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We present a numerical analysis of the rheology of a suspension of red blood cells
(RBCs) in a wall-bounded shear flow. The flow is assumed as almost inertialess. The
suspension of RBCs, modelled as biconcave capsules whose membrane follows the
Skalak constitutive law, is simulated for a wide range of viscosity ratios between
the cytoplasm and plasma, λ = 0.1–10, for volume fractions up to φ = 0.41 and for
different capillary numbers (Ca). Our numerical results show that an RBC at low Ca
tends to orient to the shear plane and exhibits so-called rolling motion, a stable mode
with higher intrinsic viscosity than the so-called tumbling motion. As Ca increases,
the mode shifts from the rolling to the swinging motion. Hydrodynamic interactions
(higher volume fraction) also allow RBCs to exhibit tumbling or swinging motions
resulting in a drop of the intrinsic viscosity for dilute and semi-dilute suspensions.
Because of this mode change, conventional ways of modelling the relative viscosity
as a polynomial function of φ cannot be simply applied in suspensions of RBCs at
low volume fractions. The relative viscosity for high volume fractions, however, can
be well described as a function of an effective volume fraction, defined by the volume
of spheres of radius equal to the semi-middle axis of a deformed RBC. We find that
the relative viscosity successfully collapses on a single nonlinear curve independently
of λ except for the case with Ca > 0.4, where the fit works only in the case of
low/moderate volume fraction, and fails in the case of a fully dense suspension.

Key words: blood flow, capsule/cell dynamics, suspensions

1. Introduction
The viscosity of blood is a basic biological parameter affecting the blood flow

both in large arteries and in microcirculations, and hence studies of haemorheology
from the single-cell level to macroscale blood flow have been conducted for many
decades (Pedley 1980; Mohandas & Gallagher 2008; Secomb 2017). Since human
blood is a dense suspension consisting of 55 % fluid (plasma) and 45 % blood cells,
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with over 98 % of the cells being red blood cells (RBCs), hydrodynamic interactions
of individual RBCs are of fundamental importance for haemorheology. Despite a
number of studies of haemorheology, much is still unknown, in particular about how
the single-cell behaviour relates to the behaviour in suspensions and then rheology.
Therefore, the objective of this study is to clarify the behaviour of individual RBCs
from dilute to dense suspensions, and to elucidate the relationship between behaviours
of individual RBCs and haemorheology.

Clarifying the cellular-scale dynamics allows us to build precise continuum models
of suspensions (Ishikawa 2012; Henríquez-Rivera, Sinha & Graham 2015), and
potentially leads us to novel diagnoses about patients with blood diseases (Ito et al.
2017). Therefore, researchers have made every effort to reveal the dynamics of
single RBCs as well as the rheological description of blood flow. By means of
experimental observations, the dynamics of single RBCs has been well investigated.
For example, RBCs subjected to a low shear rate exhibit rigid-body-like flipping,
the so-called tumbling motion (Schmid-Schönbein & Wells 1969; Fischer 2004;
Dupire, Abkarian & Viallat 2010), and wheel-like rotation, the so-called rolling
motion (Dupire, Socol & Viallat 2012; Lanotte et al. 2016), while RBCs subjected
to high shear rates exhibit the so-called tank-treading motion (Schmid-Schönbein
& Wells 1969; Fischer, Stöhr-Liesen & Schmid-Schönbein 1978; Fischer 2004).
The swinging motion was introduced by Abkarian, Faivre & Viallat (2007) as an
oscillating orientation of tank-treading motion in the case of relatively low viscosity
ratio λ ∼ 0.5. By means of numerical simulations, it has been observed that the
dynamics transitions from rolling/tumbling to kayaking (or oscillating–swinging)
and swinging, following tank-treading motions for a wide range of viscosity ratios
(0.1< λ< 10) (Cordasco & Bagchi 2014; Sinha & Graham 2015). Moreover, recent
experimental and numerical studies demonstrated that a rolling or tumbling RBC can
shift to a stomatocyte first and finally attaining polylobed shapes (or multilobes) as
the shear rate increases with relatively high viscosity ratios (λ∼ 3–5) (Lanotte et al.
2016; Mauer et al. 2018). Despite these insights, it is not known how the various
motions of individual RBCs affect the bulk suspension rheology.

The rheological description of suspensions, especially of rigid particles, was
addressed in the pioneering work by Batchelor (1970), showing that stress due to the
presence of particles is evaluated using a particle stress tensor, which can be expressed
as a summation of stresslets in a domain. Pozrikidis (1992) analytically derived the
effective stresslet of a deformable capsule consisting of an internal fluid enclosed
by a thin elastic membrane. It is known that the usual distribution of haemoglobin
concentration in individual RBCs ranges from 27 to 37 g dl−1 corresponding to
the internal fluid viscosity being µ1 = 5–15 cP (=5–15 × 10−3 Pa s) (Mohandas &
Gallagher 2008), while the normal plasma (external fluid) viscosity is µ0= 1.1–1.3 cP
(=1.1–1.3 × 10−3 Pa s) for plasma at 37 ◦C (Harkness & Whittington 1970). If the
plasma viscosity is set to be µ0 = 1.2 cP, the physiologically relevant viscosity ratio
can be taken as λ (=µ1/µ0)= 4.2–12.5. At the single-cell level, the effect of viscosity
ratio λ on steady motions has been well investigated (Cordasco, Yazdani & Bagchi
2014; Mauer et al. 2018). In suspensions, numerical studies of the behaviours of
deformable particles modelled as neo-Hookean spherical capsules (Clausen, Reasor Jr
& Aidun 2011; Kumar, Henríquez-Rivera & Graham 2014; Matsunaga et al. 2016)
or as viscoelastic materials (Rosti & Brandt 2018; Rosti, Brandt & Mitra 2018)
have been conducted, while numerical studies of the behaviours of RBCs modelled
as deformable biconcave capsules are still limited (Fedosov et al. 2011; Reasor Jr,
Clausen & Aidun 2013; Gross, Krüger & Varnik 2014; Lanotte et al. 2016), where

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 O

sa
ka

 U
ni

ve
rs

ity
 L

ib
ra

ry
, o

n 
15

 Ju
n 

20
19

 a
t 0

3:
14

:5
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
39

3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.393


820 N. Takeishi, M. E. Rosti, Y. Imai, S. Wada and L. Brandt

the shear-thinning behaviour of a suspension of RBCs was systematically investigated.
However, it remains unclear how the viscosity ratio λ affects the bulk suspension
rheology of RBCs.

Nowadays, a rheological description of blood is important considering the
fast-increasing worldwide incidence of diabetes mellitus. Skovborg et al. (1966)
measured the viscosity of blood from diabetic patients, and found that it was
approximately 20 % higher than in controls. Elevated blood viscosity was also found
in other haematologic disorders, e.g. multiple myeloma (Dintenfass & Somer 1975;
Somer 1987) and sickle cell disease (Embury et al. 1984; Evans, Mohandas & Leung
1984). An experimental study using a coaxial cylinder viscometer revealed that the
blood from patients with sickle cell anaemia, which is an inherited blood disorder
exhibiting heterogeneous cell morphology, had higher haemoglobin concentration
resulting in abnormal rheology (Chien, Usami & Bertles 1970; Usami et al. 1975;
Kaul & Xue 1991). Numerical study of two-body interactions of RBCs also concluded
that the viscosity ratio is one of the most important parameters in haemorheology
for the dilute and the semi-dilute regimes (Omori et al. 2014). As a conventional
rheological description, the relative viscosity µre is often modelled as a polynomial
function of the volume fraction φ. For example, Einstein (1911) proposed the viscosity
law for a dilute suspension of rigid particles: µre = 1 + 2.5φ; while Taylor (1932)
proposed a modified law for particles including internal fluid: µre = 1 + 2.5λ̃φ,
where λ̃ is Taylor’s factor defined as λ̃ = (λ + 0.4)/(λ + 1). More recently, such a
polynomial approach has been applied to dense suspensions of deformable particles,
with high-order terms of φ (Matsunaga et al. 2016; Rosti & Brandt 2018). However,
a polynomial law for dense suspensions of non-spherical deformable particles such
as RBCs is still missing due to the complexity of the phenomenon.

