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Abstract
Modal and non-modal linear stability analysis of channel flow with a dilute particle suspension is

presented where particles are assumed to be solid, spherical and heavy. The two-way coupling be-

tween particle and fluid flow is therefore modeled by the Stokes drag only. The results are presented

as function of the particle relaxation time and mass fraction. First, we consider exponentially grow-

ing perturbations and extend previous findings showing the potential for a significant increase of

the critical Reynolds number. The largest stabilization is observed when the ratio between the

particle relaxation time and the oscillation period of the wave is of order one. By examining the

energy budget we show that this stabilization is due to the increase of the dissipation caused by

the Stokes drag. The observed stabilization has led to the hypothesis that dusty flows can be more

stable. However, transition to turbulence is most often subcritical in canonical shear flows where

non-modal growth mechanisms are responsible for the initial growth of external disturbances. The

non-modal analysis of the particle-laden flow, presented here for the first time, reveals that the

transient energy growth is, surprisingly, increased by the presence of particles, in proportion to the

particle mass fraction. The generation of streamwise streaks via the lift-up mechanism is still the

dominant disturbance-growth mechanism in the particle laden flow: the length scales of the most

dangerous disturbances are unaffected while the initial disturbance growth can be delayed. These

results are explained in terms of a dimensionless parameter relating the particle relaxation time

to the time scale of the instability. The presence of a dilute solid phase therefore may not always

work as a flow-control strategy for maintaining the flow as laminar. Despite the stabilizing effect

on modal instabilities, non-modal mechanisms are still strong in internal flows seeded with heavy

particles. Our results indicate that the initial stages of transition in dilute suspensions of small

particles are similar to the stages in a single phase flow.
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I. INTRODUCTION

The dynamics of small inertial particles transported in a flow is crucial in many engineer-

ing and environmental applications. It is a long known fact that adding dust to a fluid may

reduce the drag in pipe flows1. To explain this phenomenon it has been suggested that the

dust delays transition and dampens the formation of turbulent structures. More recently,

drag reduction has been demonstrated by direct numerical simulations in plane channel flow

using heavy spherical particles2, similarly to what has been observed with polymer or fibrous

additives. Motivated by these results, we investigate whether the transition from laminar

to turbulent flow might also be delayed, i.e. whether particles make the flow more stable.

As a first step in this direction, the stability of a dusty-laminar flow is discussed in this paper.

The stability problem for a dusty gas was already formulated by Saffman in 19623. He

considered a plane parallel flow, where the base laminar profile is the same for the two phases

considered, and an Eulerian description for the particle field; the coupling between fluid and

solid phase is defined only through Stokes drag. In addition, a homogeneous distribution

of particles is assumed and classic modal stability analysis performed. The particle per-

turbation velocities are expressed in terms of the fluid velocities and the stability problem

reduces to solving a modified complex Orr-Sommerfeld equation. Saffman3 distinguishes

two different cases: fine and coarse dust. For fine dust, the particle relaxation time is small

and the dust adjusts quickly to the gas flow. Therefore, the added particles only lead to

an increase in density and consequently a decrease of the critical Reynolds number. Coarse

dust, conversely, increases the critical Reynolds number and thus stabilizes the flow. In a

later investigation, Michael4 considers Poiseuille flow and presents neutral stability curves

for several relaxation times. The results confirm that fine particles indeed decrease the

critical Reynolds number whereas coarser particles increase it. Furthermore, Michael shows

that very large/heavy particles have almost no effect on flow stability: the neutral stability

curves retreats to the curve for the clean fluid when particles are too heavy to be affected

by the fluid (ballistic limit).

The work by Michael4 was extended by Rudyak et. al.5 using an improved numerical

accuracy. These authors5 again considered the linear modal stability of plane Poiseuille

flow seeded with small heavy particles. Besides the fact that they propose to change the

dimensionless numbers to some having more relevant physical meaning, the general results

stay the same: small particles decrease stability, while larger particles increase the stability

of the flow. In this study, inhomogeneous particle concentration is also examined and it

is shown that stability is modified, both enhanced and reduced, when increasing the par-

ticle concentration in two layers near the walls while keeping the total number of particles

constant.

The stability of the flat-plate boundary-layer flow is studied by Asmolov and

Manuilovich6. These authors adopt the same model as introduced by Saffman3; in this
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case, however, the base flow differs from the case of single phase fluid in the presence of

particles. For large particles and long relaxation times, the numerical analysis of Michael4

becomes inaccurate, the neutral stability curves become irregular, and integration of the

stability equation needs to be performed in the complex plane, as done also in Ref. 5. The

dust suppresses the instability waves for a wide range of the particle size. The most efficient

suppression takes place when the relaxation length of the particle velocity is close to the

wavelength α of the Tollmien–Schlichting wave. The analysis in Ref. 6 is also extended to a

polydisperse dust. The growth rate of disturbances does not differ much from the monodis-

perse dust, only discontinuities arise in the (α, R)-plane for damped disturbances (with R

the Reynolds number). The number of discontinuities equals the number of different particle

sizes present.

These investigations only used Stokes drag as coupling term between the two phases:

however, more recent studies discuss also additional coupling terms, mostly in the context

of turbulent flows, e.g. Ref. 7. The paper by Maxey and Riley8 introduces the description

of several forces arising between fluid and particles for different density ratios, namely the

added mass term, a pressure gradient term, buoyancy and the Basset history term. The

starting point of their analysis is the equation of motion proposed by Tchen9 and modified

by Corrsin and Lumley10. Boronin and Osiptsov11 investigated the influence of the Saffman

lift force12 and a non-uniform particle distribution on the flow stability. The Saffman lift

force itself has been investigated by several authors13–15. Furthermore the effect of the finite

particle volume fraction is investigated by Vreman16 and Boronin17.

