximately 20 % concentration of the disperse phase. When the dispersed fluid
has lower viscosity, the normalised effective viscosity becomes smaller than 1 for
high enough volume fractions. To single out the effect of droplet coalescence on the
rheology of the emulsion we introduce an Eulerian force which prevents merging,
effectively modelling the presence of surfactants in the system. When the coalescence
is inhibited the effective viscosity is always greater than 1 and the curvature of
the function representing the emulsion effective viscosity versus the volume fraction
becomes positive, resembling the behaviour of suspensions of deformable particles.
The reduction of the effective viscosity in the presence of coalescence is associated
with the reduction of the total surface of the disperse phase when the droplets merge,
which leads to a reduction of the interface tension contribution to the total shear
stress. The probability density function of the flow topology parameter shows that
the flow is mostly a shear flow in the matrix phase, with regions of extensional flow
when the coalescence is prohibited. The flow in the disperse phase, instead, always
shows rotational components. The first normal stress difference is positive, except
for the smallest viscosity ratio considered, whereas the second normal difference is
negative, with their ratio being constant with the volume fraction. Our results clearly
show that the coalescence efficiency strongly affects the system rheology and that
neglecting droplet merging can lead to erroneous predictions.

Key words: emulsions, multiphase flow, rheology

1. Introduction
Emulsions are a biphasic liquid–liquid system in which the two fluids are partially

or totally immiscible. They are present in many biological and industrial applications

† Email address for correspondence: fdv@mech.kth.se
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such as waste treatment, oil recovery and pharmaceutical manufacturing. Emulsions
are relevant also in the field of colloidal science, where the accuracy and the control
of the production process of functional materials rely on a knowledge of the complex
microstructure of the suspension (Xia et al. 2000).

The study of the rheology of suspensions can be traced back to the pioneering
work of Einstein (1906, 1911) who found that the effective viscosity µe of a
dilute suspension of rigid spheres increases linearly with the volume fraction φ

as µe = µm(1 + 5φ/2), where µm is the viscosity of the matrix phase. Batchelor
& Green (1972) extended this relation including a term O(φ2), obtaining µe =

µm(1+ 5φ/2+ 5φ2). These two analytical expression can well predict the suspension
effective viscosity only in the dilute regime, at higher volume fraction no closed
theory exist and we still rely on empirical relations. Eilers (1941) proposed the
following expression for emulsions µe = µm[1 + (5φ/4)/(1 − φ/φc)], which gives
good approximation of the effective viscosity for low and high volume fractions.
Here φc represent the maximum packing volume fraction, which depends on the
properties of the suspended phase e.g. shape and deformability. Taylor (1932) was
the first to account for the deformation of the particles by introducing the viscosity
ratio λ, defined as the disperse phase over the matrix phase viscosity, into the Einstein
formula µe = µm[1+ 2.5φ(λ+ 0.4)/(λ+ 1)]. Using perturbation analysis, Schowalter,
Chaffey & Brenner (1968) were the first to find that for a suspension of deformable
particles the first normal stress difference N1 is positive and the second normal
stress difference N2 is negative, and later Choi & Schowalter (1975) introduced a
correction with O(φ2). Pal (2002, 2003) derived expressions for the effective viscosity
of infinitely dilute and concentrated emulsions using the effective medium approach.
In general, all these previous relations are limited to the dilute regime for inertialess
flows, are based on pair interaction between particles and typically assume limiting
cases to model surface tensions effects (either going to zero or infinite). To overcome
these limitations numerical simulations, providing access to all details of velocity and
stresses in the system, play therefore an important role.

As concerns suspensions of rigid particles, many numerical investigations have
been performed in the past years. For these systems the only relevant parameters
are the solid volume fraction and the particle Reynolds number. Kulkarni & Morris
(2008) studied non-Brownian suspensions at finite particle Reynolds number, up to
5, using a lattice Boltzmann method. These authors found that inertia increases the
particle contribution to the effective viscosity and breaks the fore–aft symmetry of
the pair distribution function, see also Picano et al. (2013) for an analysis of the
relative particle motion in the presence of inertia. Mari et al. (2014) reported shear
thickening behaviour when a suspension of particles changes from the contactless to
contact dominated regime and relate this effect to jamming. For a detailed review
on suspensions of rigid particles, the reader is refereed to the recent perspective by
Guazzelli & Pouliquen (2018).

When considering deformable particles, emulsions being one relevant example, the
scenario is further complicated by the occurrence of deformation, coalescence and
breakup. Zhou & Pozrikidis (1993) simulated numerically two-dimensional emulsions
employing a boundary element method (BEM), which later has been extended to
three-dimensional flows by Loewenberg & Hinch (1996). Srivastava, Malipeddi &
Sarkar (2016) investigated the inertial effects on emulsions using a front tracking
method. These authors reported an inversion of the normal stress difference for
increasing Reynolds number. Matsunaga et al. (2015), also using a BEM method,
investigated the rheology of a suspension of capsules up to 40 % of volume fraction
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and found that corrections of order O(φ3) to the effective viscosity are negligible with
respect to the rigid spheres. Rosti & Brandt (2018) and Rosti, Brandt & Mitra (2018)
simulated suspensions of deformable particles described as a viscous hyperelastic solid
material and showed that the effective viscosity of the suspension can be estimated
by the Eilers formula, valid for rigid particles, when computing an effective volume
fraction based on the mean deformation of the particles. As mentioned before, all
these studies do not account for coalescence or breakup, which however play key
roles in the rheological behaviour of emulsions. The aim of this work is therefore to
show how coalescence affects the rheology of emulsions.