To obtain a rheological description of RBC suspensions, we investigate the effect
of a wide range of viscosity ratios λ= 0.1–10, non-dimensional shear rates (capillary
number, Ca) and volume fractions φ. We performed numerical simulations to study
the behaviour of RBCs subjected to various Ca in wall-bounded shear flow from
dilute suspensions (φ = 6× 10−4; single RBC level) to dense suspensions (φ = 0.41).
The contribution of individual deformed RBCs to the bulk suspension rheology
is quantified by the stresslet tensor (Batchelor 1970). The RBC is modelled as a
biconcave capsule, whose membrane follows the Skalak constitutive law (Skalak
et al. 1973). Since this problem requires heavy computational resources, we resort
to graphics processing unit (GPU) computing, using the lattice-Boltzmann method
(LBM) for the inner and outer fluid and the finite-element method (FEM) to follow
the deformation of the RBC membrane. The models have been successfully applied
to the analysis of hydrodynamic interactions between RBCs and leukocytes (Takeishi
et al. 2014), circulating tumour cells (Takeishi et al. 2015) and microparticles/platelets
(Takeishi & Imai 2017; Takeishi, Imai & Wada 2019) in channel flows.

The remainder of this paper is organized as follows. Section 2 gives the problem
statement and numerical methods. Section 3 presents the numerical results for
single RBCs and semi-dilute/dense suspensions. Section 4 presents a discussion
and comparison between our numerical results and previous experimental/numerical
results. This is followed by a summary of the main conclusions in § 5. The validation
of our numerical model is described in appendix A.

2. Problem statement
2.1. Flow and cell models

We consider a cellular flow consisting of plasma and RBCs with radius a in a
rectangular box of size 16a × 10a × 16a along the spanwise x, wall-normal y and
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streamwise z directions, with a resolution of 8 fluid lattices per radius of RBC.
Although the domain size used here has been shown to be adequate for investigating
suspensions of rigid and deformable spherical particles in previous studies (Picano
et al. 2013; Rosti & Brandt 2018), we preliminarily checked its effect for RBCs as
well as the effect of the wall (§§ A.2 and A.3). An RBC is modelled as a biconcave
capsule of a Newtonian fluid enclosed by a thin elastic membrane, with a major
diameter 8 µm (=2a) and maximum thickness 2 µm (=a/2). Although some recent
numerical studies argued about the stress-free shape of RBCs (Peng, Mashayekh &
Zhu 2014; Tsubota, Wada & Liu 2014; Sinha & Graham 2015), we define the initial
shape of an RBC as a biconcave shape.

The shear flow is generated by moving the top and bottom walls located at
y = ±H/2 with constant velocity Uwall = ±γ̇H/2, where H (=10a) is the domain
height and γ̇ (=Uc/a) is the shear rate defined using the characteristic velocity Uc.
Periodic boundary conditions are imposed on the two homogeneous directions (x and
z directions). The cytoplasmic viscosity is taken to be µ1 = 6.0 × 10−3 Pa s, which
is five times higher than the plasma viscosity: µ0 = 1.2 × 10−3 Pa s (Harkness &
Whittington 1970). Hence, in our study, the physiologically relevant viscosity ratio is
set to be λ (=µ1/µ0)= 5, and the range of viscosity ratios λ= 0.1–10 are considered.
The problem is characterized by the capillary number (Ca) as

Ca=
µ0Uc

Gs
=
µ0γ̇ a

Gs
, (2.1)

where Gs is the surface shear elastic modulus. To counter the computational costs,
we set Re = ρUca/µ0 = 0.2, where ρ is the plasma density. This value well
represents capsule dynamics in unbounded shear flows solved by the boundary
integral method (BIM) in Stokes flow (Omori et al. 2012; Matsunaga et al. 2016)
(see also §§ A.1 and A.3). In this study, the range of Ca = 0.05–1.2 is considered
covering typical venule wall-shear rate of 333 s−1 (Koutsiaris, Tachmitzi & Batis
2013), corresponding to Ca= 0.4, and arteriole wall-shear rate of 670 s−1 (Koutsiaris
et al. 2007), corresponding to Ca= 0.8.

The membrane is modelled as an isotropic and hyperelastic material. The surface
deformation gradient tensor F s is given by

dxm = F s · dXm, (2.2)

where Xm and xm are the membrane material points of the reference and deformed
states, respectively. The local deformation of the membrane can be measured by the
Green–Lagrange strain tensor

E = 1
2(C − I s), (2.3)

where I s is the tangential projection operator. The two invariants of the in-plane strain
tensor E can be given by

I1 = λ
2
1 + λ

2
2 − 2, I2 = λ

2
1λ

2
2 − 1= J2

s − 1, (2.4a,b)

where λ1 and λ2 are the principal extension ratios. The Jacobian Js = λ1λ2 expresses
the ratio of the deformed to the reference surface areas. The elastic stresses in an
infinitely thin membrane are replaced by elastic tensions. The Cauchy tension T can
be related to an elastic strain energy per unit area, ws(I1, I2):

T =
1
Js

F s ·
∂ws(I1, I2)

∂E
· F T

s , (2.5)
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where the strain energy function ws satisfies the Skalak (SK) constitutive law (Skalak
et al. 1973)

wSK
s =

Gs

4
(I2

1 + 2I1 − 2I2 +CI2
2), (2.6)

with C being a coefficient representing the area incompressibility. In this study, we set
Gs = 4 µN m−1 and C = 102. Bending resistance is also considered (Li et al. 2005),
with a bending modulus kb = 5.0× 10−19 J (Puig-de-Morales-Marinkovic et al. 2007).
These values successfully reproduce the deformation of RBCs in shear flow and also
the thickness of the cell-depleted peripheral layer; see § A.1 (Takeishi et al. 2014).

2.2. Numerical method
The in-plane elastic tensions T are obtained from the SK constitutive law (2.6).
Neglecting inertial effects on the membrane deformation, the static local equilibrium
equation of the membrane is given by

∇s · T + q= 0, (2.7)

where ∇s is the surface gradient operator. Based on the virtual work principle, the
above strong form (2.7) can be rewritten in weak form as∫

S
û · q dS=

∫
S
ε̂ : T dS, (2.8)

where û and ε̂ = (∇sû + ∇sû
T
)/2 are the virtual displacement and virtual strain,

respectively. The FEM is used to solve (2.8) and obtain the load q acting on the
membrane (see also Walter et al. 2010).

The LBM based on the D3Q19 model (Chen & Doolen 1998; Dupin et al. 2007)
is used to solve the fluid velocity field in the plasma and cytoplasm within the RBC
membrane. In the LBM, the macroscopic flow is obtained by collision and streaming
of hypothetical particles described by the lattice-Boltzmann Bhatnagar–Gross–Krook
equation (Bhatnagar, Gross & Krook 1954), which is given as

fi(xf + ci1t, t+1t)− f (xf , t)=−
1
τ
[ fi(xf , t)− f eq

i (xf , t)] + Fi1t, (2.9)

where fi is the particle distribution function for particles with velocity ci (i= 0–18) at
the fluid node xf , 1t is the time step size, f eq

i is the equilibrium distribution function
and τ is the non-dimensional relaxation time. The external force term Fi can be
written as

Fi =

(
1−

1
2τ

)
wi

[
ci − v

c2
s

+
(ci · v)

c4
s

]
·F(xf ), (2.10)

where cs=1xf /(
√

31t) is the speed of sound. The external force F(xf ) is a distributed
force applied from the membrane material points with the immersed boundary method
(IBM) (Peskin 2002). The particle velocity ci is written by using the time-step size
1t and the lattice size 1xf as

ci = cI
i
1xf

1t
eI, (2.11)
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where eI is the Cartesian basis. The equilibrium distribution function is given by

f eq
i (xf , t)= ρwi

[
1+

v · ci

c2
s

+
(v⊗ v) : (ci ⊗ ci − c2

s I)

2c4
s

]
, (2.12)

where wi is the weight (wi= 0 for i= 0, wi= 1/18 for the non-diagonal directions and
wi = 1/36 for the diagonal directions) and I is the identity tensor. The macroscopic
variables ρ and v are defined as

ρ =
∑

i

fi, (2.13)

ρv =
∑

i

ci fi +
1
2

F(xf )1t. (2.14)

In the IBM (Peskin 2002), the membrane force f (xm) at the membrane node xm is
distributed to the neighbouring fluid nodes xf , and the external force F(xf ) in (2.10)
is computed as

F(xf )=
∑

m

D(xf − xm)f (xm), (2.15)

where D(x) is a smoothed delta function approximating the Dirac delta function, given
by

D(x)=


1

641x3
f

3∏
k=1

(
1+ cos

πxk

21xf

)
if |xk|6 21xf , x1 = x, x2 = y, x3 = z,

0 otherwise.