All investigations mentioned so far have considered only modal stability analysis. How-

ever, it is now understood that perturbation in wall-bounded shear flow can experience

significant transient energy growth18–21; the latter is responsible for the initial linear am-

plification of external disturbances which lead to subcritical transition to turbulence. As

example, the critical Reynolds number for channel flow is R = 5772, while experiments

show transition at Reynolds numbers as low as R ≈ 1000. From a mathematical point of

view, this transient energy growth is related to the non-normality of the governing linear

stability operator: non-orthogonal eigenfunctions can be linearly combined to yield a low

energy initial condition. However, owing to the different decay rates, the initial cancellation

is later lost and the perturbation energy increases before eventually decaying to zero in a

stable system. From a physical point of view, transient growth is associated to the gener-

ation of elongated spanwise-periodic streamwise velocity perturbations. These streaks are

induced by pairs of counter-rotating streamwise vortices via the so-called lift-up effect22. In

such a context, modal stability analysis is only relevant to study the asymptotic behavior

of the system at large times: non-modal input-output analysis is necessary to explore the

possibility of transient energy growth. In this case, one wishes to know the largest possible

energy amplification that can be obtained over a finite time. The initial condition leading to

the largest possible growth is denoted optimal disturbance and it is indeed found to consist of

streamwise vortices in shear flows. The growth of the streaks, induced by these streamwise
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vortices, can be such that disturbances reach significant amplitudes and non-linear effects

become important. In particular, it has been observed that streaks of high amplitude become

susceptible to secondary inflectional instability leading to breakdown to turbulence.23–25.

The aim of this paper is therefore to investigate for the first time the non-modal stability

of particle-laden channel flows for different particle mass fraction and relaxation time. Al-

though modal stability analysis shows a stabilization of the flow in the presence of particles,

an effective delay of the turbulent onset in channel flows requires also damping of non-modal

growth mechanisms.

II. GOVERNING EQUATIONS AND STABILITY ANALYSIS

A. Equations for particle-laden flows

We consider a channel flow seeded with solid spherical particles whose size is smaller than

the characteristic scale of the flow. To perform our analysis, we adopt the continuous, or

Eulerian, model introduced by Saffman3: the particles are assumed to be under the action of

Stokes drag only; lift force, buoyancy and added mass are neglected. While the continuous

approach is bound to fail in turbulent flows, owing to particle clustering and singularities

in the particles field, it can still be retained valid for laminar flow and perturbation of it,

such as in linear stability calculations26. In the following, p is the pressure, ρ the density of

the fluid, N the number of particles per unit volume, r the radius of the particle and µ the

dynamic viscosity. mN is the mass of the particles per volume with m = 4
3
πr3ρp the mass

of one particle, using the density of the particle ρp. Furthermore, K is the Stokes drag per

relative velocity and defined as K = 6πrµ. The governing equations for incompressible flow

can be written as follows where ui and upi
are the fluid and particle velocity respectively,

ρ
∂ui

∂t
= −

∂p

∂xi

− ρuj
∂ui

∂xj

+ µ
∂2ui

∂x2
j

+ KN (upi
− ui) (1)

mN
∂upi

∂t
= −mNupj

∂upi

∂xj
+ KN (ui − upi

) , (2)

∂N

∂t
= −

∂

∂xi
(Nupi

) (3)

∂ui

∂xi
= 0. (4)

The stability of this flow is investigated by considering a small perturbation u′ to the base

flow U . The base flow considered is Poiseuille flow driven by a constant pressure gradient.

In the presence of a dispersed phase, the steady mean flow for both fluid and particles takes

the form U(y) = 1 − y2, y ∈ [−1, 1], independent of the number of particles. Substituting

u = U + u′, up = U + u′

p, p = P + p′ and N = N0 + N ′ in equations(1-4), linearized stability
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equations are derived in a standard way21. These read (primes are omitted):

∂ui

∂t
= −

∂p

∂xi

− Uj
∂ui

∂xj

− uj
∂Ui

∂xj

+ ν
∂2ui

∂x2
j

+
KN0

ρ
(upi

− ui) (5)

∂upi

∂t
= −Uj

∂upi

∂xj
− upj

∂Ui

∂xj
+

K

m
(ui − upi

) (6)

∂N

∂t
= −

∂

∂xi
(NU + N0upi

) (7)

∂ui

∂xi
= 0. (8)

The dimensional parameters used are reported in table I for clarity. Three non-dimensional

parameters can be defined for this problem and they are given in table II where we follow the

notation by Saffman3. They are the mass concentration f , defined as the mass of particles

divided by the mass of the fluid per unit volume, the Reynolds number R, using channel half

height L, and the Stokes number S defined as the particle relaxation time over the viscous

time scale. Note however that S appears in the equations multiplied by R: SR can be seen

as a Stokes number based on the convective time scale of the flow.

Table I: Physical parameters defining the particle laden flows under consideration.

N m−3 Number density of particles

K 6 πrµ kg s−1 For sphere with radius r, constant

mN kg m−3 Mass of dust per unit volume

s KN0

ρf
s−1 Constant, dimension of frequency

τ m
K = f

s (= 2
9

r2

ν
ρp

ρf
) s Relaxation time

Table II: Definition of the non-dimensional numbers used.

f
mp

mf
- Mass concentration

R ρUL
µ - Reynolds Number

S ντ
L2 = 2

9
r2

L2

ρp

ρf
- Dimensionless relaxation time

For the particular configuration considered, the equation for the particle distribution N0

(equation 7) is decoupled from the rest of the system. As a consequence, Squire’s theorem

can be extended to this case and a complex Orr-Sommerfeld equation can be derived for the
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stability of the flow3,4, which has been considered in the past. However, we are also interested

in the non-modal stability of the full three-dimensional problem and introduce therefore the

initial value problem for the particle velocities and for the wall-normal velocity v and wall-

normal vorticity η = ∂u
∂z

− ∂w
∂x

of the fluid, analogous to the standard Orr-Sommerfeld-Squire

system used for parallel single phase flows. The corresponding system of linearized equations

in dimensionless form is given by:

