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Breakup of small aggregates in fully developed turbulence is studied by means of
direct numerical simulations in a series of typical bounded and unbounded flow
configurations, such as a turbulent channel flow, a developing boundary layer and
homogeneous isotropic turbulence. The simplest criterion for breakup is adopted,
whereby aggregate breakup occurs when the local hydrodynamic stress σ ∼ ε1/2, with
ε being the energy dissipation at the position of the aggregate, overcomes a given
threshold σcr, which is characteristic for a given type of aggregate. Results show that
the breakup rate decreases with increasing threshold. For small thresholds, it develops
a scaling behaviour among the different flows. For high thresholds, the breakup rates
show strong differences between the different flow configurations, highlighting the
importance of non-universal mean-flow properties. To further assess the effects of
flow inhomogeneity and turbulent fluctuations, the results are compared with those
obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and
applicability of a set of independent proxies.
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1. Introduction
Particles in the colloidal and micrometre size range have a strong tendency to

stick together and form aggregates that, depending on the type of particle and the
environment, may undergo further transformations, such as coalescence or sintering,
to form compact structures. Turbulence in the suspending fluid has a distinct influence
on the aggregation process: it leads to enhancement of the rate at which aggregates
grow, e.g. by facilitating collisions between particles (Kusters, Wijers & Thoenes
1997; Brunk, Koch & Lion 1998; Reade & Collins 2000; Babler et al. 2010),
and it induces breakup of the formed aggregates (Flesch, Spicer & Pratsinis 1999;
Kobayashi, Adachi & Setsuo 1999; Selomulya et al. 2002; Derksen 2012). Breakup is
an important phenomenon in aggregation processes (Li et al. 2006; Yuan & Farnood
2010; Bubakova, Pivokonsky & Filip 2013), as it is one of the two main mechanisms
that can interrupt aggregate growth in a destabilized suspension of infinite extent
(the other mechanism being sedimentation, which removes large aggregates from
the suspension). This is experimentally evidenced by monitoring the evolution of
the aggregate size in a stirred suspension of destabilized particles (Biggs, Lant &
Hounslow 2003; Soos et al. 2008). Starting from primary particles, the aggregate size
first undergoes a rapid increase before levelling off to a plateau, where aggregation
and breakup balance each other. At this point, increasing the stirring speed increases
the magnitude of breakup, which results in rapid relaxation of the aggregate size to
a new plateau at a smaller size.

Breakup of aggregates has attracted considerable attention in the literature (Potanin
1993; Zaccone et al. 2009; Eggersdorfer et al. 2010; Ó Conchúir & Zaccone 2013).
The aggregate strength is experimentally measured by immersing pre-prepared
aggregates into a sufficiently diluted flow and measuring the size and structure of the
fragments that do not undergo further breakup (Sonntag & Russel 1986; Kobayashi
et al. 1999; Soos et al. 2010; Harshe, Lattuada & Soos 2011). Assuming that the
largest fragments make up the remainder of the original clusters, this technique
allows one to interpret the measured fragment size as the aggregate strength. From
such experiments it was found that the typical aggregate size that can withstand
breakup decreases with the applied hydrodynamic stress according to a power law or,
expressed the other way round, the aggregate strength decreases with increasing size.
However, the strength per se gives no information on the rate of breakup, i.e. how
fast the number of aggregates decays in time. The rate of breakup is a crucial quantity
in the dynamics of aggregation processes, since it influences restructuring (Selomulya
et al. 2003) and crucially controls the steady-state cluster size distribution (Babler
& Morbidelli 2007). Moreover, it is an important quantity for modelling aggregation
processes by means of population balance equations (PBEs), where breakup typically
is described as a rate process (Flesch et al. 1999; Soos, Sefcik & Morbidelli 2006;
Maerz et al. 2011).

Early models relating the breakup rate to the aggregate strength were presented
by Delichatsios (1975) and Loginov (1985) (for the conceptually equivalent case of
breakup of sub-Kolmogorov droplets); these were followed by the exponential model
of Kusters (1991) and the engulfment model of Babler, Morbidelli & Baldyga (2008).
The basic principle is that an aggregate suspended in a turbulent flow is subject to a
fluctuating hydrodynamic stress that only intermittently overcomes the critical stress
required to break the aggregate. The breakup rate is then derived from the time it
takes for an aggregate to experience such stress.

Describing how long it takes for an aggregate to experience a breaking stress is
not an easy task, as the fluctuations in the stress experienced by an aggregate are
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controlled not only by turbulent fluctuations but also by the way the moving aggregate
samples these fluctuations. Accordingly, predicted breakup rates vary greatly among
the different models and even lead to contradictory results: in the limit of very weak
aggregates, the exponential model of Kusters (1991) predicts a constant breakup rate,
while the engulfment model leads to a diverging breakup rate (Babler et al. 2008).
In Babler, Biferale & Lanotte (2012), direct numerical simulation (DNS) was used to
obtain Lagrangian trajectories of point-like aggregates released into homogeneous and
isotropic turbulence (HIT); trajectories were followed until the aggregates experienced
a stress that is able to break them. The breakup rate measured in this study showed
some characteristic properties that were only partially captured by earlier models.
In particular, for small values of the aggregate strength, the breakup rate follows a
power law, whereas in the opposite limit of the aggregate strength becoming large, the
breakup rate decreases with a sharp superexponential cutoff. While the behaviour at
large aggregate strength was well captured by the engulfment model, the power-law
behaviour was overestimated by both the engulfment model and the exponential
model.