(2.16)

The velocity at the membrane node v(xm) is obtained by interpolating the velocities
at the fluid nodes as

v(xm)=
∑

f

D(xf − xm)v(xf ). (2.17)

The membrane node xm is updated by Lagrangian tracking with the no-slip condition,
i.e.

dxm

dt
= v(xm). (2.18)

The explicit fourth-order Runge–Kutta method is used for the time integration. Note
that by using our coupling method of LBM and IBM, the hydrodynamic interaction
of individual RBCs is solved without modelling a non-hydrodynamic inter-membrane
repulsive force in the case of vanishing inertia, as also shown in § A.3.

The viscosity of a LB node xf is found using the volume of fluid ψ(xf ) (06ψ 6 1)
of the internal fluid of the RBCs:

µ= (1−ψ)µ0 +ψµ1 = {1+ (λ− 1)ψ}µ0, (2.19)

and the kinematic viscosity as

ν =
µ

ρ
= {1+ (λ− 1)ψ}

µ0

ρ
=

2τ − 1
2

c2
s1t=

2τ − 1
6

1r2

1t
. (2.20)
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To update the viscosity on the fluid lattice, we consider the volume-of-fluid
function ψ , which is governed by an advection equation:

∂ψ

∂t
+∇ · (vψ)−ψ∇ · v = 0. (2.21)

Equation (2.21) is solved by the THINC/WLIC (tangent of hyperbola for interface
capturing/weighted line interface calculation) method (Yokoi 2007), which is a
combination of the THINC scheme and the WLIC method. As a characteristic
function of the THINC scheme, the piecewise modified hyperbolic tangent function
(Xiao, Honma & kono 2005) is used. In the WLIC formulation, the interface is
reconstructed by taking an average of the interfaces along the x, y and z coordinates
with weights calculated from the surface normal. To counter the divergence between
the interface of ψ and the membrane surface, we also solve the Poisson equation of
the indicator function I(xf ) used in the front-tracking method (Unverdi & Tryggvason
1992):

∇
2I(xf )=∇ ·G(xf ), (2.22)

where I = 1 in the interior of a cell and I = 0 outside a cell, and G(xf ) is described
by the smoothed delta function (2.16):

G(xf )=∇I(xf )=
∑

e

D(xf − xe)ne1se, (2.23)

where ne is the outward unit normal vector to an element with the area 1se, whose
centroid is xe. To speed up the numerical simulations, we only solve the Poisson
equation of the indicator function every 10 000 steps. Our methods are validated for
different viscosity ratios by comparing the values of the Taylor parameter of deformed
spherical capsules with those reported in Foessel et al. (2011), as detailed in § A.1.
A volume constraint is implemented to counteract the accumulation of small errors in
the volume of the individual cells (Freund 2007): in our simulation, the volume error
is always maintained lower than 1.0× 10−3 %, as tested and validated in our previous
study of cell adhesion (Takeishi et al. 2016).

All numerical procedures are fully implemented on GPU to accelerate the numerical
simulation (Miki et al. 2012). The mesh size of the LBM for the fluid solution
is set to be 250 nm, and that of the finite elements describing the membrane
is approximately 250 nm (an unstructured mesh with 5120 elements is used for
the FEM). This resolution has been shown to successfully represent single- and
multi-cellular dynamics (Takeishi et al. 2014); also, the results of multi-cellular
dynamics do not change with twice the resolution of both the fluid mesh and
membrane mesh (see also Takeishi et al. 2014).

2.3. Analysis of capsule suspensions
For the following analysis, the behaviour of RBCs subjected to shear flow is quantified
by two different orientation angles θ and Ψ as shown in figure 1(a,b), where θ is the
angle between the major axis of the deformed RBC and the shear direction and Ψ is
the angle between the vortex axis and the normal vector at the initial concave node
point (green dot in figure 1a,b). In suspensions of RBCs, the ensemble average of
these orientation angles is calculated as

〈ξ〉 =
1

MN

M∑
m

N∑
n

ξm,n (ξ = θ or Ψ ), (2.24)
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FIGURE 1. (Colour online) (a,b) Schematic of the three-dimensional orientation of an
RBC (a). The shear flow is driven along the z direction by moving the top and bottom
walls. Periodic boundary conditions are imposed on the flow (z direction) and vortex
(x direction) directions. Coloured dots on the membrane denote material points to measure
the RBC orientation, which is defined by the angle θ between the major axis of the
deformed RBC and the shear direction and the angle Ψ between the vortex axis and
the green dot (b). (c) Time history of the orientation angles Ψ and θ for different
motions; tumbling motion (light red line) for RBC initial orientation Ψ0 = π/2 and
rolling motion (black line) for random initial state, i.e. Ψ0 = rand. The upper inset
represents the tumbling motion of an RBC (see the supplementary movie 1, available at
https://doi.org/10.1017/jfm.2019.393) and the lower inset the rolling motion of an RBC
(see the supplementary movie 2). (d) Time history of the intrinsic viscosity η (=µsp/φ)
for tumbling (light red line) and rolling (black line) motions. The results are obtained with
λ= 5 at Ca= 0.05.

where M and N are the number of time steps and capsules (RBCs), respectively. Time
average starts after the non-dimensional time γ̇ t = 40 to reduce the influence of the
initial conditions, and continues to over γ̇ t= 100.

For the analysis of the suspension rheology, we consider the contribution of the
suspended particles to the bulk viscosity in terms of the particle stress tensor Σ (p)

(Batchelor 1970):

Σ (p)
=

1
V

N∑
i

Si, (2.25)
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where V is the volume of the domain and Si the stresslet of the ith particle (capsule
and RBC in the present study). Pozrikidis (1992) analytically derived the stresslet of
a deformable capsule for any viscosity ratio:

Si =

∫ [
1
2(x⊗ q̂+ q̂⊗ x)−µ0(1− λ)(v⊗ n+ n⊗ v)

]
dAi, (2.26)

where x is the membrane position relative to the centre of the RBC, q̂ the load acting
on the membrane including a contribution of bending rigidity, n the surface normal
vector, µ0 the outer fluid (plasma) viscosity, v the interfacial velocity of membrane
and Ai the membrane surface area of the ith RBC. The suspension shear viscosity µ∗

is often expressed in terms of the viscosity µ0 of the carrier fluid and a perturbation
δµ (i.e. µ∗ = µ0 + δµ), sometimes analytically obtained by truncating a perturbative
approach at leading order (e.g. for small deformability or very dilute conditions). This
leads to the introduction of the relative viscosity µre and specific viscosity µsp defined
as

µre =
µ∗

µ0
= 1+µsp, (2.27)

µsp =
δµ

µ0
=
Σ
(p)
12

µ0γ̇
. (2.28)

For example, in a dilute suspension of rigid spheres with a volume fraction φ, it is
well known that the specific viscosity µsp can be given by a polynomial equation of
the first order of φ, µsp= ηφ (=2.5φ) (Einstein 1911), where the coefficient η (=2.5)
is the intrinsic viscosity which is defined as η=µsp/φ.