−
∂

∂t
∇2v =

[(

U
∂

∂x
+

f

SR

)

∇2 − U ′′
∂

∂x
−

1

R
∇4

]

v +

+
f

SR

(

∂2up

∂x∂y
+

∂2wp

∂y∂z
−

∂2vp

∂x2
−

∂2vp

∂z2

)

(9)

∂η

∂t
=

[

−U
∂

∂x
+

1

R
∇2 −

f

SR

]

η +
f

SR

(

∂up

∂z
−

∂wp

∂x

)

−
∂v

∂z
U ′ (10)

∂up

∂t
= −U

∂up

∂x
− vp

∂U

∂y
+

1

SR
(u − up) (11)

∂vp

∂t
= −U

∂vp

∂x
+

1

SR
(v − vp) (12)

∂wp

∂t
= −U

∂wp

∂x
+

1

SR
(w − wp) (13)

The boundary conditions of this system are v = η = up = vp = wp = 0 at both walls.

In the limit of SR → 0, Lagrangian limit (r ≪ L), the coupling between the fluid and

particle motion is very strong and particles behave as passive tracers. The particles have a

very small relaxation time and will adjust to the fluid almost immediately. This results in

an effective increase in density of the total flow, for which a modified Reynolds number Rm

can be defined:

Rm =
(1 + f) ρUL

µ
.

In the limit SR → ∞, ballistic limit (ρp ≪ ρf), the equation describing the particles motion

is decoupled from the particle velocity. Particles are too heavy to be affected by the fluid

and perturbations in the particle velocity are simply advected by the base flow.

B. Modal Stability

To study modal linear stability, we assume wave-like perturbations

q = q̂(y)ei(αx+βz−ωt),

with q = (v, η, up, vp, wp)
T . In the expression above, α and β define the streamwise and

spanwise wavenumber of the perturbation, respectively, while ω is a complex frequency:

ℑ(ω) > 0 indicates solutions exponentially growing in time. Here we will mainly focus on the
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onset of the instability, ℑ(ω) equals zero, and report neutral stability curves. As mentioned

above, the neutral stability curve can be computed assuming two-dimensional perturbations

since a modified version of Squire’s theorem holds for the complex Orr-Sommerfeld equation3

derived from equations (9, 11, 12).

C. Non-modal Stability

As discussed in the introduction, when the eigenvectors of the system are non-orthogonal,

transient growth is possible even in asymptotically stable systems. Input-output or non-

modal analysis is then necessary. The aim of such analysis is to determine the largest

possible growth that can be achieved during a finite time interval; this is called optimal

growth. The initial condition yielding optimal growth is denoted as optimal initial condition.

If we indicate the discretized governing linear equations (9-13) in compact form as

∂q

∂t
= Lq, (14)

the largest possible energy growth at time t is the norm of the evolution operator, or prop-

agator, T = exp(tL). To quantify the energy growth, we use the kinetic energy of the full

system defined as the kinetic energy of the fluid and of the particles

Ekin =
1

2

(

mfu
2
i + mpu

2
pi

)

, (15)

with mf and mp the mass of the fluid and the particles respectively.

A matrix M can be associated with the energy norm. This is applied directly to the vector

q = [v, η, up, vp, wp]
T to give the kinetic energy integrated over the volume V

E(t) =
1

2

∫

V

qHMqdV. (16)

In this study, we are not only interested in optimizing the total energy of the system. We

wish also to investigate the optimal way to excite a response in the fluid/particles by an

initial condition consisting only of perturbations in the fluid/particle velocity. To this aim

we introduce the input disturbance qin, the output qout and corresponding input and output

operators B and C. The input qin consists of those quantities we wish to optimize for at time

t = 0, while qout defines the quantities we want to have amplified at time t. The dynamics

of the system is still described by (14); to restrict the initial condition to qin we need to

define the input operator B such that q = Bqin. In analogy, to study only the response qout,

C is defined such that qout = Cq. The evolution operator from qin(t = 0) to qout(t) becomes

therefore

T = C exp(tL)B. (17)
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Finally we define the input and output energy matrix with Min = FinF
H
in and Mout = FoutF

H
out

and the corresponding norms as ||qin||Ein
= ||Finqin||2, ||qout||Eout

= ||Foutqout||2.

Using the definition for optimal growth21 one can show that the optimal growth corre-

sponds to the 2-norm of the matrix

G(t) =
||qout(t)||Eout

||qin(0)||Ein

=
||T qin(0)||Eout

||qin(0)||Ein

=
||FoutT qin(0)||2
||Finqin(0)||2

=

=
||FoutT F−1

in Finqin(0)||2
||Finqin(0)||2

= ||FoutT F−1
in ||2 = ||FoutC exp(tL)BF−1

in ||2.

(18)

The classic computation of the optimal growth is retrieved when Fin = Fout and C = B = I.

D. Energy analysis

An equation for the evolution of the kinetic energy of the system can be derived by

multiplying equation (5) with ui and equation (6) by upi
. Adding the two energies using a

factor f to account for the particle mass and integrating over the total volume of the system

V gives

∂Ev

∂t
= −

∫

V

uiuj
∂Ui

∂xj

dV −
1

Re

∫

V

∂ui

∂xj

∂ui

∂xj

dV − f

∫

V

upi
upj

∂Ui

∂xj

dV −
f

SR

∫

V

(ui − upi
)2 dV

(19)

where the divergence terms disappear owing to periodic boundary conditions and zero ve-

locity at the walls.