More recently, a similar analysis (De Bona, Lanotte & Vanni 2014) was performed
by combining data obtained from a DNS of HIT with discrete element methods based
on Stokesian dynamics, modelling in detail the internal stresses while the aggregates
are moving in the turbulent field. This more detailed analysis confirmed the power-law
behaviour of the breakup rate in the limit of small aggregate strength, while in the
opposite limit of large strength, a slightly slower dropoff was observed, due to the
role of internal stresses and aggregate orientation in the flow.

Most of the works discussed so far considered aggregate dynamics in HIT, which
for real turbulent flows holds only on a sufficiently small length scale and for
distances far enough from the walls. The question thus arises as to what extent results
from homogeneous flows apply to real flows, which are strongly influenced by their
boundary conditions. With the aim of answering this question, in the present work
we investigate breakup of aggregates in wall-bounded flows, namely a developing
boundary layer flow (BLF) and a channel flow (CF). Aggregate breakup is studied
by means of numerical experiments, using the same methodology as in our previous
work (Babler et al. 2012). Specifically, the aggregates are assumed to be small with
respect to the viscous length scale of the flow, and their inertia negligible. Also, their
concentration is assumed to be low, such that the properties of the flow are not altered
due to the presence of the aggregates. This situation typically applies to aggregates
in liquid media, such as in the aggregation of diluted polymeric latexes (Soos et al.
2008) or in the transport of suspended solids in estuaries (Fugate & Friedrichs 2003).
It may not apply to aggregates that are heavier (or substantially lighter) than the
fluid and/or finite-size aggregates that are significantly larger than the viscous length
scale, in which cases inertia becomes important. Furthermore, breakup is assumed to
occur whenever the hydrodynamic stress, taken as the local energy dissipation at the
position of the aggregate, exceeds a predefined threshold representing the aggregate
strength. This rule represents the simplest breakup criterion for aggregate breakup,
using a single parameter (the aggregate strength) to determine the occurrence of
breakup and ignoring any accumulation of stress inside the aggregate. In future work,
this criterion could be refined by introducing degrees of freedom for the internal
dynamics, leading to stretching–relaxation effects similar to those in the cases of
droplet deformation/breakup and the polymer coil/stretch transition in turbulent flows
(Maffettone & Minale 1998; Balkovsky, Fouxon & Lebedev 2000; Biferale, Meneveau
& Verzicco 2014).
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In non-homogeneous flows, the breakup rate depends on the spatial location at
which the aggregates are released. Aggregates released in a calm region would first
move to a more intense region where it becomes more likely that they will experience
a stress that can break them; thus these aggregates, on average, would survive for
longer than aggregates that are released directly into the more intense region. This
makes the breakup rate in the former case smaller than that of the latter. These
subtleties make a complete characterization of breakup in non-homogenous flows
cumbersome. Therefore, we restrict our analysis of breakup in non-homogenous flows
to some specific situations, i.e. for the two bounded flows we consider only the cases
where aggregates are released close to the wall and far away from it. Despite the
strong non-homogeneity and the presence of a mean shear in wall-bounded flows,
the measured breakup rate in each of these cases shows some remarkable similarities
to the breakup rate in homogeneous turbulence. To corroborate and better understand
this behaviour, we additionally consider a synthetic turbulent flow (STF), obtained
by stochastically evolving the Fourier modes of a random velocity field. Measuring
the breakup rate in this flow leads to similar power-law behaviour, suggesting that
the latter is caused by weak turbulent fluctuations, which are well represented by
Gaussian statistics and therefore only weakly influenced by the flow’s boundary
conditions. The breakup rate of strong aggregates, on the other hand, is substantially
larger in wall-bounded flows, as compared to homogeneous turbulence where only
rare intermittent bursts can break strong aggregates.

2. Numerical experiments
2.1. Aggregate breakup in turbulent flows

As in Babler et al. (2012), we consider a situation where preformed aggregates are
released at a given location into a stationary flow containing no other particles. The
flow is assumed to be diluted such that its statistical properties are not affected by the
presence of the aggregates (i.e. one-way coupling between the fluid and the particulate
phase). Furthermore, the aggregate density is assumed to be close to the fluid density,
and the aggregate size is assumed to be small relative to the dissipative length scale
of the flow but large enough for Brownian motion to be negligible. This is typical
for polymeric colloids in liquid media. Soos et al. (2008) studied the aggregation of
polystyrene particles in a diluted flow, for which they found aggregate sizes in the
range of 10–40 µm, depending on the stirring speed. The corresponding dissipative
length scale is reported to vary on average between 30 and 120 µm, and the aggregate
density is estimated as 1.02 g cm−3 (by assuming compact aggregates with a porosity
of 40 % and taking the bulk density of polystyrene to be 1.05 g cm−3). For such
aggregates, the Stokes time τp= (2ρp+ρ)r2/(9ρν), where ρ is the fluid density, ρp the
aggregate density, ν the kinematic viscosity and r the aggregate radius, varies between
0.01 and 0.15 ms. Hence τp is small relative to the fastest turbulent time scales of the
employed flows, reported to vary on average between τη= 0.7 and 10 ms. The Stokes
number, defined as the ratio between the two time scales, is of the order of St∼ 10−2,
which implies very small inertia.