The first and second normal stress differences, typically used to quantify the
suspension viscoelastic behaviour, are defined as

N1

µ0γ̇
=
Σ
(p)
11 −Σ

(p)
22

µ0γ̇
, (2.29)

N2

µ0γ̇
=
Σ
(p)
22 −Σ

(p)
33

µ0γ̇
. (2.30)

The particle pressure (Jeffery, Morris & Brandy 1993), which is the isotropic stress
that exists in the particle phase, is given by

Πp

µ0γ̇
=−

trΣ (p)

3µ0γ̇
. (2.31)

The particle pressure is analogous to the osmotic pressure in a colloidal suspension
caused by the hydrodynamic interactions among the suspended particles without
Brownian motion, and has been previously quantified for suspensions of deformable
capsules (Clausen et al. 2011; Reasor Jr et al. 2013; Gross et al. 2014). In the
following section, we show the numerical results obtained with λ = 5, and compare
with those obtained at other values of λ to quantify the effect on the bulk suspension
rheology.
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3. Results
3.1. Behaviour of a single RBC

First, we investigate the behaviour of a single RBC at small deformations. When the
RBC is placed perpendicular to the shear direction (Ψ0=π/2), it keeps flipping along
the vortex angle for low Ca (=0.05), with Ψ ∼ π/2 and with −π/2< θ < π/2, the
so-called tumbling motion (figure 1c; see the supplementary movie 1). On the other
hand, an RBC initially randomly placed, i.e. Ψ0 = rand. (at least Ψ0 6= 0 or 6=π/2),
tends to orient parallel to the shear plane, showing a wheel-like configuration with
Ψ = 0 and θ ∼ π/4, the so-called rolling motion (figure 1c; see the supplementary
movie 2). Our numerical results suggest that a free mode of the RBC at low Ca is
the rolling motion. Our numerical results also show that the stable rolling RBC has
higher intrinsic viscosity than the tumbling RBC (see figure 1d). Since the orientation
angle θ of a single deformable spherical capsule converges to π/4 in shear flow as
Ca→ 0 (Barthés-Biesel 1980; Barthés-Biesel & Sgaier 1985), the orientation angle θ
of the rolling RBC also converges to θ→π/4. Jeffery (1922) investigated the motion
of a single ellipsoid in simple shear flow in the Stokes flow regime, and hypothesized
that ‘The particle will tend to adopt that motion which, of all the motions possible
under the approximated equations, corresponds to the least dissipation’. Taylor (1923)
experimentally confirmed Jeffery’s hypothesis by investigating the orbit of a prolate
or oblate spheroid in a Couette flow at a very low Re. However, our numerical results
of intrinsic viscosity η do not agree with Jeffery’s hypothesis, i.e. maximum in η,
while agreeing with previous numerical results of deformable biconcave capsules
(Gross et al. 2014).

The effects of Ca on the stable mode and intrinsic viscosity are now investigated. At
least for Ca 6 0.4, RBCs initially oriented with Ψ0 = π/4 converge their orientation
angles to that obtained for RBCs with Ψ0 = 0 as shown in figure 2(a), where the
insets represent the stable configurations at each Ca. Note that the final orientation
is not changed if the RBCs are initially oriented with π/4 < Ψ0 < π/2. When Ca
increases (>0.8), the rolling motion becomes unstable. For instance, RBCs subjected
to the highest Ca that we investigated (i.e. Ca = 1.2) fluctuate for 0 6 Ψ 6 π/2,
showing a multilobe-like shape (Lanotte et al. 2016), while RBCs at Ca = 0.8 for
Ψ ∼ 0 show a tumbling stomatocyte-like shape (Mauer et al. 2018) (figure 2b; see
the supplementary movie 3 for Ca = 1.2 and movie 4 for Ca = 0.8). Such complex
deformed shapes of RBCs are qualitatively similar to those reported by Mauer et al.
(2018), where their smoothed dissipative particle dynamics model of RBCs with λ= 5
shifts from rolling discocytes (similar to the inset in figure 2a for Ca = 0.05) to
rolling/tumbling stomatocytes (similar to the inset in figure 2a for Ca = 0.2 or 0.4)
and finally attaining multilobes (similar to the inset in figure 2a for Ca= 0.8 or 1.2)
as the shear rate increases. Despite the different configurations, the intrinsic viscosity
η for high Ca is similar as shown in figure 2(d), and hence the effect of the stable
modes on the intrinsic viscosity η reduces for increasing Ca. According to figure 2(d),
the result for Ψ∞ = 0 demonstrates significantly more shear-thinning (Skovborg et al.
1966; Cokelet & Meiselman 1968; Chien 1970) than in the case of Ψ∞ =π/2.

The effect of the viscosity ratio λ on the intrinsic viscosity η is quantified for
each orientation (i.e. Ψ∞ = 0 or π/2), and shown in figure 3(a), where the stable
mode of Ψ∞ = 0 exhibits higher shear-thinning than the case of Ψ∞ = π/2 for all λ.
To summarize, a phase diagram of stable modes of a single RBC based on the
orientation angles is given in figure 3(b) as functions of the viscosity ratio λ and
the logarithm of Ca, where all the results are obtained with the simulations started
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FIGURE 2. (Colour online) (a) Time average of the orientation angle θ and Ψ as a
function of the logarithm of Ca. The simulations start from Ψ0=0 (black inverse triangles)
and Ψ0 = π/4 (pale red triangles). Inset figures represent the stable configurations of the
RBC with initial angle Ψ0=π/4 for each Ca. (b) Time history of the orientation angles θ
and Ψ for Ca= 0.8 (pale red line) and Ca= 1.2 (black line), for initial angle Ψ0 =π/4.
(c) Snapshots of deformed RBCs at different times for Ca = 0.8 (lower) and Ca = 1.2
(upper). (d) Time average of the intrinsic viscosity η as a function of the logarithm of Ca
for different stable modes, Ψ∞ = 0 (inverse triangles) and Ψ∞ =π/2 (triangles), obtained
with the simulations started from Ψ0 = 0 and Ψ0 = π/2, respectively. These results are
obtained with λ= 5.

with random orientations Ψ0 = rand. For low Ca, most of the RBCs tend to show
the rolling motion which corresponds to the rolling discocyte also reported by Mauer
et al. (2018), but some of them show an unstable periodic rolling motion even after
a long period of time; in other words, the orientation angles do not converge during
the simulation time (at least γ̇ t 6 1000). As an example, the supplementary movie 5
shows the result obtained with λ = 0.1 at Ca = 0.2. This periodic motion has been
also called kayaking (oscillating–swinging) motion in previous numerical studies
of biconcave capsules (Cordasco et al. 2014; Sinha & Graham 2015), similar to a
classical Jeffery orbit (Jeffery 1922). For increasing Ca, most of the RBCs shift from
the rolling to the swinging motion almost independently of λ (figure 3b). Based on
several previous works on the dynamics of a single RBC, we define the swinging
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FIGURE 3. (Colour online) (a) Time average of the intrinsic viscosity η obtained with
different viscosity ratios λ as a function of the logarithm of Ca for each stable mode:
Ψ∞ = 0 (dashed lines) and Ψ∞ = π/2 (dash-dotted lines). The results for Ψ∞ = 0 and
Ψ∞=π/2 are obtained with initial orientation Ψ0=0 and Ψ0=π/2, respectively. (b) Phase
diagram of the stable modes of a single RBC as functions of the logarithm of λ and Ca,
where the squares (@) denote the tumbling motion, circles (E) the rolling motion, triangles
(A) the unstable or stable swinging motion and inverse triangles (C) the tank-treading
motion. The solid blue dots represent the periodic motions (see the supplementary
movie 5) and the solid red triangles the complex shapes which demonstrate an unstable
swinging motion. The dashed line separates the rolling motion from the (unstable)
swinging motion. The results in (b) are obtained with random initial orientations.