The first two terms in (19) represent production of kinetic energy of the perturbation

due to the work of the Reynolds stress uiuj against the shear of the base flow and viscous

dissipation in the fluid. The third term, appearing in the presence of particles, accounts

for the production of particle kinetic energy against the mean shear of the particle base

motion. The last term accounts for fluid/particle interactions and it is always negative. The

fluid-particle interaction always introduces a loss in energy. One can therefore expect that,

as a results of the optimization, particles and fluid will tend to have the same velocity in

order to reduce losses. When upi
= ui the dissipative term equals zero and the production

of kinetic energy is enhanced by the presence of the particles, by a factor proportional to

their mass fraction. When examining the energy gain of particles only,

∂Evp

∂t
= −f

∫

V

upi
upj

∂Ui

∂xj
dV +

f

SR

∫

V

(uiupi − upi
upi

) dV, (20)

we see that when SR → ∞, the coupling between the particle and fluid velocities becomes

negligible and the last term in equation (20) vanishes. This results in a particle energy

equation without dissipation, which then can result in unbounded growth of the particle

energy, the inviscid Orr-Mechanism27.
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The production and dissipation terms in equation (19) can be computed separately

to gain insight into the instability mechanisms.28 Assuming normal mode expansion,

(E, D, Ds, Ty, Tpy
) = (Ê, D̂, D̂s, T̂y, T̂py

)e2ωit, with Ty and Tpy
the energy production terms,

D the viscous dissipation, Ds the losses induced by the coupling Stokes drag and E the total

perturbation kinetic energy. These terms become of the form (in 2 dimensions)

Ê =

∫ 1

−1

(ûû∗ + v̂v̂∗) dy (21)

T̂y =

∫ 1

−1

− (ûv̂∗ + û∗v̂)
dU

dy
dy T̂py

=

∫ 1

−1

− (ûpv̂p
∗ + ûp

∗v̂p)
dU

dy
dy (22)

D̂ =

∫ 1

−1

2

(

∂ûi

∂xj
·
∂ûi

∂xj

∗
)

dy D̂s =

∫ 1

−1

((ûi − ûpi
) (ûi − ûpi

)∗) dy, (23)

where ∗ indicates the complex conjugate.

Using equation (20) one can show that

ωi =
T̂y

2Ê
+

T̂py

2Ê
−

D̂

2Ê
−

D̂s

2Ê
. (24)

The different terms in this equation can be evaluated using the eigenvector from the stability

analysis (û, v̂, ûp, v̂p).Variation of the production terms and of the Stokes drag is used to

understand how modal stability is affected by the presence of particles. Note that the

different terms should add to the growth rate ωi, the imaginary part of the eigenmode. Eq.

(24) therefore represents an a posteriori validation of the numerics.

E. Numerical method

Discretization of the equations is done using a Chebyshev collocation method in y-

direction23. For most of the computations presented we used ny = 37, with ny being the

number of collocations points. Tests were performed with ny = 67, 167 to validate the

accuracy of the results.

For the computation of the neutral stability, integration in the complex y−plane is

performed to remove singularity in the limit of SR → ∞5,6. To validate our implementation

we report in Figure 1 a comparison with the results of Rudyak et. al.5.

For the computation of transient growth, the energy matrix M is built to compute the
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Figure 1: The critical Reynolds number as a function of dimensionless relaxation time S.

A comparison between the present results and those in Ref. 5

kinetic energy of the fluid and particles

M =

















(

−D2

k2 + 1
)

Iw 0 0 0 0

0 1
k2 Iw 0 0 0

0 0 fIw 0 0

0 0 0 fIw 0

0 0 0 0 fIw

















, (25)

where Iw is a diagonal matrix performing spectral integration in y direction. As M is

diagonal, this can be easily factorized M = UΣUH using Singular Value Decomposition

(SVD). This can be done for Min as well as Mout to define Fin, F−1
in ,Fout and F−1

out: given

M = UΣUH , F = UΣ1/2.

III. RESULTS

A. Modal analysis

Considering the least stable eigenvalue of our system of equations, the neutral stability

curves for different values of S are given in figure 2. The critical Reynolds number is seen

to decrease for small S(S = 1 · 10−7), to increase for intermediate S, while for larger S it

returns to the value found in Poiseuille flow without particles.

When S is very small, the particles are very small and just follow the fluid: relaxation

time is fast and the particles adjust almost immediately to the fluid velocity. Therefore, the

particles just act as to increase the total density of the system, thus lowering the critical

Reynolds number by a factor (1 + f). The neutral stability curves would coincide when

instead of R, the Reynolds number of the mixture, Rm, is taken into account. For large
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Figure 2: (Color online) Neutral stability curves for a particle laden flow with

S = [1 · 10−7, 5 · 10−5, 2.5 · 10−4, 1 · 10−2] and f = 0.05 (a), f = 0.15 (b). As reference, also

the curve for a single phase flow is given.

values of S, however, the heavy and large particles are not able to interact with the fluid,

thus they have no effect on the flow stability. In between these two extremes, the particles

do interact with the flow and they have a positive effect on the flow stability; the critical

Reynolds number increases with respect to the single phase channel flow. On the other

hand, both the wavenumber and the phase velocity corresponding to the critical Reynolds

number decreases. Our results are in agreement with the results in Ref. 3–5, obtained using

the complex Orr-Sommerfeld equation.

It can be noted that the mass fraction f affects the value of the critical Reynolds number:

more particles have larger stabilizing effect. For mass fraction f = 0.15, Rcrit can grow to

as much as 105, i.e. almost two order of magnitude. When increasing f , a second effect is

that the value of S yielding the largest critical Reynolds number decreases.

In figure 3 we display the critical Reynolds number versus Stω = SRωr; this is the ratio

of the particle relaxation time to the period of the wave and can be interpreted as stability

Stokes number. With this scaling, the largest reduction of the growth rate is observed for

Stω = O(1) for all values of the mass fraction f . In other words, particles have a stabilizing

effect on the flow when their relaxation time is close to the pulsation of the least stable

waves.