Although the time scale and length scale of turbulent fluctuations are subject
to variations and may assume substantially smaller values during intense turbulent
events (Biferale 2008), which consequently would cause some inertial effects on the
aggregate motion, here we consider the case where the aggregates have negligible
inertia, i.e. we assume St ∼ 0 throughout the flow. On the one hand, this allows us
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to treat the aggregates as if they were tracers; hence, despite their finite size, the
aggregate trajectory is simply described by

dx(t)
dt
= u(x(t), t), (2.1)

where x(t) is the position of the centre of mass of the aggregate at time t and
u(x, t) is the velocity field. On the other hand, this assumption identifies the breakup
mechanism to be due only to hydrodynamic shear acting on the aggregate.

We define breakup as a singular event in time, i.e. there is an exact moment in
time when an aggregate turns from being intact into being broken. We assume that
this happens when the local stress acting on the aggregate exceeds a critical stress
σcr (Babler et al. 2008, 2012), i.e. we consider the limit of highly brittle aggregates,
which is believed to hold for small and compact aggregates made of materials that
form stiff bonds, such as certain polymeric latexes (Zaccone et al. 2009). In this
limit, the time for accumulating the stress is small compared with the time over
which the stress is applied, so that with respect to the time scale of the stress
fluctuations breakup occurs instantanously. The critical stress is a characteristic of
the aggregate under consideration, i.e. σcr is a function of aggregate properties such
as size, structure, type of constituent particles and chemical environment. Of these
variables, the size of the aggregate is the most crucial. A large body of experimental
(Sonntag & Russel 1986; Soos et al. 2010; Harshe et al. 2011), numerical (Becker
et al. 2009; Eggersdorfer et al. 2010; Vanni & Gastaldi 2011; Harshe & Lattuada
2012) and theoretical studies (Zaccone et al. 2009) suggests a power-law dependency
of the form

σcr ∼ r−q or σcr ∼ ξ−q/df , (2.2)

where ξ ∼ rdf is the number of primary particles constituting the aggregate, df is
the aggregate fractal dimension and q is a scaling exponent that depends on the
aggregate structure. For dense but non-compact aggregates, Zaccone et al. (2009)
give q= [9.2(3− df )+ 1]/2, in good agreement with experiments (Harshe et al. 2011;
Soos et al. 2013).

The hydrodynamic stress acting on an aggregate is σ ∼ µ(ε/ν)1/2, where µ is the
dynamic viscosity and ε is the local energy dissipation rate, defined as

ε= 2νsijsij (2.3)

with sij= (∂ui/∂xj+ ∂uj/∂xi)/2. Thus, strong fluctuations of ε control the fluctuations
of the stress and therefore the occurrence of breakup events. This translates into
a picture where an aggregate upon release moves through the flow until the local
dissipation exceeds a threshold value εcr ∼ [σcr(ξ)]2, causing it to break up. Hence
it is crucial to control the typical time for which the aggregate experiences a local
stress below the critical value, what we call the exit time. In figure 1(a) we show
schematically the way in which we propose to estimate the breakup rate, using a real
example taken from the evolution of one aggregate. In the figure, we show the time
series of kinetic energy dissipation along an aggregate trajectory and the procedure
followed to define the exit time. An aggregate released at a time t0 moves with the
flow for a time τεcr , after which the local dissipation exceeds for the first time the
critical threshold εcr (indicated by the dashed line in figure 1a) where the aggregate
breaks up. The first crossing of εcr thus defines the exit time, τεcr , which is the basic
quantity for determining breakup rates.
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FIGURE 1. (a,b) Definition of the exit time τεcr (see text) for two typical trajectories in a
homogeneous and isotropic flow: (a) time series of energy dissipation along an aggregate
trajectory for a low-turbulent-intensity trajectory; (b) the same but in the presence of a
strongly turbulent burst; in both panels the dashed line indicates the critical dissipation.
(c) A typical evolution of the energy dissipation for an aggregate evolving in a STF;
notice the absence of strong fluctuations in this case. In each panel the horizontal axis
is normalized by the Kolmogorov time scale τη = (ν/〈ε〉)1/2.

To measure the exit time of aggregates, the following protocol is applied (Babler
et al. 2012). (i) At a time t0, a given number of aggregates is released at a random
location within a domain Ω of a stationary flow. (ii) Aggregates released at a point
where the local dissipation exceeds εcr are ignored, as breakup would have already
occurred before the aggregates could reach that point. (iii) Each of the remaining
aggregates is followed over time until the local dissipation exceeds the critical
dissipation εcr; the time lag from release to the breakup defines the exit time τεcr for
that aggregate. (iv) Fragments formed upon breakup of an aggregate are discarded.
The breakup rate for the given threshold and domain of release is then given by the
inverse of the mean of the exit time, computed as the ensemble average over many
time histories:

fεcr =
1
〈τεcr〉

. (2.4)