The macroscopic properties of emulsions in shear flow strongly depend on their
microstructure, mainly droplets size and distribution. The dynamics of the disperse
phase is dictated by the interface deformation and the collision rate. In a dilute
emulsion the interface deforms only under the action of the viscous stress exerted
by the external flow. The relative importance between this and the interfacial stress,
which tends to keep the drop spherical, is known as the capillary number (Ca).
When Ca exceeds a critical value, droplets do not reach a steady state shape but
break into two or more fragments in order to recover the balance between viscous
and interfacial stresses. When the volume fraction increases, i.e. in the non-dilute
regime, the flow can induce collisions between two or more drops. The outcome of
a collision depends on the interaction force between the droplets. Chesters (1991)
proposed a conceptual framework to describe the complex dynamic of two colliding
drops. The interaction can be thought of as the combined action of an external flow,
responsible of the frequency, force and duration of the collision, and an internal flow
which accounts for the deformation of the interface and the drainage of the thin
liquid film between the two particles. When the collision duration is larger than the
drainage time, droplets coalesce whereas in the opposite case they repel. In the first
case the emulsion is attractive, in the latter case it is repulsive. Many experimental
studies have been conducted to describe size evolution and deformation of droplets
in microconfined shear flow (Guido & Simeone 1998; Sibillo et al. 2006; Vananroye,
Van Puyvelde & Moldenaers 2006). Interestingly, Caserta & Guido (2012) have
shown that the rheological curve, effective viscosity versus volume fraction, exhibits
negative curvature for emulsions, contrary to the behaviour of particles (indeed the
term O(φ2) in the Eilers formula is positive). In this work the authors reported also a
phase separation for viscosity ratios smaller than one in large domains: they observed
droplet rich and droplet poor regions oriented in the flow direction and alternated in
the vorticity direction (vorticity banding). These results suggest that coalescence plays
a key role in the rheological behaviour of emulsions and can affect their dynamics
under shear flow.

Performing numerical simulations of emulsions in shear flow is a challenging
problem due to the large scale separation between the external flow and the internal
flow. The gap between the plates can be order of µm while the thin liquid film
where the van der Waals force acts is order of nm (Chesters 1991). For this reason
most of the numerical works on emulsions in the literature neglect coalescence.
Only a few works that include coalescence are available: Shardt, Derksen & Mitra
(2013) investigated collision between two droplets in dilute emulsions using a lattice
Boltzmann method; Rosti, De Vita & Brandt (2019) present a numerical model
for simulations of emulsions at moderate concentrations using a volume of fluid
(VoF) approach and present results for different capillary numbers. Additionally, the
presence of surfactants (surface active agents) can significantly affect the interface
dynamics in terms of droplet deformability and distribution evolution. The modelling
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of this mechanisms in a numerical simulation is not trivial (Khatri & Tornberg
2011; Soligo, Roccon & Soldati 2019). An alternative to the previously mentioned
methods is to employ mesoscale methods, which consider also thermal effects, as for
example in Sega et al. (2013). In this study, we complete the study of the rheology
of emulsions by including the effect of the viscosity ratio and, more importantly,
the role of coalescence/breakup on the macroscopic behaviour. The use of a VoF
technique allows us to take into account the coalescence of droplets, while we model
repulsive short-range interactions.

The paper is structured as follow: in § 2 we describe the governing equations,
the numerical method and the set-up we adopt; in § 3 we present a fully Eulerian
framework to introduce a collision force to the solver which is able to delay or
prevent the coalescence between droplets; in § 4 we discuss the results in term of
the effective viscosity, stress budget and normal stresses for emulsions with different
coalescence rates. Finally we summarise the main findings and draw some conclusions
in § 5.

2. Numerical method and set-up
In this study we investigate the rheology of emulsions in shear flow simulating a

liquid–liquid biphasic system in a simple Couette flow. The flow dynamics is governed
by the incompressible Navier–Stokes equations which in the one-fluid formulation for
multiphase flows read

∂ui

∂xi
= 0, (2.1a)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=−

∂p
∂xi
+

∂

∂xj
(2µDij)+ σκδsni. (2.1b)

Here, ui with i=1,2,3, are the velocity components in the three Cartesian coordinates
x1, x2 and x3, p is the pressure field, ρ and µ are the local density and viscosity, D is
the rate of deformation tensor Dij = (∂ui/∂xj + ∂uj/∂xi)/2, σ is the interfacial tension
coefficient, κ is the curvature of the interface, ni is the ith component of the unit
normal vector n to the interface and δs is the Dirac function, which express that the
interfacial tension force acts only at the interface between the two fluids.

To track in time the position of the interface we employ a VoF technique based on
the multi-dimensional tangent of hyperbola interface capturing (MTHINC) method (Ii
et al. 2012). To identify the two fluids we define a colour function H(x, t) so that
H = 1 in one fluid and H = 0 in the other. The VoF function T (x, t) is defined as
the cell-average value of the colour function

T (x, t)=
1
δV

∫
δV

H(x′, t) dV ′ (2.2)

and represents the volume fraction in each cell of the domain. The VoF function is
advected by the flow field as

∂T
∂t
+
∂ujH
∂xj
= T

∂uj

∂xj
. (2.3)

The key point of the MTHINC method is to approximate the colour function with a
tangent of hyperbola

H(X, Y, Z)≈ Ĥ(X, Y, Z)= 1
2(1+ tanh(β(P(X, Y, Z)+ d))), (2.4)
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x -U

U

y

z

FIGURE 1. (Colour online) Sketch of the computational domain and coordinate
system used.

where (X, Y, Z) ∈ [0, 1] is a local coordinate system, β a sharpness parameter, d
a normalisation factor and P a three-dimensional surface function which can be
either linear (plane) or quadratic (curved surface) with no additional cost. This
discretisation allows us to solve the fluxes of (2.3) by integration of the approximated
colour function in each computational cell. The material properties of the two fluids
are linked to the VoF function T as follows:

ρ(x, t)= ρ1T (x, t)+ ρ0(1− T (x, t))
µ(x, t)=µ1T (x, t)+µ0(1− T (x, t)),

}
(2.5)

where the subscript 1 stands for the disperse phase, the subscript 0 for the carrier
fluid and T is equal to 1 in the disperse phase and 0 in the carrier fluid. Finally
the surface tension force is approximated using the continuum surface force (CSF)
approach (Brackbill, Kothe & Zemach 1992)

σκδsni = σκ
∂T
∂xi
. (2.6)

See Rosti et al. (2019) for a detailed description and validation of the code employed
in this work.