To better understand this behavior, we consider the energy budget given in equation (19),

where the expressions in (21-23) are used to compute the production and dissipation terms.

Table III shows the results of these computations using R = 1.25 · 104, α = 1, f = [0 0.05]

and SR = [0.001 1 5 10 100] In the last column we report the difference between the system

eigenvalue and the growth rate estimated by the energy balance as further validation of our

implementation. Figure 4 shows the production and dissipation terms versus the particle
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Figure 3: (Color online) Critical Reynolds number as a function of Stω = SRωr for

f = [0.05, 0.1, 0.15, 0.2], where SRωr is the ratio of the particle relaxation time to the

period of the wave. The larger the f , the larger the critical Reynolds number Rcrit.

relaxation time SR. It can be noted that the total energy production, T̂y + T̂yp
, and the

viscous dissipation are almost constant with SR. The energy losses induced by the Stokes

drag are initially very low but increase significantly when SR ≈ 1. The large increase of D̂s

is therefore responsible for the stabilization documented above.

SR f T̂ y

2Ê
· 103 T̂ py

2Ê
· 103 D̂

2Ê
· 103 D̂s

2Ê
· 103 Σ(T̂ − D̂) ·103 ωi · 10

3 ∆ǫ

- 0 9.9442 0 5.7273 0 4.2169 4.2046 0.0123

0.001 0.05 9.4227 0.4790 5.6611 0.0074 4.2331 4.2206 0.0125

1 0.05 4.7140 5.7205 5.5637 5.5503 -0.6794 -0.6915 0.0121

5 0.05 5.9511 4.9145 5.4490 6.7058 -1.2892 -1.3006 0.0114

10 0.05 7.6115 3.9600 5.4401 5.7641 0.3673 0.3558 0.0115

100 0.05 8.5340 1.6584 5.0170 1.6262 3.5492 3.5382 0.0110

Table III: Production and dissipation terms for modal stability with α = 1 and

R = 1.25 · 104. Production terms Ty and Tpy
are positive, while D and Ds are negative.

The difference ∆ǫ between the computed eigenvalue and the growth rate estimated by the

energy budget is reported in the right-most column.

Finally, the eigenfunctions of the most unstable mode for α = 1 and Reynolds number

104 are given in figure 5, both for a clean fluid and for a particle-laden flow. The single

phase fluid has an unstable mode, while the particle laden flow with f = 0.15 is stable. The

streamwise u- and wall-normal v-velocities, depicted in figure 5(a) are similar for single

phase and particle laden flow. For particle laden flow, the maximum u-velocity is larger for
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the same kinetic energy of the disturbance, although this value is reached further away from

the walls. The fluid and particle velocities for the case of particle laden flow are shown in

figure 5(b). The disturbance particle velocity up is larger than that of the fluid, while the

wall-normal particle velocity, vp, is smaller. The difference in the ui and upi
velocities are

responsible for the increase of the critical Reynolds number, as the difference between these

values stabilizes the flow by introducing extra dissipation in the system (cf. equation 19).
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Figure 4: (Color online) Energy as a function of Stω = SRωr for f = 0.05, R = 12500 and

α = 1. The total production is also shown.
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Figure 5: (Color online) Eigenfunctions at R = 104, α = 1, using S = 2.5 · 10−4 and

particle concentration f = 0.15. (a) shows the absolute velocities u and v for flow with and

without particles. (b) shows absolute particle and fluid velocities for a particle laden flow.
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B. Non-modal analysis

As discussed earlier, non-modal growth mechanisms are responsible for sub-critical tran-

sition to turbulence in shear flows. We wish to investigate, therefore, whether these are

affected by the presence of the particles in the same way as the linear modal stability. This

would imply that particles may induce significant transition delay. First, we introduce the

quantities that will be considered in the following. The transient growth for a perturbation

with wavenumbers (α, β) = (0, 2) in a single phase flow with R = 2000 is given in figure

6. In this example, pertaining to the wavenumber pair yielding the largest amplification in

Poiseuille flow, the optimal growth is given as a function of time, as defined in equation (18).

The curve is the envelope of the amplification curves of all initial conditions, in other words

the maximum response to each optimal initial condition q0(t; Re, α, β, f, S) is used to define

this curve. The maximum growth, Gmax, presented in figure 6, is an interesting parameter

to be used to investigate the influence of particles on fluid flow as this is the global maximum

in time of possible energy growth,

Gmax = max
t

G (t) .

Preliminary calculations indicate that, in agreement to the case without particles, the largest

non-modal amplification is attained by streamwise independent perturbations, where α = 0.

Therefore, in the following, we will present results of the non-modal analyses as curves of

Gmax versus α or β in which β and α are in turn set to zero. The case β = 0 will also be

considered, in analogy to previous investigations in single phase shear flows29, to examine the

effect of particles on the Orr-mechanism and the optimal triggering of modal disturbances.

As already mentioned, results for nine different cases will be presented. In addition to

these, results for the single phase flow, or reference flow, will also be displayed in each plot.

All these cases are given in figure 7 for S = 5 · 10−5, R = 2000 and f = 0.15. Results are

reported both for spanwise waves, α = 0 in 7(a-b), and streamwise waves, β = 0 in 7(c-d).

The cases displayed are denoted as initial → final with reference to the quantities used in

the definitions of input and output energy norms; when both the particle and fluid kinetic

energy are considered in the input/output norm, the case is denoted as all.

Comparing the results for streamwise (α) and spanwise (β) perturbations, it is obvious

that spanwise perturbations lead to higher energy gain than streamwise perturbations. This

result is in agreement to results of single phase flow, as already presented in Ref. 30–32. The

spanwise perturbations consist of counter-rotating streamwise vortices, which induce high-

and low-speed streaks owing to the lift-up effect.