Equation (2.4) provides a valid definition of the breakup rate that is applicable to
both homogeneous and non-homogeneous flows. However, it is important to notice
that its implementation requires one to observe the particles for a sufficiently long
time in order to confidently estimate the mean exit time. This can be very challenging
for measurements made in the field or in a laboratory, and for large values of εcr
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that occur only rarely. Hence, approximations to the breakup rate given by (2.4) are
desirable. One such approximation, applicable to homogeneous flows, is obtained by
considering the diving time, defined as the time lag between two consecutive crossings
of the critical dissipation (Loginov 1985). In homogeneous flows, the diving time can
be obtained using the Rice theorem for the mean number of crossings per unit time
of a differentiable stochastic process, leading to the following proxy for the breakup
rate (Babler et al. 2012):

f (E)εcr
=

∫ ∞
0
ε̇p2(εcr, ε̇)dε̇∫ εcr

0
p(ε)dε

, (2.5)

where p2(ε, ε̇) is the joint probability density function (p.d.f.) of the dissipation and its
time derivative, p(ε) is the p.d.f. of ε and the superscript ‘(E)’ stands for ‘Eulerian’,
indicating that the fragmentation rate is estimated without the need of Lagrangian
properties.

Another important and potentially useful approximation can be derived by
considering the time evolution of the number of aggregates. In the case where
breakup is driven by an uncorrelated force field, the breakup rate can be written as

f (N)εcr
=−d ln Nεcr(t)

dt
, (2.6)

where Nεcr(t) is the number of aggregates at time t after their release. The latter is
simply related to the exit-time measurements described above by the relation

Nεcr(t)/Nεcr(0)= 1−
∫ t

0
pεcr(τ )dτ , (2.7)

where Nεcr(0) is the number of aggregates successfully released into the flow and
pεcr(τ ) is the p.d.f. of the exit time for a threshold εcr.

2.2. Flow fields

2.2.1. Boundary layer flow (BLF)
We consider a zero-pressure-gradient flow, i.e. the case of a thin flat plate immersed

in a uniform steady stream of viscous fluid with undisturbed characteristic velocity
U0. The no-slip boundary condition is applied on the flat plate. The viscous stresses
generated by the flat plate retard the fluid elements close to the wall, so that the
fluid zone close to the flat plate has a velocity lower than the free stream value
U0. The resulting flow is known as ‘boundary layer flow’ (BLF). A sketch of the
flow configuration is displayed in figure 2. A typical measure of the boundary layer
thickness is the so-called geometric thickness, δ, defined as the distance perpendicular
to the wall where the flow reaches 99 % of the undisturbed free stream velocity. It is
known from experiments and from simple dimensional arguments that the geometric
thickness increases as one moves downstream along the flat plate, implying that the
BLF is a spatially evolving flow with a strong inhomogeneity in the wall-normal
direction and a weaker evolution in the wall-parallel directions. Different, though
somehow equivalent, measures of the characteristic boundary layer thickness exist,
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FIGURE 2. Schematic of the BLF: the two different seeding regions are labelled Ωi, for
aggregates released inside the boundary layer, and Ωo, for aggregates released outside
the boundary layer. Here δ(x) represents the geometric boundary layer thickness where
the mean velocity is 99 % of the free stream velocity U0; δ0 denotes the boundary layer
thickness in the inlet section of the computational domain; x and y denote the streamwise
and wall-normal coordinates, respectively.

such as the displacement thickness δ∗ and the momentum thickness θ , which take
into account the mass and the momentum loss inside the boundary layer (Schlichting
1968).

A DNS of the BLF was performed using the pseudospectral Navier–Stokes
solver SIMSON (Chevalier et al. 2007). The computational domain has a size of
(3000δ0)× (100δ0)× (120δ0) in the streamwise, wall-normal and spanwise directions,
where δ0 denotes the geometric boundary layer thickness at the inlet section of the
computational domain. The numerical resolution is 4096 × 384 Fourier modes in
the wall-parallel plane and 301 Chebishev modes in the wall-normal direction. A
localized forcing close to the inlet, random in time and in the spanwise direction, is
used to induce the laminar–turbulent transition. The characteristic Reynolds number
of the flow, based on the momentum thickness θ , ranges from Reθ = 200 at the inlet
to Reθ = 2500 at the end of the domain. The resulting turbulent flow is analogous to
that described in Sardina et al. (2012b, 2014), where the transport and dispersion of
inertial particles in boundary layers is studied.

Aggregates are released in two regions: inside the boundary layer (labelled Ωi
in figure 2) and outside the boundary layer (labelled Ωo in figure 2). The release
regions span the streamwise interval from 500δ0 to 2500δ0 so as to avoid interferences
due to the tripping forcing that promotes transition to turbulence. The height of the
total release region is 60δ0, and the difference between Ωi and Ωo is determined
by the local geometric thickness of the boundary layer. The latter ranges from 15δ0
at the beginning of the release region to 45δ0 at the end of the release region.
The release regions were chosen with regard to the spatial distribution of the mean
energy dissipation, which, as shown below, shows strong variation in the wall-normal
direction while exhibiting only a slow decay in the streamwise direction. A total of
2× 106 tracer aggregates are released into the flow. Aggregate trajectories are obtained
by integrating the velocity field (2.1). The fluid velocity and its spatial derivatives
at the position of the aggregate are quantified by means of a fourth-order spatial
interpolation, while a second-order Adams–Bashforth scheme is used for integration
of (2.1). Further details about the numerics of the Lagrangian tracking solver can be
found in Sardina et al. (2012a,b).
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Flow Release region ε0 τ0