motion when θ is periodic and Ψ 6= 0, while we define the tank-treading motion
when θ is constant and Ψ ∼ 0. In the swinging cases, especially for high viscosity
ratios λ > 5 (figure 3b), RBCs tend to show complex shapes (or multilobes) as Ca
increases. The stomatocyte, which can be assumed as one of the multilobe shapes, is
found at λ= 1 for Ca= 0.4, which shifts to a stable swinging motion for higher Ca
(figure 3b). Hence, these complex shapes can be assumed as a transient to the stable
swinging motion, and we thus call its mode ‘unstable swinging motion’. Sinha &
Graham (2015) also showed that a biconcave capsule with λ= 0.75, with membrane
following the SK law (Gs = 2.5 µN m−1 and C = 10), transitions from the tumbling
motion to the oscillating–swinging motion for γ̇ ∼ 465 s−1 and to the tank-treading
motion for γ̇ ∼ 930 s−1 corresponding to Ca ∼ 1.12. Mauer et al. (2018) showed
that tank-treading RBCs can only be found for low λ (63) and high γ̇ (>820 s−1),
and that RBCs with λ = 5 subject to high shear rates are tumbling stomatocytes
or multilobes. The phase diagram that we obtained is indeed consistent with these
literature results (Sinha & Graham 2015; Mauer et al. 2018), since we also identify
the tank-treading motion for λ6 1 and Ca= 1.2, and since RBCs with λ> 5 subject
to high Ca exhibit multilobe shapes. More precise descriptions of the stable modes
of single RBCs are needed to investigate the effect of the initial orientation angle Ψ0,
which is however beyond the scope of the present work. The dynamics of single
RBCs has also been investigated in the past, e.g. in the studies by Omori et al.
(2012), Cordasco et al. (2014), Sinha & Graham (2015) and Mauer et al. (2018).

3.2. Behaviour of RBCs in semi-dilute and dense suspensions
Next, individual RBCs in semi-dilute and dense suspensions are investigated, and
examples of snapshots of the numerical results are shown in figure 4, where a
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y
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FIGURE 4. (Colour online) Snapshots of our numerical results for (a,c) semi-dilute
suspensions (φ = 0.05) and (b,d) dense suspensions (φ = 0.41) with λ = 5. The results
for Ca= 0.05 and 0.8 are reported in (a,b) and (c,d), respectively. The time evolutions of
these snapshots are shown in the supplementary movies: movie 6 for (a), movie 7 for (b),
movie 8 for (c) and movie 9 for (d).

semi-dilute suspension is defined for volume fraction φ=0.05, and a dense suspension
for the highest φ that we investigated, i.e. φ = 0.41. In semi-dilute suspensions,
RBCs subjected to low Ca = 0.05 show small deformations, where both the rolling
and tumbling motions coexist (figure 4a) (see the supplementary movie 6). In dense
suspensions, however, due to the high packing, the RBCs are forced to exhibit only
the swinging motion resulting in large elongations even for low Ca= 0.05 (figure 4b;
see the supplementary movie 7). Indeed, as the volume fraction φ increases, the
orientation angle Ψ immediately increases and saturates around Ψ ∼ 0.34π, while
the other orientation angle θ initially decreases and remains at θ 6 0.1π as shown
in figure 5(a), where the insets represent enlarged views of semi-dilute suspensions
showing the coexistence of the rolling and tumbling motions, and of dense suspensions
dominated by swinging motions. The different motions are well characterized in the
time history of both orientation angles as shown in figures 5(c) and 5(d), respectively.
These results clearly show that hydrodynamic interactions allow RBCs to shift from
the rolling to the tumbling or swinging motions at different Ca from that for single
RBCs. Since the tumbling and swinging motion is that which allows low intrinsic
viscosity η as described above, hydrodynamic interactions decrease η in semi-dilute
suspensions but enhance it for high volume fractions as shown in figure 5(b).

When Ca increases to 0.8, individual RBCs in semi-dilute suspensions deform
largely and show complex shapes (figure 4c; see the supplementary movie 8).
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FIGURE 5. (Colour online) (a) Ensemble average of the orientation angles of RBCs for
Ca= 0.05 and (b) the intrinsic viscosity η as a function of the volume fraction φ, where
the insets are representative snapshots showing the coexistence of rolling and tumbling
motions in a semi-dilute suspension and the unstable or stable swinging RBC in a dense
suspension. These modes are identified by the time history of the orientation angles θ and
Ψ for (c) semi-dilute and (d) dense suspensions. These results are obtained with λ= 5.

Since the deformation is induced by the hydrodynamic interactions, RBCs in dense
suspensions elongate more than in the case with Ca = 0.05 (figure 4d; see the
supplementary movie 9). Similarly to the case with Ca= 0.05, the orientation angle
Ψ immediately increases as φ increases, but it slightly decreases from φ ∼ 0.1
onwards. Since RBCs subject to high Ca tend to show mostly swinging motions
without multi-cellular interactions, the orientation angle θ is already small in the case
of dilute suspensions (single RBC level), and slightly increases with φ as shown
in figure 6(a), where the insets represent enlarged views of semi-dilute and dense
suspensions showing the coexistence of the swinging and tank-treading motions. Here,
we define the tank-treading motion as Ψ ∼ 0 and θ ∼ 0 as in the previous numerical
study by Omori et al. (2012). These are characterized in the time history by the two
orientation angles reported in figure 6(c,d), where the swinging RBCs are the ones
fluctuating in Ψ (i.e. Ψ 6=π/2). Since rolling motions do not exist for Ca= 0.8, the
intrinsic viscosity does not much drop and it almost monotonically increases with φ
as shown in figure 6(b), where the insets display instantaneous configurations.
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FIGURE 6. (Colour online) (a) Ensemble average of the orientation angles of RBCs for
Ca= 0.8 and (b) the intrinsic viscosity η as a function of the volume fraction φ. Time
history of the orientation angles for (c) semi-dilute and (d) dense suspensions. These
results are obtained with λ= 5.

To summarize the results of stable modes of individual RBCs in dilute (single-cell
level), semi-dilute (φ ∼ 0.05) and dense suspension (φ ∼ 0.4), we show the intrinsic
viscosity η as a function of φ for different Ca in figure 7(a), where the drop of η in
semi-dilute suspensions is commonly found at each Ca. The drop of η in semi-dilute
suspensions is explained by the mode change from the rolling to tumbling motion,
as reported in the phase diagram (figure 7b). On increasing φ, the probability of
swinging RBCs increases resulting in the increase of η observed in figure 7(a,b). To
see the relationship between the intrinsic viscosity of the suspension and the RBC
deformation at high volume fractions, we show the deformation index dmax/dref in
figure 7(c), where dmax and dref are the maximum distances between two points on
the deformed and reference (i.e. without flow) membranes. We observe that dmax/dref
increases similarly to η for relatively high volume fractions (φ > 0.05), and hence
high η can be associated with large deformation of swinging RBCs. The increase with
φ is also found for the first normal stress difference N1/φµ0γ̇ , while no significant
differences are evident when varying Ca (figure 7e). Instead, the second normal stress
difference N2/φµ0γ̇ decreases with φ, and again almost no difference is evident for
different Ca (figure 7f ). The particle pressure Πp/φµ0γ̇ also decreases with φ
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FIGURE 7. (Colour online) (a) The intrinsic viscosity η and (b) the phase diagram of
the stable modes of RBCs as functions of φ and logarithm of Ca, where the squares
(@) denote the tumbling motion, circles (E) the rolling motion, triangles (A) the unstable
or stable swinging motion and inverse triangles (C) the tank-treading motion. The red
triangles denote the complex shape which demonstrates unstable swinging motions. The
dashed line separates the rolling from the other motions, and the dash-dotted line the
tumbling motions from the pure swinging/tank-treading motion. (c) The deformation index
dmax/dref , where dmax and dref are the maximum distances between two points on the
deformed and reference membranes (i.e. no flow condition), respectively. (d) The particle
pressure Πp/φµ0γ̇ as a function of the volume fraction φ for different Ca. The (e) first
and ( f ) second normal stress differences Ni/φµ0γ̇ (i=1 and 2, respectively). These results
are obtained with λ= 5.
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(figure 7d), similarly to the second normal stress difference (figure 7f ), although the
effect of Ca is more pronounced.