2.1. Flow configuration
A random monodisperse distribution of droplets, with radius r, is initialised in a
bi-periodic system (x being the streamwise direction and y the spanwise) delimited
by two walls (z direction) moving in opposite directions with velocity U at a constant
distance Lz. Choosing as reference length the initial radius of the droplets, r, the size
of the domain is 16r × 16r × 10r (x, y and z, respectively), as sketched in figure 1.
This configuration has been widely adopted in the literature for the study of the
rheology of suspensions of rigid and deformable particles and emulsions (see Picano
et al. 2013; Rosti & Brandt 2018; Rosti et al. 2019). The flow is governed by four
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non-dimensional parameters, namely the Reynolds number Re, the capillary number
Ca, the viscosity ratio λ and the volume fraction φ, with

Re=
ρ0γ̇ r2

µ0
, Ca=

µ0γ̇ r
σ

, λ=
µ1

µ0
. (2.7a−c)

The applied shear rate is equal to γ̇ = 2U/Lz and, in order to keep the inertial effect
negligible, is chosen to give a Reynolds number equal to 0.1. The interface tension
coefficient σ is chosen so that the capillary number based on the initial radius
varies between 0.05 and 0.2. The simulations are performed with fixed Reynolds
number, for different viscosity ratios, λ= [0.01, 0.1, 1] and for four volume fractions,
φ = [0.00164, 0.1, 0.2, 0.3], the first one corresponding to one single droplet initially
located at the centre of the domain. In all the cases the density of the two fluids is
the same, thus there are no buoyancy effects. All the simulations have been performed
with a mesh of 256× 256× 160 cells, which corresponds to a grid size of ∆= r/16.
The independence of the results from the grid size, measured by the suspension
effective viscosity and surface area evolution, was verified by performing simulations
with half and double resolution.

3. Collision force model
The outcome of a collision between two droplets is function of hydrodynamic

forces, capillary forces and geometric parameters, such as radius and relative distance.
Droplets coalesce when the capillary number is smaller than a critical value Cac
whereas they slide away when the capillary number is larger than Cac (Shardt et al.
2013). To investigate the effect of coalescence on the rheology of emulsions we
introduce a repulsive force with the aim of completely inhibiting the merging of
droplets. From a physical point of view, this force can be seen as a model for the
presence of surfactants in the emulsion, which alter the value of the interfacial tension
coefficient and change the capillary number. The action of surfactants occurs on the
nanoscale, which cannot be resolved on our mesh and therefore needs to be modelled.
To prevent coalescence one should impose a very strong interfacial tension coefficient
which would make the simulations expensive by requiring a very small time step.
Because we are only interested in inhibiting coalescence, we introduce an Eulerian
repulsive force of the same form as a lubrication force (Bolotnov et al. 2011)

Fc =µ0rU
(

a
ψ
+

b
ψ2

)
n, (3.1)

where a and b are two coefficients and ψ is the signed distance from the interface.
Operationally, we reconstruct every time step the distance function from the interface
(defined by the VoF function T ) as follows: first we initialise the distance function
ψ0 following Albadawi et al. (2013)

ψ0 = (2T − 1)0.75∆, (3.2)

with ∆ the grid spacing; then the distance function is propagated in a region of
thickness 3∆ from the interface solving the redistancing equation

∂ψ

∂τ
+ S(ψ0)(|∇ψ | − 1)= 0, (3.3)
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¥ = 0
¥ = 3Ît = 1

t = 1
t = 0

ii

ij

FIGURE 2. (Colour online) Sketch of the collision model: the grey area represents the
region of propagation of the distance function ψ , the external contour corresponding to
ψ = 3∆. The red region represents the area where the force is applied.

where S(ψ0) is the sign function and τ is an artificial time; the equation is
marched in time with step 1τ = 0.1∆. We solve the previous equation using the
second-order redistancing algorithm of Russo & Smereka (2000). At the beginning
of the simulation, every droplet is tagged with an integer number I , going from
1 to the total number of droplets. This index is used to determine where to apply
the collision force, as sketched in figure 2. The grey area in the figure represents
the region, of thickness 3∆, where the distance function is propagated and the red
region is the area where the force is applied. This region is found by checking,
inside the grey area, if in a stencil 7∆ × 7∆ × 7∆ there are two different values
of I . If this condition is verified, the interaction force is computed following (3.1).
Two additional indexes are used to identify the walls and model collisions with them,
also to avoid mass losses at the boundary. Every time step, the droplet index I is
updated based on the new position of T : if T < 0.5 we set I = 0 otherwise we
search in a stencil 3∆ × 3∆ × 3∆ the non-zero value of I . To avoid instabilities
resulting from the application of the force directly on the surface, the force is applied
only if ψ is larger than

√
2∆/2 in two dimensions and

√
3∆/2 in three dimensions.

The algorithm currently implemented to advance in time the index function does not
handle topological changes, i.e. breakup or coalescence, hence we need to ensure that
none of the droplets coalesces or breaks during the simulations. By trial and error,
we found that the minimum values of the coefficients in (3.1) that always prevent
coalescence, for the given non-dimensional parameters of the flow, are a = 55 and
b = 3.5. These values have been used to obtain the results presented in the next
section.

Before moving to the next section, we show the effect of the repulsive force (3.1)
on the interaction between two droplets in a simple shear flow and the sensitivity
to the coefficients a and b. We consider two drops of equal initial radius r = 1, the
length of the domain is 12r and the height is 6r. The two droplets are placed in the
centre of the domain with a horizontal shift 1x= 3 (half of the channel height) and
with a vertical shift 1y= 1.5. The particle Reynolds number Re= 0.1, the capillary
number Ca = 0.1 and the viscosity and density ratios equal to unity. Note that this
set-up is similar to that adopted in other numerical and experimental studies (Guido

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

72
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 K

TH
 K

un
gl

ig
a 

Te
kn

is
ka

 H
og

sk
ol

an
, o

n 
07

 N
ov

 2
01

9 
at

 1
3:

30
:5

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.722
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


976 F. De Vita, M. E. Rosti, S. Caserta and L. Brandt

(a) (b) (c)

(d) (e) (f)

(g) (h)

(k) (l)

(i)

(j)

Time

Fo
rc

e

FIGURE 3. Time evolution of the interface at three different time instants; from left to
right: t = 10, t = 15 and t = 20. Panels (a–c) zero force; panels (d–f ) a = 13.75 and
b= 0.875; panels (g–i) a= 27.5 and b= 1.75; panels ( j–l) a= 55 and b= 3.5.