BLF Reθ = 2500 Ωi, Ωo 〈ε | x ∈Ωi〉 (ν/ε0)
1/2

CF Reτ = 150 Ωc, Ωw 〈ε〉 (ν/ε0)
1/2

HIT Reλ ' 400 Whole domain 〈ε〉 (ν/ε0)
1/2

STF Reσ = 300 Whole domain 〈ε〉 tη

TABLE 1. Parameters of the numerical experiments: here ε0 and τ0 are the characteristic
energy dissipation and time scale used to normalize the data. In the BLF and CF,
aggregates are released in two regions. In the BLF, aggregates are released inside the
boundary layer, in region Ωi = {500 < x/δ0 < 2500, y < δ(x)}, and outside the boundary
layer, in region Ωo = {500 < x/δ0 < 2500, δ(x) < y < 60δ0}, where δ(x) is the boundary
layer thickness and δ0 the boundary layer thickness at the entrance to the computational
domain. In the CF, aggregates are released in the centre-plane Ωc = {y/h= 0} and in the
wall region Ωw = {0.933 < |y/h| < 1}, where y is the wall-normal coordinate and h the
half-channel height. In HIT and STF, aggregates are released homogeneously.

An additional point concerns the characteristic energy dissipation used for
normalizing the measured breakup rates. As the BLF is evolving in both the
streamwise and wall-normal directions, to define a characteristic dissipation some
additional constraints are required, i.e. a specific downstream distance or a spatial
domain at which the characteristic dissipation is extracted. Here, we consider the
inner release region Ωi and take the characteristic energy dissipation, denoted by ε0,
as the volume average over this domain; ε0 defined in this way is used for datasets
of aggregates released both inside and outside the boundary layer. A summary of the
properties of this flow is given in table 1.

2.2.2. Channel flow (CF)
The flow domain consists of two infinite flat parallel plates, a distance 2h apart.

The origin of the coordinate system is located at the centre of the channel, and
the x, y and z axes represent the streamwise, wall-normal and spanwise directions,
respectively. Periodic boundary conditions are imposed on the fluid velocity field in
homogeneous directions (x and z), while no-slip boundary conditions are imposed at
the walls. The size of the computational domain is Lx×Lz×Ly=4πh×2πh×2h. The
flow is non-reactive, isothermal and incompressible (low Mach number). The shear
Reynolds number is Reτ = uτh/ν = 150 (Marchioli et al. 2008), where uτ = √τw/ρ
is the shear velocity based on the mean wall shear stress. The flow solver is based
on the Fourier–Galerkin method in the streamwise and spanwise directions, and on
a Chebishev-collocation method in the wall-normal direction. This solver provides
the spatial derivatives required to calculate fluid dissipation along the aggregate
trajectory according to (2.3) with spectral accuracy. A Lagrangian tracking code
coupled with the flow solver is used to calculate the path of each aggregate in
the flow. The aggregate equation of motion (2.1) is solved using a fourth-order
Runge–Kutta scheme for time integration. Fluid velocity and velocity derivatives at
the aggregate position are obtained using sixth-order Lagrangian polynomials; at the
wall, the interpolation scheme switches to one-sided. Further details on the numerical
methodology can be found in Marchioli et al. (2008) and Soldati & Marchioli (2009).
A schematic of the flow is shown in figure 3.

Following Pitton et al. (2012), the flow domain is phenomenologically divided
into three regions: the wall region, the intermediate region and the bulk region



Aggregate breakup in bounded and unbounded turbulent flows 113

Centre-plane

y
x

o Viscous
stress

Turbulent
stress (III) Bulk

(II) Intermediate

(I) Wall

FIGURE 3. Schematic of the CF: the two different seeding regions are labelled Ωc for
aggregates released in the centre-plane and Ωw for aggregates released near the wall. On
the left side the mean profiles of turbulent and viscous stresses are shown, and on the
right side the mean velocity profile is displayed. Here h denotes the half-channel height.

(see figure 3). The wall region comprises a fluid slab with a thickness of 10 wall
units. In this region, the viscous stress (representing the mean fluid shear) is maximal
while the turbulent stress is close to zero. The intermediate region extends up to
50 wall units from the wall and is characterized by the peak of the fluid Reynolds
stresses. The bulk region covers the central part of the channel where all wall stress
contributions drop to zero and turbulence is closer to homogeneous and isotropic.
Breakup experiments are performed by releasing aggregates in the wall region and
at the centre-plane of the bulk region. The two release regions are labelled Ωw and
Ωc in figure 3. Within each of these release regions, 105 aggregates are released and
their trajectories are tracked and breakup events detected. The characteristic energy
dissipation ε0 used to normalize the breakup rate is taken as the volume average over
the whole flow domain; see table 1.