The effects of λ on the intrinsic viscosity η and on the stable mode are investigated
at a fixed Ca, and the results are shown in figure 8. For low Ca (=0.05), the drop
of η in semi-dilute suspensions (φ ∼ 0.05) is observed independently of the value
of λ (figure 8a) because the mode changes from the rolling to the tumbling motion
(figure 8c). For high Ca (=0.8), the mode change is not evident in semi-dilute
suspensions (figure 8d), and hence the drop of η is not found for every λ (figure 8b).
As shown in figure 8(e, f ), the increase of η for relatively high volume fractions can
also be explained by large deformations of swinging RBCs independently of λ.

4. Discussion
4.1. Comparison with experiments

Our numerical results for the relative viscosities µre in dense suspensions (φ = 0.41)
are compared with the previous experimental results of Chien (1970) and Cokelet &
Meiselman (2007). In the study of Chien (1970), the viscosities of normal human
RBC suspensions in heparinized plasma or in 11 % albumin–Ringer solution at 45 %
volume fraction were measured in a coaxial cylinder viscometer at 37 ◦C, where the
11 % albumin–Ringer solution had the same viscosity as plasma (i.e. µ0 = 1.2 cP)
but did not cause RBC aggregation. Cokelet & Meiselman (2007) also measured
the viscosity of normal human RBC suspension in plasma at 40 % volume fraction.
Therefore, these experimental conditions in RBC suspensions correspond to λ = 5.
Indeed, our numerical results obtained with λ = 5 well agree with the experimental
results, especially those of Cokelet & Meiselman (1968) as shown in figure 9(a).

Figure 9(b) shows the numerical results of µre as a function of φ for λ = 5. The
relative viscosity µre for each Ca exponentially increases with φ, and µre tends
to decrease as Ca increases. This behaviour is the same when the viscosity ratio
changes (data not shown). Our numerical results for µre are compared with the
empirical expression proposed by Krieger & Dougherty (1959):

µre =

(
1−

φ

φm

)−ηφm

, (4.1)

where φm is the maximum volume fraction. Although (4.1) was originally proposed
for rigid-sphere suspensions, it allows us to estimate the viscosity for particles of any
shape by choosing suitable φm and η, e.g. Tao & Huang (2011) set φm = 0.72 and
η= 2.3 in order to estimate the relative viscosity µre experimentally obtained in blood
with the plasma viscosity ≈1.0 cP at 37 ◦C and the viscosity ratio λ around 5. Our
numerical results agree well also with this empirical expression (4.1) with the same
parameters proposed by Tao & Huang (2011), especially for high Ca (=0.8).

Figure 9(c) shows the numerical results for µre obtained with different λ for
Ca= 0.2, which corresponds to a shear rate γ̇ = 167 s−1, as a function of the volume
fraction φ. These results are compared with previous measurements obtained with
acetaldehyde-fixed human RBC suspension in plasma for γ̇ = 170.8 s−1 (Brooks
et al. 1970), and also with normal human/sickle RBC suspension for γ̇ > 100 s−1

(Goldsmith 1972). Again, we confirm that our numerical results are well within
those of normal and sickle RBCs. It is also known that cytoplasmic viscosity
nonlinearly increases with haemoglobin concentration, resulting in alteration of the cell
deformability. The usual distribution of haemoglobin concentration in individual RBCs
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FIGURE 8. (Colour online) (a,b) The intrinsic viscosity η as a function of the volume
fraction φ for (a) low Ca = 0.05 and (b) high Ca = 0.8. (c,d) The phase diagrams of
the stable modes of RBCs as functions of φ and logarithm of λ for (c) Ca = 0.05
and (d) Ca = 0.8, where the squares (@) denote the tumbling motion, circles (E) the
rolling motion, triangles (A) the unstable or stable swinging motion and inverse triangles
(C) the tank-treading motion. The solid red triangles denote the complex shapes which
demonstrate unstable swinging motions. The dashed line in (c) separates the rolling motion
from the tumbling motion, the dash-dotted line in (c) separates the pure tumbling motion
from the swinging motion and the dash-dotted line in (d) separates the tumbling motion
from the swinging/tank-treading motion. (e, f ) The deformation index dmax/dref for (e) low
Ca= 0.05 and ( f ) high Ca= 0.8.
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FIGURE 9. (Colour online) (a) Relative viscosity µre for φ = 0.41 as a function of the
logarithm of the shear rate γ̇ obtained with λ = 5. The experimental results of normal
human RBC suspension in plasma, 11 % albumin–Ringer solution for φ = 0.45 at 37 ◦C
(Chien 1970), and in plasma at φ= 0.4 (Cokelet & Meiselman 2007) are also displayed as
white and grey circles, respectively. The viscosity of 11 % albumin–Ringer solution is the
same as that of plasma, i.e. µ0= 1.2 cP. (b) Relative viscosity µre obtained with λ= 5 as
a function of the volume fraction φ for different Ca. The empirical expression reported
in (4.1) with the parameters proposed by Tao & Huang (2011) is also displayed as a
dash-dotted line. (c) Relative viscosity µre as a function of volume fraction φ for different
viscosity ratios λ at Ca = 0.2 (γ̇ = 167 s−1). The experimental results of a suspension
of acetaldehyde-fixed human RBCs in plasma for γ̇ = 170.8 s−1 are also displayed as
white circles (Brooks, Goodwin & Seaman 1970). Moreover, the experimental data of
suspensions of normal and sickle human RBCs for γ̇ > 100 s−1 are also displayed as
black and grey circles, respectively (Goldsmith 1972).

ranges from 27 to 37 g dl−1 corresponding to the internal fluid viscosity (µ1) being
5–15 cP (Mohandas & Gallagher 2008). The physiologically relevant viscosity ratio
therefore can be taken as λ= 4.2–12.5 if the plasma viscosity is set to µ0 = 1.2 cP.
In the case of sickle cell anaemia, on the other hand, the haemoglobin concentration
is abnormal, e.g. the mean corpuscular haemoglobin concentration of sickle cells is
potentially elevated to 44.4–47.6 g dl−1 (Evans et al. 1984). Since previous studies
have shown that the viscosity of haemoglobin solution abruptly increases to 45 cP at
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40 g dl−1, up to 170 cP at 45 g dl−1 and 650 cP at 50 g dl−1 (Cokelet & Meiselman
1968; Mohandas & Gallagher 2008), sickle cells with haemoglobin concentration of
45 g dl−1 may have high cytoplasmic viscosity µ1≈ 170 cP, where the viscosity ratio
is taken as λ ≈ 140 if physiological plasma viscosity (µ0 = 1.2 cP) is considered.
Although the exact haemoglobin concentration is different depending on the type of
sickle cell disease and on the person, the relative viscosity µre of blood with sickle
cell anaemia should be higher at any shear rates than that of normal blood (Chien
et al. 1970; Usami et al. 1975; Kaul & Xue 1991).