& Simeone 1998; Shardt et al. 2013). Figure 3 shows the interface location at three
different time instants, t= 10, t= 15 and t= 20, from the left to the right. Each row
of the figure, from top to bottom, corresponds to a different case: first row (panels
a–c) corresponds to the case of zero force, when droplets are free to coalesce (this is
the case with maximum drainage velocity); second row (panels d–f ) corresponds to
the case with coefficients a= 13.75 and b= 0.875; third row (panels g–i) corresponds
to the case with coefficients a= 27.5 and b= 1.75; last row (panels j–l) corresponds
to the case with coefficients a = 55 and b = 3.5, the same as in the results section.
As soon as the droplets come closer to each other, they start to flatten and to deform.
As a consequence of the applied shear and of the interaction of the particles with
the local flow field they start to rotate. For the adopted capillary number and initial
displacement and in the absence of any collision force, the two drops coalesce at a
certain instant, t≈ 16. If the applied force is small (second row) the time needed to
actually merge is larger and the coalescence is delayed. This is an interesting result
because by tuning the value of the force it is possible to change the time scale of
the drainage of the film between the droplets. Finally, panels ( j–l) show the case of
a fully repulsive force, completely preventing coalescence.

Figure 4 shows the time history (from the left to the right in a curvilinear system)
of the vertical displacement 1y over the horizontal displacement 1x for the four cases
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FIGURE 4. (Colour online) Plot of relative distance between droplets 1y versus 1x: case
with no force (E); case with a= 13.75 and b= 0.875 (6); case with a= 27.5 and b= 1.75
(@); case with a= 55 and b= 3.5 (A). Black dots (u) correspond to the time instant in
figure 3. The black line corresponds to the simulation without a collision force and with
double resolution.

of figure 3. When the droplets coalesce both the horizontal and vertical displacements
decrease quickly, as illustrated by the red and green curves in figure 4. In the opposite
case, after the collision, droplets continue to move away in the horizontal direction
with a steady state value of the vertical displacement. Although the force in the fourth
case is twice as large as that in the third case, the final vertical displacement differs
only by approximately 3 %, showing that the force does not affect significantly
the dynamics of the droplets after the collision. To check the effect of the grid
size we also performed one simulation without the collision force and with double
resolution, reported with a black line in the same figure. The final value of the
vertical displacement for the cases with the force is approximately 6 % different from
the case with double resolution.

4. Results
We start our analysis by first considering the cases without the repulsive force

given by (3.1). Although the two fluids considered are both Newtonian, emulsions
can exhibit non-Newtonian behaviour such as shear thinning, normal stress differences
or viscoelasticity (Foudazi et al. 2015). A first parameter used to characterise the
rheological behaviour of a suspension is the effective shear viscosity of the system,
µe. The wall-normal gradient of the streamwise velocity gradient at the walls can be
used to evaluate the effective viscosity of an emulsion as

µe =

〈
µ0
∂u
∂z

∣∣∣∣
w

〉
γ̇

, (4.1)

where the symbol 〈〉 indicates that the quantity has been averaged in the two
homogeneous directions and in time. Following Yang, Krishnan & Shaqfeh (2016), it
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can be shown that the wall-normal velocity gradient at the wall is equivalent to the
bulk shear stress. Here, we show how to include the interfacial tension contribution
inside the shear stress balance. At steady state the streamwise momentum equation,
after averaging in the homogeneous direction, reduces to

0=−ρ
∂〈uw〉
∂z
+
∂〈2µD13〉

∂z
+ 〈 f1〉, (4.2)

where f1 represents the streamwise component of the interfacial tension force. This
equation can be rewritten as

0=
∂

∂z

(
−ρ〈uw〉 + 〈2µD13〉 +

∫
z
〈 f1〉 dz

)
, (4.3)

where we define G(z)=
∫

z〈 f1〉 dz the integral of 〈 f1〉 in the wall-normal direction. To
compute this integral we approximate the relation ∂G/∂z=〈 f1〉 with a finite difference
scheme and invert it. To determine the constant of integration we impose G= 0 at the
walls. We can now integrate equation (4.3) from the wall, z= 0, to a generic section
z= ζ

− ρ〈uw〉|0 + 〈2µD13〉|0 + 〈G〉|0 =−ρ〈uw〉|ζ + 〈2µD13〉|ζ + 〈G〉|ζ . (4.4)

The first term on the left-hand side is zero because the velocity is zero at the wall
and the last term on the left-hand side is zero due to the imposed boundary condition,
therefore

〈2µD13〉|0 =−ρ〈uw〉|ζ + 〈2µD13〉|ζ + 〈G〉|ζ . (4.5)

Because of the arbitrary choice of the section ζ , we can average the right-hand side
in the wall-normal direction

〈2µD13〉|0 =
1
Lz

∫ Lz

0
(−ρ〈uw〉|ζ + 〈2µD13〉|ζ + 〈G〉ζ ) dz, (4.6)

or similarly
〈2µD13〉|0 =−〈〈ρuw〉〉 + 〈〈2µD13〉〉 + 〈〈G〉〉, (4.7)

where the symbol 〈〈〉〉 indicates that the quantity has been averaged in the whole
domain. Providing that the first term on the right-hand side is negligible, we have
proved that the wall-normal shear stress is a measure of the bulk shear stress in the
domain, given by the sum of the viscous part and the interfacial tension contribution.
Before proceeding to quantify the shear stress components we need to underline two
aspects: (i) the interfacial term G at the wall is zero only if there are no droplets
reaching the wall and this is always verified in our simulations, as shown in the
following section; (ii) in order to consider our solution at steady state we average in
time over several shear units (typically between 20 and 40) and check if the mean
value of the shear rate varies less than a few per cent, therefore all the quantities
have to be considered also as averaged in time.