2.2.3. Homogeneous turbulence (HIT)
A DNS of three-dimensional incompressible Navier–Stokes turbulence was

performed on a triply periodic cubic box, with large-scale statistically homogeneous
and isotropic forcing. The external forcing injects energy into the first low-
wavenumber shells, by keeping their spectral content constant (Chen et al. 1993). The
kinematic viscosity is such that the Kolmogorov length scale is comparable to the grid
spacing; this choice ensures a good resolution of the small-scale velocity dynamics.
The Navier–Stokes equations are solved on a regular grid, 2π-periodic, by means
of standard pseudospectral methods, with time stepping done using a second-order
Adams–Bashforth algorithm. The grid has 20483 points, and the Taylor scale-based
Reynolds number is Reλ ' 400. Lagrangian particle velocities are obtained by a
trilinear interpolation. Details on the numerical integration can be found in Bec et al.
(2010). The database for this study counts approximately 2 × 105 tracer trajectories.
The characteristic dissipation for normalizing the breakup rate, ε0, is taken as the
mean dissipation over the whole volume; see table 1.

2.2.4. Synthetic flow (STF)
In order to better assess the importance of strong intermittent bursts in the statistics

of the energy dissipation felt by the aggregates, it seems useful to study also the
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dynamical evolution in a STF, whose statistics can be controlled a priori. This flow is
constructed to mimic properties of stationary HIT, but with an important and crucial
difference: it has Gaussian statistics for the velocity gradients. The STF is realized in
a three-dimensional periodic box of size L= 2π, with the velocity field written as a
Fourier series

u(x, t)=
∑

k

û′k(t)e
ikx. (2.8)

The Fourier coefficients satisfy û′−k = û′∗k , where the asterisk indicates the complex
conjugate. The summation in (2.8) goes over K = 1, . . . ,Kmax shells, each containing
NK uniformly distributed wavevectors of length |k| = K. Incompressibility of u(x, t)
is ensured by taking û′k as the projection of a different vector ûk on a plane
perpendicular to k. The vector ûk is evolved by a second-order stochastic process
originally proposed by Sawford (1991) to model Lagrangian dispersion. Evolving ûk
by a second-order stochastic process results in a velocity field that is differentiable
in time, which is a crucial property for measuring temporal statistics such as the
exit time. In the second-order process, the spectral acceleration âk is given by the
following stochastic differential equation:

dâk =− âk

tη
dt− ûk

tηtL
dt+

√
2σ 2

k

t2
ηtL

dW, (2.9)

where dW is an incremental Wiener process, tη and tL are the time scales of
acceleration and velocity, respectively, and σ 2

k is the variance of a component
of ûk. Due to the isotropy of the flow field, σ 2

k depends only on the modulus
of k, i.e. σ 2

k = σ 2
K , such that the energy carried by all wavevectors of modulus K

is EK = (3/2)NKσ
2
K and the total energy is E = (3/2)〈u2〉 =∑Kmax

K=1 EK . The spectral
velocity ûk is simply

dûk = âkdt. (2.10)

In the present simulations, we set Kmax=1 (Bec 2005; Zahnow, Maerz & Feudel 2011)
and take the mean velocity 〈u2〉1/2 to be small with respect to L/tL. For this choice
of parameters, the Lagrangian properties are fully determined by the evolution of the
spectral coefficients. Following Sawford (1991), the spectral acceleration decorrelates
with ∼tη while the integral scale of the spectral velocity is equal to tL. This allows
us to interpret tη as the equivalent of the dissipative time scale in turbulence and,
furthermore, motivates us to estimate a small-scale Reynolds number for the STF,
denoted by Reσ , as (Sawford 1991)

Reσ ∼ tL/tη. (2.11)

In this work, we set Reσ = 300 and use tη as the characteristic time scale for
normalizing the breakup rate; the characteristic dissipation ε0 is taken to be the mean
dissipation (table 1). As in the other flows, the aggregate trajectory is obtained by
integrating the velocity field, (2.8), while the local dissipation is obtained from (2.3),
upon setting the value of the viscosity equal to unity. For measuring breakup rates,
several very long trajectories were simulated, from which we then measured diving
times. From the diving time, the mean exit time was obtained from an exact relation
derived in Babler et al. (2012). The breakup rate determined in this way corresponds
to the case where aggregates are released homogeneously in the whole domain. The
statistical database is as large as 1.5× 106 diving events.
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FIGURE 4. (Colour online) Time series of (a) the wall-normal distance and (b) energy
dissipation along typical aggregate trajectories in the BLF. Trajectories A and B
correspond to aggregates released in Ωi, while trajectory C corresponds to an aggregate
released in Ωo (see figure 2). The axes are normalized by ε0 and τ0 given in table 1.

Before concluding this section, it is worth stressing the main differences between
the STF presented here and a realistic turbulent flow. First, even though we can
identify two different time scales in the STF, the dissipation along an aggregate
trajectory in STF will not possess any anomalous and intermittent scaling; see
e.g. Biferale et al. (2005). Second, the spatial configuration of the STF is smooth
and does not exhibit a Kolmogorov-like −5/3 spectrum. The former is particularly
relevant and will be discussed later in connection with the small efficiency of the
STF to break strong aggregates.

3. Results
3.1. Properties of energy dissipation

Energy dissipation plays a decisive role in the breakup of small aggregates. Therefore,
in this section we first explore the Lagrangian and Eulerian properties of energy
dissipation in the flows under consideration.