1. Spanwise-dependent disturbances

The results for streamwise-independent spanwise-periodic disturbances are first discussed

referring to the results shown in figure 7(a-b). The energy gain for the case all → all provides
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Figure 6: Transient growth for (α, β)=(0,2) and R = 2000 for a clean fluid. Gmax indicates

the largest growth in energy while tfor max indicates the time needed to reach this

maximum

the largest possible energy growth, the amplification is augmented by a factor (1 + f)2 with

respect to the flow without particles. The optimal energy growth for the total system is

thus larger for particle-laden flows. The optimal gain in the case of a non-zero initial fluid

velocity only (fluid → all) also gives response larger than that in the clean flow, which may

be expected since the particles contribute to the final energy as well. The growth is however

smaller than for all → all. The level of perturbation induced by perturbations in the particle

motion, induced by stirring the particles with some external force, part → all, is much lower

in comparison to the previous cases; this indicates that initial particle disturbances are less

effective to excite the flow. This can be explained by the low mass fraction of the solid phase

in our model.

Considering the final particle velocity only (initial → part) indicates the possibility to

induce mixing in the density distribution. The values of the possible energy amplification

are small, about 1/f lower than for the fluid velocity. However, the particle velocity is the

same as the fluid velocity, and the gain is small only because the mass fraction is small,

f = 0.15. The cases all → part and fluid → part are close to each other, suggesting a small

amplification part → part, which is indeed the case.

The final three cases examined deal with the optimal growth of the fluid flow perturbations

(figure 7b). The fluid is able to gain more energy from the system when particles are present,

compare all → fluid to no-particles. The fluid, however, is not able to gain much energy

from the particles only (part → fluid), while the fluid → fluid case is very close to

the single phase optimal growth. This may indicate that losses due to the particle-fluid

interactions are weak for the parameters in figure 7. As shown below, however, we observe a
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Figure 7: (Color online) Optimal growth for all 9 cases using S = 5 · 10−5, R = 2000 and

f = 0.15, for spanwise (top) and streamwise (bottom) disturbances. As reference, also the

single phase optimal growth is displayed. For clarity, the nine cases are divided into two

figures (left and right).

more complicated interplay between initial losses induced by interaction with the particles

and the larger amplification observed in the case all → fluid.

As seen above when considering the total energy of the system (equation 19), the dis-

sipation of energy due to fluid/particle interactions vanishes when the fluid and particle

velocity are equal. It is therefore not surprising that the optimal initial condition has the

same velocity for fluid and particles in the case all → all. For the values of S allowed by

our model, moderate SR, also in the case of zero initial particle velocity, the difference (and

thus the Stokes drag) becomes small and eventually zero for relatively long optimization

intervals. In figure 8 we report the optimal initial condition (a) and the optimal response

(b) for the case fluid → fluid with β = 2, S = 5 · 10−5, f = 0.15 and R = 5000. The initial

condition consists of a pair of counter-rotating streamwise vortices spanning the full channel
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Figure 8: (Color online) Optimal initial condition and response for the case fluid → fluid

with β = 2, S = 5 · 10−5, f = 0.15 and R = 5000. On top the absolute velocities of fluid

and particles are displayed. On the bottom figures the velocity vectors of the fluid (a) or

the u-velocity contours are given (b). Initial condition consists of streamwise vortices of

the fluid (a), while the disturbance velocity of the particles is zero. For the response (b),

low- and high-speed streaks can be clearly recognized.

height. The particles have no initial disturbance velocity. The perturbation at the final time

is composed mainly of streamwise velocity, with two streaks antisymmetric with respect to

the centerline, for both the fluid and particles. The lift-up effect is clearly at work also in

particle-laden flows. Note that the particle velocity adjusts to the fluid velocity, although

only the response of the fluid perturbation is considered. These equal velocities reduce the

dissipation of energy due to fluid/particle interaction.

We now investigate the effect of S and f . In figure 9(a) the optimal growth is given for

five different cases and a value of S = 2.5 · 10−3, larger than that in figure 7. The difference

between the single phase flow and the case fluid → fluid is small, although present. It is

interesting to note that, at this value of S, very large variations in the asymptotic stability of

the two-phase flow are already observed, see figure 3. The presence of particles has therefore

a completely different impact on modal and non-modal stability.

While the maximum gain of the fluid kinetic energy is hardly affected by the particles,

the time at which the optimal growth is reached varies. To document this, the optimal

growth is displayed as a function of time for (α, β) = (0, 2) and R = 2000 in figure 9(b) for

fluid → fluid. Here results for two values of f and two values of S are compared to the

case without particles. The results indicate that the delay induced by the particles increases

with increasing f , but that this delay is not affected by the value of S.

Figure 10 shows the optimal growth and the time to reach the optimal growth as a function

of mass fraction f using S = 2.5 · 10−3 and R = 2000. The optimal growth increases by a
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factor (1 + f)2 for the case all → all compared to the single phase flow, while for the cases

all → fluid and fluid → all the optimal growth is enhanced only with a factor (1 + f).

The time needed to reach the optimal growth on the other hand increases by (1 + f) for all

cases, figure 10(b).

Two competing mechanisms appear to be present in this case. Losses are induced by

the initial difference between fluid and particle velocity. These are proportional to the mass

fraction f and cause a slower initial growth of the perturbation (figure 9b). Losses decrease

faster for lower S, indicating shorter relaxation time, but this effect appears negligible. At

the same time, once particles move at the fluid velocity, larger amplifications are observed

(see all → fluid in figure 7 and figure 10). In conclusion, the amplification of the fluid

kinetic energy in the presence of particles is slower because of the losses due to the initial

difference between fluid and particle velocity but the potential growth is larger. These two

effects compensate and the total energy gain is similar in laden and unladen flow.
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Figure 9: (Color online) (a): Optimal growth for 5 different cases, including the clean fluid

flow, using α = 0, f = 0.15, S = 2.5 · 10−3 and R = 2000. (b): Transient growth for the

case fluid → fluid with β = 2, α = 0 and R = 2000, using f = 0.3 and 0.15 as well as

S = 2.5 · 10−3 and 5 · 10−5.