To illustrate the outcome and indications of such an analysis, we display in
figure 5(a) the profile of the stress components over the wall-normal direction z, that
is the direction of the velocity gradient, obtained from (4.7). As already anticipated,
the advection term is small (order 10−6) and for this reason will be neglected in
the discussion hereinafter. The main contribution to the total shear stress is given
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FIGURE 5. (Colour online) (a) Stress distribution along the wall-normal direction z
(i.e. the direction of the velocity gradient) for the case with Ca= 0.1, φ= 0.1 and λ= 1.0:
disperse phase viscous stress (@); outer fluid viscous stress (E); G (A); advection (6).
(b) Histogram of the stress components for the case with Ca = 0.1, φ = 0.1 and three
viscosity ratios: interfacial force (solid blue); outer fluid viscous stress (green dense net);
disperse phase viscous stress (red sparse net); the stresses are normalised with the wall
shear stress.
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FIGURE 6. (Colour online) Effective viscosity µe as function of the volume fraction: λ=
1.0 and different Ca (a); Ca=0.1 and different λ (b). The effective viscosity is normalised
with the outer fluid viscosity.

by the viscous stress of the outer fluid, which is also the only non-zero term at the
walls, and the sum of all the components is constant along the vertical direction. This
confirms that the shear stress at the wall is equal to the bulk shear stress and that the
effective viscosity can be evaluated using the wall-normal gradient of the streamwise
velocity at the wall, see (4.1). In (b) of the same figure, we report the histogram of
the shear stress components for three different values of the viscosity ratio. Here, we
note that the contribution due to the viscous stress of the dispersed phase (red sparse
net) is almost negligible for λ lower than 1, while the interfacial tension (in blue)
remains constant, as the volume fraction is constant.

We next examine in detail the global suspension viscosity for the emulsions with
coalescence. The effective viscosity for different volume fractions, capillary numbers
and viscosity ratios is shown in figure 6, together with the experiments in Caserta
& Guido (2012). The rheological curve exhibits a negative curvature, unlike rigid
and deformable particles (Guazzelli & Pouliquen 2018; Rosti & Brandt 2018). In
panel (a) of the figure, we display the results for emulsions with a viscosity ratio
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equal to one: the effective viscosity is always greater than the outer fluid viscosity and
exhibits a maximum at approximately φ= 0.2. As Ca decreases, droplets become less
deformable, leading to an increase of the effective viscosity, whereas, for the higher
capillary case, the decrease of effective viscosity at high volume fraction is more
prominent. When the disperse phase viscosity decreases (panel b of the same figure 6)
the peak moves to lower volume fractions, approximately φ = 0.1; in addition, the
effective viscosity of the emulsion becomes smaller than 1 at larger volume fraction,
when increasing the volume of the low viscosity fluid. To check the effect of the
droplet to system size ratio, we have also performed simulations with droplets of half
the initial radius, shown in black in figure 6(b): also in this case the curvature of the
effective viscosity is negative. The differences in the values of the effective viscosity
are a consequence of the different capillary number in the case of smaller droplets
with the same interfacial tension.

Caserta & Guido (2012) performed experiments with emulsions in shear flow and
reported a phase separation associated with the negative curvature of the curve of the
effective viscosity versus the volume fraction. This separation results in bands that
are aligned in the direction of the flow and alternated in the vorticity direction; the
process of banding has been observed only for viscosity ratios smaller than 1. We
can observe that in the case of λ = 1 the concavity of the viscosity curve is only
marginally negative, while for λ < 1 the sign of the curvature is clearly negative
both experimentally and numerically. For this reason the banding phenomenon was
visible only in emulsions with λ < 1. Because the characteristic width of the bands
is of the order of the gap between the walls we cannot reproduce with the present
simulations this separation of phases. For this reason we compare results only for
the case with λ = 1, when the distribution of the dispersed phase in homogeneous
in space. The numerical results in figure 6 are qualitatively in good agreement with
the experimental results, also reported in the same figure. It is difficult to perform
an exact comparison between the numerical simulations and the experimental results
due to the uncertainty on the initial size of the droplets. The initial size distribution
in the experiment is a consequence of the application of a strong pre-shear, higher
than the one corresponding to the critical capillary number for breakup, to fragment
the droplets and remove any effect of the initial configuration. By knowing the value
of the pre-shear (40 s−1) and assuming that the droplets have a monodisperse radius
distribution corresponding to the critical capillary number of 0.5 (for λ= 1), we can
estimate the initial value of the radius. With this estimated radius the Ca for the data
in figure 6 corresponding to the experiments is 0.12. Therefore, the small mismatch
between our initial Ca and the estimate of the experiment can be most likely explained
by the coalescence efficiency, which is close to unity in our simulations.

It is worth mentioning that shear banding is a phase separation process observed
only for viscosity ratios smaller than unity and in large domains, in the vorticity
direction, and over a very long time, i.e. more than 1000 shear units. In this case the
dispersed phase distribution is not homogenous and there is a reduction in the effective
viscosity of the system (Caserta & Guido 2012). It is common in the literature to
distinguish between the constitutive curve, defined as the effective viscosity as a
function of the volume fraction for a homogeneous microstructure and shear rate, and
the flow curve effective viscosity versus volume fraction measured in the rheometer
which can include vorticity banding. In this work we force the dispersed phase to
be approximatively homogenous due to lateral confinement, hence the curve reported
here should be considered as the constitutive curve of the emulsion. This should be
compared to experimental measures run at short time (see Caserta & Guido 2012)
when the bands have not yet formed. The effect of the vorticity banding on the
effective viscosity will be an object of future works.
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FIGURE 7. (Colour online) Effective viscosity µe for the cases with collision force and
Ca = 0.1. The line denoted as ‘deformable particles’ corresponds to the fit proposed in
Rosti & Brandt (2018) for initially spherical viscoelastic particles with the same capillary
number based on the material shear elastic module.