Figure 4 shows typical trajectories of tracer-like aggregates in the BLF. Panel (a)
shows time series of the wall-normal distance, while panel (b) shows the corresponding
local dissipation. For the cases shown in these plots, we assumed that the aggregates
are infinitely strong such that they follow the trajectories without breakup (notice that
the simple breakup criterion adopted in this work does not allow for determining the
size and trajectories of the fragments formed). Among the three trajectories shown,
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FIGURE 5. (Colour online) Time-averaged energy dissipation in the BLF as a function
of the wall-normal distance at three downstream positions, characterized by Reθ = 1700,
2100 and 2500. Solid lines represent dissipation due to the mean flow, and dashed lines
represent dissipation due to velocity fluctuations. The horizontal axis is normalized by the
displacement thickness δ∗, while the vertical axis is normalized by ε0 given in table 1. The
inset shows time-averaged energy dissipation at the wall as a function of Reθ , representing
the streamwise direction; the solid and dashed lines have the same meaning as in the main
panel.

A and B are cases of aggregates released inside the boundary layer, while C is a
case of an aggregate released outside the boundary layer. Within the observed time
lag, aggregate A is subject to strong fluctuations in dissipation that increase as it
moves downstream and as the aggregate comes closer to the wall. On the other hand,
aggregate B is first repelled from the boundary layer and moves away from the wall;
accordingly, the dissipation decreases and fluctuations are rarer. Later, the aggregate
is re-entrained into the boundary layer, which causes dissipation to increase both in
magnitude and in the amplitude of fluctuations. The trajectory of aggregate B at this
later stage is thus similar to that of aggregate C, which is entrained into the boundary
layer after moving downstream for a certain distance.

From these apparently ad hoc examples, it becomes clear that in the presence of
a mean flow, breakup events will be controlled by an interplay between the mean
flow properties and the relative fluctuations around it. For some aggregate histories the
mean profile will control the breakup process, whereas for others breakup is controlled
by intense fluctuations of the local energy dissipation around its mean value. As seen
below, the balance between the two depends strongly on the geometry of the flow
configuration, on the intensity of the turbulent fluctuations and also on where the
aggregates are released.

The above discussion can be quantified by looking at the time-averaged profiles of
the energy dissipation in the BLF measured at three downstream distances as shown
in figure 5, for the mean flow and the fluctuating components. Close to the wall,
dissipation assumes large values that are dominated by the mean flow, as shown by
the solid curves in figure 5. Dissipation due to turbulent velocity fluctuations (dashed
curves) exhibits a flatter profile that expands well beyond the boundary layer thickness
δ∗. The decrease of dissipation in the streamwise direction is small, as shown in the
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FIGURE 6. (Colour online) Time series of (a) the wall-normal distance and (b) energy
dissipation along typical aggregate trajectories in the CF. Trajectories A and B correspond
to aggregates released in Ωc, while trajectories C and D correspond to aggregates released
in Ωw (see figure 3). The axes are normalized by ε0 and τ0 given in table 1.

inset of figure 5, where we plot the time-averaged dissipation at the wall as a function
of Reθ . This explains the relatively constant high magnitude of energy dissipation seen
by an aggregate moving within the boundary layer (i.e. trajectory A in figure 4).

Figures 6 and 7 show analogue data for the CF. Here, aggregates A and B are
released in the centre-plane of the channel, while aggregates C and D are released
in the wall region. The aggregates released in the centre-plane gradually get entrained
by turbulent eddies which transport them to the walls. The entrainment and transport
to the wall cause an increase in the magnitude of dissipation seen by the aggregate,
while the fluctuations remain persistent. Once they reach the wall, the aggregates have
the tendency to stay there for a relatively long time before being re-ejected into the
bulk flow. This is seen also for aggregates released close to the wall: aggregate D stays
close to the wall while aggregate C is ejected into the bulk flow. From figure 7, where
we plot the mean dissipation conditioned on the wall-normal distance, it appears that
aggregates are subject to high fluctuations of energy dissipation even when staying in
the bulk flow (i.e. away from the walls). Similar to the BLF, dissipation assumes high
values close to the walls, while fluctuations in dissipation, indicated by the error bars,
are intense throughout the channel.

We now consider homogeneous flows. Let us go back to the time series of
dissipation along tracer trajectories in HIT shown in figure 1. Panel (a) shows a
calm trajectory, i.e. a time interval during which dissipation undergoes moderate
fluctuations around the mean. On the other hand, panel (b) shows a trajectory that
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FIGURE 7. Mean energy dissipation conditioned on the wall-normal distance in the CF.
Error bars indicate the root mean square of the conditioned dissipation. The vertical axis
is normalized by ε0 given in table 1.

experiences strong intermittency, i.e. the dissipation undergoes sudden bursts during
which its value for a short time exceeds the average dissipation by several standard
deviations (Yeung 2001). Such bursts in dissipation are caused by the trapping of
particles in intense but short-lived vortex structures (Biferale et al. 2005), which
create very high velocity gradients and, as shown below, have a distinct influence on
the breakup of strong aggregates.