4.2. Comparison with other numerical models
Next, we compare our numerical results of stresslet with those obtained with other
membrane constitutive models: the spectrin-link model (Reasor Jr et al. 2013) and the
continuum-based capsule model (Gross et al. 2014) whose membrane follows SK law
but with repulsive forces between the RBCs. For reasonable comparison, we define
the effective capillary number as Caeff = µreCa. Note that the definition of Ca in
those previous works (Reasor Jr et al. 2013; Gross et al. 2014) is the same as used
here and reported in (2.1). Figure 10(a) shows the intrinsic viscosity η as a function
of Caeff . Independently of the numerical model used, the RBC suspensions show a
shear-thinning behaviour; however, our results exhibit higher intrinsic viscosity than in
the other two studies. While η in our results decreases for all Caeff as the viscosity
ratio decreases from λ= 5 to λ= 1, in the previous studies η was almost independent
of the value of λ (figure 10a). Although the results of Reasor Jr et al. (2013) and
Gross et al. (2014) exhibit similar η, the particle pressure Πp/µ0γ̇ (figure 10b) and
the two normal stress differences Ni/µ0γ̇ (figure 10c,d) are quite different between
the two previous studies. We think that the discrepancies among the three numerical
studies of the stresslet values shown in figure 10 are mainly due to the difference in
the choice of constitutive model for the RBC membrane, the contact model between
RBCs and the boundary conditions. Comparing the results of the present study with
those of Reasor Jr et al. (2013), we conclude that the stresslet is sensitive to the
membrane constitutive model. Although the membrane model applied in Gross et al.
(2014) and that of the present study are the same, Gross et al. (2014) considered
repulsive forces between the RBCs. Such a contact model guarantees a certain amount
of fluid between the RBCs, which is likely to decrease the relative viscosity (S12)
of the RBC suspension and also affect the other components of the particle stresslet
tensor (Sij). The different boundary conditions are also likely to partially affect the
stresslet. Reasor Jr et al. (2013) used the Lees–Edwards boundary condition (Lees &
Edwards 1972) to consider an unbounded shear flow, while Gross et al. (2014) and
the present study consider a wall-bounded shear flow. However, we believe that the
effect of a solid wall on the solution is limited because our numerical results (e.g.
µsp and Ni/µγ̇ ) for suspensions of spherical particles in a bounded shear flow agree
well with those of the previous numerical studies of Matsunaga et al. (2016), where
an unbounded shear flow was solved by the boundary-element method (see figure 13).
These results suggest that the stresslet will be independent of numerical methods if
the same membrane constitutive model and contact model between particles are used,
and also indicate that the domain size used here is adequate. Gross et al. (2014)
systematically investigated the stresslet for relatively low Caeff (10−4 6 Caeff 6 10−1)
at λ= 1. Our numerical results provide insight into stresslet for relatively high Caeff
(10−1 6 Caeff 6 1), which correspond to venule and arteriole environments in humans.
Although the particle pressure and normal stress differences are difficult to measure
in experiments, we hope that our numerical results will stimulate not only numerical
but also experimental studies to clearly show the viscoelastic behaviour of blood.
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FIGURE 10. (a) The intrinsic viscosity η, (b) the particle pressure Πp/µ0γ̇ and the
(c) first and (d) second normal stress differences Ni/µ0γ̇ (i= 1 and 2) for φ = 0.41 as a
function of the effective capillary number Caeff . The previous numerical results for λ= 1
(φ = 0.42) by Gross et al. (2014) and λ= 5 (φ = 0.425, kb = 2.4× 10−19 J) by Reasor Jr
et al. (2013) are also displayed for comparison.

4.3. Effective volume fraction
Conventionally, the relative viscosity µre (=1 + µsp) of dilute and semi-dilute parti-
culate suspensions can be described by a polynomial expression in the volume
fraction φ (Einstein 1911; Taylor 1932; Stickel & Powell 2005). For example,
Einstein (1911) proposed for dilute suspensions of rigid particles that µre = 1+ 2.5φ,
while Taylor (1932) proposed a modified law for particles including an internal
fluid: µre = 1 + 2.5λ̃φ, where λ̃ is Taylor’s factor defined as λ̃ = (λ + 0.4)/(λ + 1).
However, our numerical results show that the intrinsic viscosity η (=µsp/φ) of RBC
suspensions is not constant but first decreases from dilute to semi-dilute suspensions
because of the mode change of RBCs from rolling to tumbling. This suggests that
a simple polynomial approach cannot be applied to RBC suspensions even for
low volume fractions; this issue cannot be solved by any higher-order expansions,
since they necessarily involve particle–particle interactions and thus any higher-order
coefficients would depend on the local flow and/or on the local microstructure.
For high volume fractions, an exponential expression may be applicable. Rosti &
Brandt (2018) proposed that the effective volume fraction φe, which is a collective
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FIGURE 11. (Colour online) Relative viscosity µre as a function of the effective volume
fraction φe for different Ca at each specific viscosity ratio: (a) λ= 0.1, (b) λ= 1, (c) λ= 5
and (d) λ= 10. The dash-dotted lines are exponential curves defined as µre= (1− αφe)

−β

with α = 0.5 and β|λ=0.1 = 1.9, β|λ=1 = 2.0, β|λ=5 = 2.2 and β|λ=10 = 2.6.

volume fraction of spheres whose radius is defined with the semi-minor axis a2 (here,
a1 > a3 > a2) of deformed spherical particles, is able to describe the relative viscosity
of suspensions of deformable particles. Here, we define the effective volume fraction
φe with the semi-middle axis a3 of a deformed RBC, i.e. φe = NR4πa3

3/(3V), where
NR is the number of RBCs in the computational box of volume V . The length of the
semi-middle axis a3 of the deformed RBC is obtained from the eigenvalues of the
inertia tensor of an equivalent ellipsoid approximating the deformed RBC (Ramanujan
& Pozrikidis 1998). Figure 11 shows the relative viscosity µre as a function of the
effective volume fraction φe: for each λ, the numerical results for µre successfully
collapse on a single nonlinear master curve, except for the case with high Ca > 0.4,
where the fit works only in the case of low/moderate volume fraction, and fails in
the case of a fully dense suspension. The fail of the fit for high Ca and φ is limited
to the cases of RBCs showing complex shapes, e.g. multilobes. Indeed, in these cases
the shape is mostly asymmetric and its approximation with an equivalent ellipsoid is
not reliable. The single nonlinear curves are fitted by a general exponential expression:

µre = (1− αφe)
−β, (4.2)
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where α = 0.5 and β|λ=0.1 = 1.9, β|λ=1 = 2.0, β|λ=5 = 2.2 and β|λ=10 = 2.6. The
coefficients α and β in (4.2) are related to those in the Krieger–Dougherty formula
(4.1) by the following relations: α = 1/φm and β = −ηφm; Tao & Huang (2011)
proposed the following values for the coefficients: φm= 0.72 and η= 2.3. Gross et al.
(2014) proposed a toy model based on the effective medium theory by considering
the effects of Ca and higher volume fraction φ, but up to now no model has been
able to fully predict the behaviour of the relative viscosity. The next challenge may
be constructing a model that is able to cover a wide range of viscosity ratios and
large deformation of RBCs.

5. Conclusion
We numerically investigate the rheology of a suspension of RBCs in a wall-bounded

shear flow for a wide range of volume fractions φ, viscosity ratios λ and capillary
numbers Ca assuming the Stokes flow regime. The RBCs are modelled as biconcave
capsules, whose membrane follows the SK constitutive law. The problem is solved
numerically through GPU computing, using the LBM for the inner and outer fluid
and the FEM to follow the deformation of the RBC membranes.

A single RBC subjected to low Ca tends to orient to the shear plane and exhibits
rolling motion as a stable mode associated with higher intrinsic viscosity η (=µsp/φ)
than tumbling motion. As Ca increases, the mode shifts from rolling to swinging
motion, and the intrinsic viscosity η decreases. Hydrodynamic interactions (higher
volume fraction) also allow RBCs to exhibit the tumbling or swinging motions
resulting in a decrease of the intrinsic viscosity η for dilute and semi-dilute
suspensions. This suggests that a simple polynomial equation of the volume fraction
φ for the relative viscosity µre (=1+ µsp) cannot be applied to RBC suspensions at
low volume fractions. The relative viscosity µre for high volume fractions, however,
can be well described as a function of an effective volume fraction φe, defined by the
volume of spheres of radius equal to the semi-middle axis of the deformed RBC. For
all λ considered, the relative viscosity µre successfully collapses on a single nonlinear
curve as a function of φe except for the case with Ca> 0.4, where the fit works only
in the case of low/moderate volume fractions.