4.1. Rheology of repulsive emulsions
In this section we study the emulsion behaviour when suppressing the coalescence.
This is equivalent to assuming that the characteristic drainage time tends to infinity;
hence, the collision dynamics is faster than the coalescence time scale and the droplets
never merge. We have therefore performed simulations for the same parameters as in
the results discussed in the previous section, now with the collision force given by
(3.1). The effective shear viscosity obtained when varying the viscosity ratio and the
volume fraction φ is reported in figure 7.

When the coalescence is prohibited, the curve of viscosity versus concentration
exhibits a positive curvature, as for the case of rigid and deformable particles. In the
same figure, we display also the Eilers fit, valid for solid particles, and the fit from
Rosti & Brandt (2018) for deformable particles. In particular, Rosti et al. (2018)
have shown that it is possible to estimate the effective viscosity of a suspension
of deformable particles with the Eilers formula by computing an effective volume
fraction based on the mean deformation of the particles (see appendix A for more
details). The results in figure 7 demonstrate that, in the absence of coalescence,
emulsions behave as suspensions of deformable particles.

The change of sign in the curvature can be explained by examining the stress
components, as shown previously for droplets coalescing. In this case an additional
force, the collision force, needs to be included in the stress budget, which is treated
in the same way as the interfacial tension force,

〈2µD13〉|0 =−〈〈ρuw〉〉 + 〈〈2µD13〉〉 + 〈〈G〉〉 + 〈〈C〉〉, (4.8)

with C =
∫

z〈Fc〉 dz the wall-normal integral of the streamwise component of the
collision force.

The stress budget for the case with Ca = 0.1, φ = 0.3 and λ = 1 is shown in
figure 8(a). The interfacial tension contribution is now of the same order of magnitude
as the outer fluid viscous stress, whereas in the absence of a collision force it is
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FIGURE 8. (Colour online) (a) Wall-normal distribution (z) of the stresses for the case
with Ca= 0.1, φ = 0.3, λ= 1.0 and a collision force: disperse phase viscous stress (@);
carrier fluid viscous stress (E); interfacial force (A); collision force (6). The stresses are
normalised with the wall shear stress. (b) Histogram of the stress components for the
case with Ca= 0.1, φ = 0.3 with (left column) and without (right column) the collision
force: interfacial force (solid blue); carrier fluid viscous stress (green dense net); disperse
phase viscous stress (red sparse net); collision force (purple oblique bars). The stresses
are normalised with the single-phase wall shear stress.
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FIGURE 9. (Colour online) (a) Time history of the total surface for different volume
fractions and λ= 0.01. Cases without collision force: φ = 0.1 (@), φ = 0.2 (E), φ = 0.3
(A); cases with collision force: same colour and solid symbols. (b) Comparison of the
wall-normal distribution of the average volume fraction 〈φ〉 for the cases with φ = 0.3
and Ca= 0.1: without collision force (@); with collision force (E).

approximately two times smaller, as shown in (b). By comparing the stress budget
for the cases with the collision force and without the collision force (figure 8b), we
notice that the increase in effective viscosity is mostly due to the interfacial tension
term, with a small contribution due to the collision force, which is approximately
10 % of the total stress. Without the collision force, coalescence decreases the total
interface area, which leads to a reduction of the energy associated with the surface
tension. This is clearly demonstrated by computing the time history of the total
surface. In figure 9(a) the total surface, normalised with the initial value, is displayed
for different volume fractions at the viscosity ratio λ= 0.01 for the simulations with
and without the collision force. The latter cases exhibit a strong decrease of the total
surface before reaching a regime configuration, associated with a reduction of the
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(a) (b)

FIGURE 10. (Colour online) Instantaneous droplet distribution for emulsions with volume
fraction φ = 0.3 and capillary number Ca= 0.1 extracted from the simulation without a
collision force (a) and with a collision force (b).

interfacial area of up to 80 % of the initial value for the highest volume fraction
considered. This statistically steady state is reached faster for the cases with higher
volume fractions. On the contrary, when coalescence is prohibited the total surface
area slightly increases, owing to the deformation of the individual droplets. This
explains the increased surface tension contribution to the stress budget observed in
the absence of coalescence.

Figure 9(b) depicts the wall-normal distribution of the average (in the homogeneous
x and y directions) local volume fraction 〈φ〉 for the cases with φ= 0.3 and Ca= 0.1.
Here, we note a significant increase of the volume fraction close to the walls for the
cases with the collision force, which can be associated with the increased effective
viscosity. On the other hand, in the cases with coalescence, the larger droplets are
localised more towards the centre of the domain. This result is in agreement with
previous experimental observations (Hudson 2003; Caserta et al. 2005) where the
migration was attributed to the combined action of wall migration and shear-induced
diffusion of drops. This is also confirmed in figure 10 where we report a snapshot
of the droplet distribution for the cases in figure 9(b).

A measure of the coalescence is the droplet size distribution in the system. To study
this, we evaluate the volume distribution in the whole domain at steady state and draw
the cumulative distribution in figure 11 for the cases without the collision force. On
the horizontal axis we report the value of the equivalent diameter computed with the
volume of each dispersed droplet, normalised with the initial value, and on the vertical
axis the fraction of the total volume occupied by droplets of size smaller and equal
to the corresponding abscissa. At volume fraction φ = 0.1 the maximum value of the
diameter is approximately 3.5 the initial one and, by reducing the viscosity ratio, the
distribution shows a reduction of droplets with small diameter due to the increase of
coalescence. By increasing the volume fraction droplets merge into larger structures
which have a maximum equivalent diameter of approximately five times the initial one.
In the simulations with the collision force, the mean spherical equivalent diameter is
the same for all the droplets and equal to the initial value, depicted by the black line
in figure 11.