The optimal growth versus Reynolds number is given for spanwise perturbations in fig-

ure 11(a). The growth for spanwise waves is found to be proportional to R2, as in the case

of flows without particles. The results also confirm that non-modal growth is enhanced

in the presence of particles, and, as shown by the inset in the figure, the energy gain for

the case all → all is (1 + f)2 times that for the single phase flow. The transient growth

appears to be proportional to the effective Reynolds number based on the total density of

the medium ρt = (1 + f) ρfluid as in the case of modal stability at low values of S. In this

case, however, the effect is observed also at large values of S. This again suggests that a

different definition of the Stokes number may be more relevant for stability problems. We
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Figure 10: (Color online) (a): Gmax as a function of mass fraction f for several cases

denoted in the legend using S = 2.5 · 10−3 and R = 2000. (b): tfor max as a function of

mass fraction f for the same cases as (a) using S = 2.5 · 10−3 and R = 2000.

therefore consider again the stability Stokes number Stω, introduced above as the ratio of

the particle relaxation time and the instability time scale. This parameter Stω assumes

low values for non-modal growth since the latter is occurring on a time scale longer than

the characteristic particle relaxation time. The effect of particles on modal and non-modal

stability can therefore be explained by this new parameter: at low values of Stω, the solid

phase acts only to increase the total density and therefore the effective Reynolds number.

Significant energy losses having a stabilizing effect are found only when Stω ≈ 1.

The optimal growth as a function of S is displayed in figure 11(b). The figure shows the

flow behavior in the ballistic limit, when particles are not affected by the fluid, and quantifies

when these effects become relevant. As shown by equations (5-8), for large SR the motion of

fluid and particles are decoupled. Particles behave as the fluid but the particle velocity field

is not required to be divergence free and there is no dissipation. In absence of dissipation,

we observe that the particle perturbation velocity can grow significantly. This observation

is in line width the inviscid algebraic instability first examined in Ref. 18 for streamwise-

independent modes The same behavior is observed also for streamwise-dependent modes:

here it can be seen as the inviscid Orr mechanism. The computations become grid-dependent

and the optimal initial conditions for the particle velocity become as narrow as possible in

the wall-normal direction, limited to non-zero values in the grid point associated to highest

shear of the base flow. This is allowed since the velocity field for the particles does not need

to be solenoidal and is in agreement with the inviscid limit of the Orr-Sommerfeld equation.

Note however that the validity of our model is questionable for large particles, i.e. large S.

The case fluid → fluid does not show increased growth at large S, which indicates that

indeed the large growth in the case all → all is associated to the energy of the particles. The
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value of S does not have a very large effect on the optimal gain: the optimal growth between

S = 1 · 10−5 and S = 1 · 10−2 is hardly changing. This confirms that particle relaxation time

has little effect on non-modal stability since Stω is low in the range considered; the main

effect is from the mass fraction f that increases the fluid density.
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Figure 11: (Color online) (a): optimal growth versus Reynolds number. In the large figure

the cases for a clean fluid, the all → all and fl → all are given, in which the dependence of

R2 can be clearly recognized. As reference, a function of a constant times R2 has been

given as well, the blue line. In the insert the all → all-case has been given, but then

divided by (1 + f)(•) and (1 + f)2(•). (b): the optimal growth versus S is displayed, for

the same cases as in the left figure including fluid → fluid.

2. Two-dimensional streamwise-dependent waves

The results for streamwise-dependent disturbances are first discussed referring to the

results shown in figure 7(c-d). The energy gain for the case all → all is responsible for the

largest possible energy gain, as for spanwise disturbances. For streamwise disturbances the

increase with respect to the case of single phase flow is(1 + f) for small values of S. For

the cases where the initial condition consists of fluid velocity only, fluid → all, its response

in energy growth is less compared to the clean fluid flow. When only the particles are

disturbed, part → all, the response is even less at these low values of the particle relaxation

time.

Investigating the response of the particles reflects the ability to produce mixing. The

possible energy growth of the particles is small; all cases initial → part are small compared

to the cases just presented. As already discussed for spanwise disturbances, this difference

is of order f−1. Furthermore, for part → part the maximum gain is always equal to one, i.e.

no growth.
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The final three cases discussed deal with the optimal energy growth of the fluid. The

fluid gains less energy compared to the single phase flow. Even for a disturbance of the total

system, all → fluid, the energy gain is less compared to the single phase flow. The case

fluid → fluid shows a decrease of the transient growth by more than a factor of (1 + f).

This indicates that for streamwise disturbances the particles introduce extra dissipation of

the disturbance energy. An initial disturbance of the particles results in a small response

to the fluid, part → fluid, which again can be explained by the relative low density of the

particles.

The initial condition and optimal response for a streamwise disturbance with α = 1.6, S =

5 · 10−5, f = 0.15 and R = 5000 for the case fluid → fluid is displayed in figure 12. The

initial condition consists of flow patterns opposing the mean shear direction. As time evolves,

they tilt into the mean shear direction, which introduces the transient growth. This process

is similar to the Orr-mechanism in fluid alone27. Note that at the final optimization time,

the fluid and particle velocities are not exactly equal to each other, unlike for spanwise

disturbances at the same value of S.
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Figure 12: (Color online) Optimal initial condition and response for the case

fluid → fluid with α = 1.6, S = 5 · 10−5, f = 0.15 and R = 5000. On top the absolute

velocities of fluid and particles are displayed. The bottom figures represent the u-velocity

contours (a) and the velocity vectors of the fluid (b). Initial condition can be seen as flow

patterns opposing the mean shear (a). The disturbance velocity of the particles is zero. In

the response (b), the disturbance is changed into the the mean shear direction. The

Orr-mechanism can be recognized.