We hope that our numerical results will stimulate the numerical and experimental
study of haemorheology, aiming to gain insight not only into suspension rheology but
also into the precise diagnosis of patients with haematologic disorders.
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Appendix A. Numerical set-up
A.1. Behaviour of a single capsule and RBC with different viscosity ratios

To validate our numerical approach to update the viscosity in the fluid lattice, we
tested the deformation of a single spherical capsule for different Ca and different
viscosity ratios λ (=0.2, 1, 5 and 10). The capsule deformation is quantified by the
Taylor parameter D12, which is defined as

D12 =
|a1 − a2|

a1 + a2
, (A 1)

where a1 and a2 are the lengths of the semi-major and semi-minor axes of the
deformed capsule (or RBC), and are obtained from the eigenvalues of the inertia
tensor of an equivalent ellipsoid approximating the deformed capsule (Ramanujan
& Pozrikidis 1998). Time average starts after the non-dimensional time γ̇ t = 40
to reduce the influence of the initial conditions, and continues to γ̇ t = 100. Our
numerical results are compared with previous numerical results obtained with the
BIM (Foessel et al. 2011). The resolutions of the fluid and membrane meshes are the
same as in the analysis above. For reasonable comparison with previous numerical
study (Foessel et al. 2011), the same parameters are considered and the membrane
is modelled with the SK constitutive law (2.6) with the area dilation modulus C= 1
and without bending resistance. Figure 12(a) shows that our numerical results are in
good agreement with those of Foessel et al. (2011).

To characterize the surface shear elastic modulus Gs for RBCs, we performed a
numerical simulation reproducing the stretching of RBCs by optical tweezers (Suresh
et al. 2005); see figure 12(b). An RBC membrane with Gs = 4 µN m−1, C = 102

and kb = 5× 10−19 J is laterally stretched by applying constant forces to two points
of the membrane surface of radius equal to 1 µm. Modulus Gs is thus obtained to
capture the nonlinear deformation curve obtained from the experiment. Using these
parameters, we also tested the behaviour of a single RBC, and compare the normal
stress differences Ni/φµ0γ̇ (i = 1 and 2) with those of previous numerical results
obtained with the BIM (Omori et al. 2014) in figure 12(c). Again, our numerical
results are in good agreement with those of the literature, although the value of
N1/φµ0γ̇ obtained with λ= 3 and Ca (=1) is slightly larger than that of the BIM.

A.2. Effect of the domain size
We have tested the computational domain size, especially the wall-to-wall distance H,
and investigated its effect on the suspension behaviour. Although the influence of
H upon particle shear stress and relative viscosity was systematically investigated
by Krüger, Varnik & Raabe (2011), and the same computational domain size as in
our study has been successfully applied to previous numerical studies of particle
suspensions (Picano et al. 2013; Rosti & Brandt 2018), we also tested several
parameters of deformed RBCs for different domain heights H (=7.5a, 12.5a and
15a). The results of each parameter reported in table 1 are compared with those of
the reference domain height H = 10a; in particular, we have analysed the ensemble
average of the Taylor parameter 〈D12〉, the orientation angle 〈θ〉, the specific viscosity
µsp, the particle pressure Πp/µ0γ̇ and the normal stress difference Ni/µ0γ̇ (i = 1
and 2). Here, the ensemble average of a parameter 〈χ〉 is defined as

〈χ〉 =
1

MN

M∑
m

N∑
n

χm,n, (A 2)
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FIGURE 12. (Colour online) (a) Time-averaged Taylor parameter D12 of an SK spherical
capsule as a function of Ca for different viscosity ratios λ (=0.2, 1, 5, and 10); previous
numerical results of Foessel et al. (2011) are also displayed. The inset represents a tank-
treading spherical capsule at Ca= 1.0 and λ= 1. (b) Comparison of the deformation of
an RBC stretched by optical tweezers in an experiment (Suresh et al. 2005) and in our
numerical simulation: an RBC membrane with Gs = 4 µN m−1, C = 102 and kb = 5 ×
10−19 J is laterally stretched by applying constant forces to two points of the membrane
surface of radius equal to 1 µm. The inset represents the RBC stretched by 100 pN forces.
(c) Time-averaged normal stress difference Ni/φµ0γ̇ (i=1 and 2) for λ=1 and 3; previous
numerical results of Omori et al. (2014) are also displayed. The inset represents a tank-
treading RBC at Ca= 1.0 and λ= 1.

where M and N are the number of time steps and capsules, respectively. The error for
each observable is defined by

εχ =

∣∣∣∣ 〈χ〉 − 〈χ ref
〉

〈χ ref 〉

∣∣∣∣ , (A 3)

where the superscript ref indicates the reference values. The results of each parameter
and the corresponding relative errors are listed in table 1. Since differences between
the case with the largest height (H= 12.5a) and our reference case are less than 5 %
in the orientation angle and 3 % in the others, the results presented in this study are
all obtained with the domain height of H = 10a.
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Height H 7.5a 10a (reference) 12.5a
Number of RBCs 258 344 442

〈D12〉 0.51130 0.50960 0.50700
εD12 0.00334 — 0.00510

〈θ〉/π 0.08005 0.07835 0.07684
εθ 0.04932 — 0.04949

µsp 0.86880 0.85440 0.88010
εµsp 0.01685 — 0.03008

Πp/µ0γ̇ −0.58130 −0.53580 −0.52560
εΠp 0.08492 — 0.01904
N1/µ0γ̇ 0.80310 0.75340 0.75790
εN1 0.06597 — 0.00597

N2/µ0γ̇ −0.21390 −0.19250 −0.18940
εN2 0.11117 — 0.01610

TABLE 1. Effect of domain height H on the ensemble average of the Taylor parameter
〈D12〉, the orientation angle 〈θ〉, the specific viscosity µsp, the particle pressure Πp/µ0γ̇
and the normal stress difference Ni/µ0γ̇ (i= 1 and 2). The error of each parameter εχ is
defined by (A 3). The simulations were performed at φ = 0.21, Ca= 0.4 and λ= 5.

A.3. Suspension of spherical capsules
We simulate suspensions of neo-Hookean (NH) spherical capsules for different Ca and
φ = (0.12, 0.24 and 0.35), as reference for the results pertaining to RBCs and to
further validate our numerical model. The NH constitutive law is given as

wNH
s =

Gs

2

(
I1 − 1+

1
I2 + 1

)
. (A 4)

The viscosity ratio is set to be λ= 1, and the bending modulus is the same as that
of the model of RBCs in this study, i.e. kb = 5× 10−19 J. Our numerical results are
compared with previous numerical results of NH spherical capsules simulated by the
BIM in an unbounded domain obtained by Matsunaga et al. (2016).

Figure 13(a) shows the snapshots of our numerical results for different φ. The
ensemble averages of the Taylor parameter 〈D12〉 and of the orientation angle 〈θ〉 of
the NH spherical capsules as a function of the volume fraction φ are also shown in
figure 13: the values of 〈D12〉 increase with the volume fraction (figure 13b), while
the orientation angle decreases with it (figure 13c). Both these quantities are in good
agreement with the results from the literature (Matsunaga et al. 2016). Time averages
of the specific viscosity µsp and of the normal stress differences Ni (i = 1 and 2)
are also compared with those reported by Matsunaga et al. (2016), and depicted
in figures 13(d) and 13(e), respectively. The suspension viscosity increases with
the particle volume fraction, as the absolute value of the normal stress difference,
being the first positive and the second negative. In our simulations, a small bending
resistance (kb = 5.0 × 10−19 J) is considered to avoid the membrane buckling. Since
our numerical results are in very good agreement with those of the previous study
of Matsunaga et al. (2016), and quantitatively similar to those obtained in a larger
domain (§ A.2), we will continue to use the rectangular box that is considered as
reference in § A.2 and include a weak bending stiffness.
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FIGURE 13. (a) Snapshots of numerical results of a suspension of NH spherical capsules
for different volume fractions φ = 0.12 (left), φ = 0.24 (middle) and φ = 0.35 (right).
Ensemble average of (b) Taylor parameter 〈D12〉, (c) orientation angle 〈θ〉/π, (d) specific
viscosity µsp and (e) first and second normal stress differences Ni/µ0γ̇ (i= 1 and 2) of
NH spherical capsules, with viscosity ratio λ= 1, subjected to Ca= 0.1 as a function of
the volume fraction φ. Our numerical results obtained with λ= 1 are compared with those
reported in a previous numerical study of Matsunaga et al. (2016).
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