4.2. Flow topology and normal stress
Normal stresses can arise in emulsions when sheared and provide evidence for the non-
Newtonian behaviour of the system (Loewenberg & Hinch 1996; Pal 2011; Srivastava
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FIGURE 11. (Colour online) Cumulative volume distribution as a function of the
equivalent diameter, normalised with the initial value, for the case with φ = 0.1 and
different λ (a) and for the cases with different volume fractions and λ = 1. The black
line represents the initial distribution, which is a Heaviside on the initial value of the
diameter.
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FIGURE 12. (Colour online) PDF of the flow topology parameter for simulations without
a repulsive force among the droplets (a) and with (b): solid lines represent the outer fluid
domain and dashed lines the dispersed phase. Colours refer to different volume fractions:
φ = 0.1 red, φ = 0.2 blue, φ = 0.3 black.

et al. 2016). To evaluate the effect of the coalescence and of the volume fraction on
the extensibility of the flow we compute the flow topology parameter (De Vita et al.
2018; Rosti et al. 2019) defined as

Q=
D2
−Ω2

D2 +Ω2
, (4.9)

where D2
=DijDij and Ω2

=ΩijΩij with Ω = (∇uT
−∇u)/2 the rate of rotation tensor.

When Q = −1 the flow is purely rotational, whereas regions with Q = 0 represent
pure shear flow and those with Q= 1 elongational flow. In figure 12 we display the
probability distribution function (PDF) of Q for different volume fractions and for
simulations with and without the collision force. We observe that in the presence of
coalescence the outer fluid has a peak of the PDF in correspondence with Q = 0,
which implies that the flow is almost pure shear flow as in the case of single-phase
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Couette flow. The dispersed phase, instead, shows a peak for negative values of Q
(rotational flow), which moves towards zero on increasing the volume fraction. When
the collision force is applied, we note a strong reduction of the peaks in the outer
fluid distribution, compensated by an increase of the underlying area of the curve for
positive values of Q. This means that, when the coalescence is prohibited, we find
in the external flow regions not only shear flow but also extensional flow, which is
related to the velocities in the gaps between the droplets. For these cases we also
observe that the dynamics of the dispersed phase flow is substantially unaffected
by the volume fraction and has always components of rotational flow (inside the
deforming droplets).

We conclude our analysis by computing the normal stress difference following
Batchelor’s formulation (Batchelor 1970; Srivastava et al. 2016). Here, however, we
cannot follow the same methodology used for the shear stress, because it is not
possible to obtain the integration constant needed to determine the function G when
integrating in the homogeneous directions. Following Batchelor’s formulation, the
bulk stress 〈〈τ 〉〉 can be decomposed into the sum of the stress due to the outer fluid,
in the case of zero volume fraction, 〈〈τ 0

〉〉 and that arising from the presence of the
disperse phase 〈〈τ 1

〉〉

〈〈τ 〉〉 =−〈〈p〉〉I+ 〈〈τ 0
〉〉 + 〈〈τ 1

〉〉. (4.10)

The last term on the right-hand side can be further decomposed as the sum of three
terms: the first due to the viscosity difference 〈〈τµ〉〉, the second to the interfacial
tension 〈〈τ σ 〉〉 and the third to the perturbation in the velocity field induced by the
presence of the droplets 〈〈τ ptb

〉〉

〈〈τ 1
〉〉 = 〈〈τµ〉〉 + 〈〈τ σ 〉〉 + 〈〈τ ptb

〉〉

=
µ1 −µ0

V

∫
S
(un+ nu) dS −

σ

V

∫
S

(
nn−

I
3

)
dS −

1
V

∫
V
(ρu′u′) dV, (4.11)

where S is the total surface of the droplets and V is the averaging volume, i.e. the
computational domain. The normalised normal stress differences are then defined as

N1 =
〈〈τ 1

xx〉〉 − 〈〈τ
1
zz〉〉

µ0γ̇

N2 =
〈〈τ 1

zz〉〉 − 〈〈τ
1
yy〉〉

µ0γ̇
.

 (4.12)

When N1 is greater then zero and τ 1
xx > τ 1

zz droplets are elongated in the direction
of the flow and compressed in the wall-normal direction. The opposite configuration
corresponds to negative values of N1.

In figure 13, we report the values of N1 and N2 computed from our simulations.
First, we observe that the magnitude of the normal stress difference is larger for
the cases without the collision force. This can be explained by noting that, when
the collision force is turned on, the droplets exhibit smaller deformation due to the
higher packing inside the domain (see figure 10). The magnitude of the normal stress
differences decreases with the viscosity ratio and increases with the volume fraction.
The data in the figure also reveal that the second normal difference is always negative
whereas the first normal difference is positive for λ = 1 and λ = 0.1 and becomes
negative for smaller viscosity ratios. Additionally, the ratio of N1 and N2 is almost
constant with the volume fraction, showing that they have the same dependency on φ.
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FIGURE 13. (Colour online) Normal stress differences for the cases with a repulsive force
among the droplets (open symbols and dashed lines) and without (solid symbol and solid
lines). Colours represent the different viscosity ratios under investigation: λ=1 red, λ=0.1
blue, λ= 0.01 black.

5. Conclusion

We have studied the rheology of emulsions under shear flow in the dilute and
moderate concentration regimes by means of numerical simulations. The multiphase
flow dynamics is governed by the Navier–Stokes equations while the interface is
tracked in time employing a VoF technique. This approach naturally allows us to take
into account the coalescence of droplets, which significantly affects the rheological
behaviour of emulsions. To single out the effect of coalescence, we have therefore
developed an Eulerian collision model which allows us to delay or fully prohibit the
merging of droplets. We have reported here simulations at different capillary numbers,
viscosity ratios and volume fractions with a constant Reynolds number, small enough
to assume inertial effects to be negligible. In this work we have focused on the
characterisation of the constitutive curves of emulsions by simulating approximatively
homogeneous distributions of the dispersed phase and neglecting the vorticity banding
observed in experiments at viscosity ratios smaller than unity.

We show that the curvature of the rheological curve (effective viscosity versus
volume fraction) is negative when coalescence is allowed whereas it changes sign
when we introduce the collision force, which prevents merging. The decrease of the
effective viscosity in the former case is a consequence of the reduction of the total
surface of the system, which in turn reduces the contribution to the stress tensor
due to the interface tension stress. When the coalescence is prohibited, this term
is responsible for approximately half of the total effective viscosity and emulsions
behave similarly to suspensions of deformable particles.