In figure 13(a) the optimal growth as function of α is displayed for particles with S =

2.5 · 10−3, a value larger than that used in figure 7. One notices a growth larger than in

single phase fluid in three different cases, namely all → all, all → fluid and part → fluid.

In other words, in all the cases with large energy growth, the initial condition consists of

21



particle disturbance velocity. This can be either as particles alone or as the total system,

which includes particle velocity.

To investigate the effect of S on the growth of two-dimensional disturbances, figure 13(b)

shows the optimal growth as a function of S. For small values of S, the results are as in

figure 7(c). The energy gain is enhanced by a factor (1 + f) in the case all → all with

respect to the single phase flow, unlike spanwise disturbances where the growth in the laden

flow is enhanced by a factor (1 + f)2. When considering an initial disturbance consisting

only of fluid velocity, fluid → fluid and fluid → all, the energy gain is always smaller

in the presence of particles. The particles induce therefore an energy loss. For the case of

perturbation induced by the particle motion, part → fluid, one observes that for values of

SR = O(1) the transient growth increases significantly and reaches asymptotic values for

the largest S considered. Larger values of the energy gain in the case of two-dimensional

disturbances can therefore be observed when the particle relaxation time is longer than

the typical convective time scale of the flow. Comparing the amplification with the case

all → all, one can see that this effect is associated to the growth of the particle perturbation

kinetic energy in the ballistic limit. This was discussed before for spanwise-periodic modes.
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Figure 13: (Color online) (a): optimal growth for streamwise waves for 5 different cases,

including the single phase flow. (b): optimal growth versus S, for same cases as in the

figure on the left. Note that all → all diverges from the other results at S ∼ 10−3

IV. CONCLUSIONS

We perform modal and non-modal stability analysis of channel flow seeded with small,

heavy, spherical particles. The interaction between the two phases is modeled solely by

Stokes drag. We present results for different values of the particle relaxation time and volume

fraction. The particle relaxation time is limited by the fact that particle are assumed to

be much smaller than the flow length scale, while the mass fraction is assumed small since
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particle-particle collisions are not included in our model.

We show that the presence of particles has a very different effect on the exponential and

transient growth of external perturbations. The differences are explained in terms of the

different characteristic time scale of the two instability mechanisms. As shown in previous

investigations, particles can increase the critical Reynolds number by at least one order

of magnitude. However, we demonstrate here that particles increase the non-modal energy

growth. The presence of a dilute solid phase therefore will not work as a flow-control strategy

for maintaining laminar flow.

Modal stability is influenced by the dimensionless relaxation time, S. At small values

(small particles) the critical Reynolds number decreases proportionally to the density of the

solution, as (1+f). Intermediate values of S yield the largest increase of the critical Reynolds

number, where the increase is proportional to the volume fraction of the solid phase. In the

ballistic limit, the neutral curves approach again the results for. The largest stabilization is

obtained for Stω = SRωr ≈ 1, that is for waves whose period of pulsation is of the order

of the particle relaxation time. To gain further insight into the stabilizing mechanisms we

consider the evolution of the disturbance kinetic energy and show that the resonance between

particle and instability characteristic times gives the maximum dissipation associated to the

work of Stokes’ drag.

The generation of streamwise streaks via the lift-up mechanism is still the dominant

disturbance-growth mechanism in subcritical particle laden flows: the length scales of the

most dangerous disturbances are unaffected while the disturbance growth can be initially de-

layed. The increase by a factor (1+f)2 of the non-modal gain can also be explained in terms

of the stability Stokes number Stω. This dimensionless parameter assumes very low values

in the case of the low-frequency non-modal growth (Stω ≈ SR/tmax, with tmax ≈ O(100))

and therefore the effect of particles is just that of altering the fluid density. Particles have

the time necessary to follow the slow formation of the streaks. Indeed particles increase the

solution density and the Reynolds number of the laden fluid becomes then Rm = (1 + f)R.

As the optimal growth in unladen flows is proportional to R2, the presence of the particles

increases the energy gain by (1 + f)2.

To summarize, the effect of particles on the modal and non-modal stability of channel

flows can be explained by the stability Stokes number Stω. Low values of this parameter

indicate that the particles follow passively the fluid instability and their effect is only that

of increasing the total density of the suspension. Significant energy losses that can have a

stabilizing effect are observed only when Stω = O(1).

A method for investigating the response of different flow quantities to different input

disturbances has been introduced. Instead of optimizing the energy of the total system,

we optimize for fluid and particles separately as well. When examining a disturbance in

the fluid alone and the corresponding fluid energy at final time, we find that the optimal

growth for a particle laden flow is close to that of the clean fluid and a noticeable difference

is seen only for the largest values of S. The energy that the fluid can extract by an initial
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perturbation of the particle velocity is proportional to the mass fraction f .

The work presented in this paper could be extended in a number of non-trivial and

interesting ways. First, we have here focussed on heavy particles, neglecting contributions

from added mass and pressure forces. The effect of light particles on the flow stability should

be addressed. Second, one may consider finite-size particles of different shapes. Finally, our

results indicate that the initial stages of transition in dilute suspensions of small particles

should follow a similar path as in a single phase flow. However, to be able to estimate the

effect of the solid phase on the laminar/turbulent transition full nonlinear simulations will

be necessary. Indeed, while little changing the initial formation of the streamwise elongated

streaks, particles may accumulate and affect the self-sustaining cycle of turbulence33. The

recent results in turbulent channel flow2 indicate that this may be the case.
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