In the case of coalescence, we observe the formation of relatively large droplets,
migrating towards the channel centre. Moreover, by examining the probability
distribution function of the flow topology parameter, we show that the external
flow is mostly shear while the dispersed phase exhibits some rotational flow regions,
which become smaller when increasing the volume fraction (on average large droplets).
On the other hand, when we introduce the collision force, the dominant presence of
shear flow in the outer fluid decreases and regions of extensional flows emerge. The
dispersed phase, in this case characterised by smaller deformed droplets in the flow,
is mostly unaffected by the volume fraction and shares equally distributed regions
of shear and rotational flow. Furthermore, analysis of the droplet size distribution at
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steady state reveals that in the presence of coalescence the mean equivalent diameter
of the droplets in the emulsions increases by up to three times the initial value and
is a function of both the volume fraction and viscosity ratio. For simulations with the
collision force, instead, every droplet has an equivalent diameter equal to the initial
one.

To characterise the viscoelastic system behaviour, we show that the first normal
stress difference is positive and the second negative, as in suspensions of capsules and
deformable particles. The magnitude of the normal stress difference always increases
with the volume fraction; also noteworthy is that we find an inversion of the first
normal difference for small values of the viscosity ratio.

To conclude, it is worth noting once more that we have investigated two limiting
cases, one with coalescence efficiency tending to unity and one with efficiency
approaching zero. In a real scenario, the coalescence efficiency is likely to have
intermediate values and the behaviour of emulsions can therefore differ from the
limiting cases considered here. Future works may therefore be devoted to handling
both coalescence and collisions in order to simulate different types of emulsions and
to study the formation of the vorticity banding.
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Appendix A
In this appendix, we compare our results with expressions available in the literature

for suspensions of particles and emulsions. Pal (2003) proposed the following equation
for the viscosity of a concentrated emulsion

µr

[
M − P+ 32µr

M − P+ 32

]N−1.25 [ M + P− 32
M + P− 32µr

]N+1.25

=

(
1−

φ

φm

)−2.5φm

, (A 1)

with µr =µe/µ0, φm the maximum packing volume fraction and

M =

√
64

Ca2
+ 1225λ2 + 1232

K
Ca
, (A 2a)

P=
8

Ca
− 3λ, (A 2b)

N =

22
Ca
+ 43.75λ

M
. (A 2c)

For the comparison reported here, we use φm = 0.637, as reported by Pal (2003). In
figure 14(a) we display the results of our simulations for λ= 1 and different capillary
numbers alongside equation (A 1), for the same parameters. In the dilute regime, up to
10 % volume fraction, the comparison provides good agreement between simulations
and the proposed relation, (A 1), whereas the curves diverge for higher volume
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FIGURE 14. (Colour online) Effective viscosity versus volume fraction. (a) Simulations
with λ = 1 and different capillary numbers: solid lines represent equation (A 1), dashed
lines with symbols represent our numerical simulations. Colours represent different
capillary numbers: 0.05 red, 0.1 green, 0.2 blue. Black diamonds represent experiment
by Caserta & Guido (2012). (b) Cases with Ca= 0.1 and different λ: solid coloured lines
represent equation (A 1), dashed lines with symbols represent our numerical simulations,
black solid line represents data from Rosti et al. (2018) and black dashed line represents
equation (A 3). Colours represent different λ: 1 red, 0.1 green, 0.01 blue.

fractions. The reason is that equation (A 1) cannot reproduce the positive concavity
of the effective viscosity versus the volume fraction, as reported in the experiment by
Caserta & Guido (2012) (also shown in the plot with black diamonds). Additionally,
we note that equation (A 1) assumes as a parameter the maximum packing volume
fraction which, in the case of coalescence, does not have a clear physical meaning.

Next, see figure 14(b), we compare (A 1) with results for the cases with the collision
force, Eilers formula

µr =

1+
1.25φ

1−
φ

φm


2

(A 3)

and the data from Rosti & Brandt (2018) for deformable particles of a viscous
hyperelastic material. Despite the differences in the specific values, the trend is
similar for all curves, with (A 1) underpredicting the effective viscosity. It is worth
noticing that, if the parameter φm is used as a fitting parameter, it is possible to get a
better agreement between our results and equation (A 1), in particular using φm≈ 0.4.

Appendix B
Rosti & Brandt (2018) showed that the effective viscosity of a suspension of

deformable particles can be predicted using the Eilers formula (A 3) by modifying
the volume fraction to take into account the particle deformation. This can be
measured by the Taylor parameter

T =
a− b
a+ b

, (B 1)

where a and b are the semi-major and semi-minor axes of the inscribed ellipse. The
authors showed that this fit provides good predictions for different capillary numbers
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FIGURE 15. (Colour online) Effective viscosity as a function of the volume fraction φ
(@) and of the effective volume fraction φe (E). The black solid line represents the Eilers
formula (A 3).

and viscosity ratios, both for fluid-filled capsules and red blood cells. Here, we wish
to show that the same scaling can be applied also for the emulsions considered in this
study when coalescence is inhibited. We therefore evaluate the effective viscosity φe

based on spheres of radius equal to the semi-minor axis b of the inscribed ellipsoid

φe =N
4
3πb3

V
, (B 2)

where N is the number of droplets in the computational box of volume V . We
then depict in figure 15 the effective viscosity of the emulsions as a function of
the average volume fraction φ and of the effective volume fraction φe. The figure
shows that, indeed, the effective viscosity of the emulsion successfully collapses onto
the Eilers formula, with an error of approximately 6 % only for the highest volume
fraction. It is worth noticing that this scaling works only for the cases with the
collision force; indeed, in the case of coalescence, the shape of the interface is not
well approximated by an ellipsoid, hence the Taylor parameter is not a good measure
of the droplet deformation. Additionally, the curvature of the curve representing the
effective viscosity versus the volume fraction is negative and thus it is not possible
to collapse the results on the Eilers formula, which is instead monotonic. These
results further prove that, in the absence of coalesce, emulsions behave similarly
to suspensions of deformable particles and capsules and that coalescence should be
considered as properly describing the rheological response of emulsions.
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