Panel (c) in figure 1 reports the behaviour of the dissipation along a tracer trajectory
in STF. The panel shows the dissipation over a time interval of 2000× tη, from which
it can be seen that the signal is controlled by two time scales, namely tη that controls
the fast fluctuations and tL that controls the slow fluctuations. Magnifying the time
series, as done in the inset of panel (c), highlights the correspondence of the fast
fluctuations in the synthetic flow to the fine-scale fluctuations in the homogeneous
and isotropic turbulent flow. Also, the time series of dissipation in the synthetic flow
describes a much more regular signal than that in turbulence, i.e. intermittent bursts
and strong deviations from the mean are absent in this flow. As shown in the next
section, this limits the capability of the STF to break strong aggregates.

Finally, the Eulerian p.d.f.s of the energy dissipation of the homogenous flows are
plotted in figure 8, together with the dissipation p.d.f. of the CF. In agreement with
other studies (Vedula, Yeung & Fox 2001; Yeung et al. 2006), the dissipation p.d.f. of
HIT for the given Reynolds number exhibits a left tail that is close to log-normal and
a peak value that is slightly smaller than the mean dissipation. In comparison, the
dissipation p.d.f. of the STF is much narrower. Lastly, the dissipation p.d.f. of the CF
is very wide as a consequence of the non-homogeneity of the flow. The p.d.f. in fact
exhibits two pronounced shoulders, corresponding to the values of ε in the bulk (left
shoulder) and in the wall regions (right shoulder).

3.2. Breakup rate measurements
We now have all the ingredients needed to measure and rationalize the breakup
rates in turbulent flow upon changing the turbulent intensity and the mean flow
configuration. The results are summarized in figure 9, which is the major result
of this work. In figure 9 we report the breakup rates measured when one changes
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FIGURE 8. (Colour online) Log–log plot of the p.d.f.s of energy dissipation in (i) HIT,
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the flows shown corresponds to the volume average.

Quasi-Eulerian
proxy

Exponential 
model

10–2

10–4

10–6

10–8

100

102

10010–210–410–6 104102

10110–110–310–5

10–1

10–2

10–3

100

101

HIT

STF

FIGURE 9. (Colour online) Breakup rates plotted against the critical dissipation: exit-time
measurements for different flow configurations and release regions (see table 1); the last
three points on the right for the HIT data represent estimates from the decay of the
number of aggregates according to (2.6). The solid line is a quasi-Eulerian proxy to
HIT, given by (2.5); the dashed line is the exponential model (3.1). The inset shows
the compensated breakup rates fεcr/[ε−χcr ] with χ = 0.42 (Babler et al. 2012), where the
symbols have the same meaning as in the main panel.

the flow configuration, the release region and the method used to estimate fεcr . We
stress that, to the best of our knowledge, this is the first attempt to perform such a
comprehensive examination of a wide range of flow configurations.

Additionally, we report results from independent predictions, namely the estimate
obtained from quasi-Eulerian measurements, given in (2.5), and the approximation
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based on an exponential fit given in (2.6). As expected, the breakup rate generally
decreases with increasing aggregate strength, confirming earlier results suggesting that
large aggregates break faster than small ones. Remarkably, except for data from the
BLF where aggregates were released outside the boundary layer region (BLF-Ωo),
the breakup rates of the different flows are quite close to each other for small
threshold values. We stress that this is not due to a rescaling of the axis but, rather,
a consequence of using the characteristic dissipation ε0 and its corresponding time
scale for normalizing the axis. The smaller breakup rates for the BLF-Ωo case reflect
the time it takes for the aggregates to be entrained into the boundary layer.

Furthermore, for small εcr, the breakup rate shows a power-law-like behaviour that
is similar for the different datasets. Power-law breakup rates have been proposed
for describing the evolution of the aggregate size distribution in the framework of
population balance models, where they lead to adequate agreement with experiments,
at least within a certain range of experimental parameters (Babler & Morbidelli 2007).
To explore this further, in the inset of figure 9 we show the compensated breakup
rate fεcr/[ε−χcr ] using a scaling exponent χ = 0.42. The latter corresponds to a fit
of the right tail of the quasi-Eulerian proxy (2.5), which well describes breakup in
HIT, as shown by the solid curve in figure 9. A distinct plateau can be observed
for aggregates released close to the wall and for aggregates in homogeneous flows;
the apparently faster approach to the plateau seen for the wall-bounded flows could
be due to a more regular dissipation signal at small ε for wall-bounded flows as
compared to HIT. Deviations from the plateau are only seen for aggregates released
in the centre-plane of the channel (CF-Ωc) and for aggregates released outside the
boundary layer (BLF-Ωo), for which the breakup rate for small εcr has a slightly
larger scaling exponent. For these release regions, the aggregates first get entrained
by turbulent eddies that transport them to the wall. During this entrainment the
aggregates gradually experience stronger stress (cf. trajectory A in figure 5). Weak
aggregates will therefore, on average, suffer breakup earlier than stronger ones, which
causes the breakup rate for these release regions to decrease faster with increasing εcr.

For larger threshold values, a levelling off in the decrease of the breakup rate
is observed for the wall-bounded flows, i.e. fεcr is found to bend upwards as seen
in, for instance, the BLF-Ωo case. This is in contrast to the homogenous flows,
for which fεcr shows a strong dropoff at large εcr (Babler et al. 2012). The higher
breakup rates for wall-bounded flows are due to the high mean shear close to the
wall, which causes aggregates coming close to the wall to rapidly break up. In
the homogenous flows, strong aggregates are only broken by the rare excursions of
dissipation from the mean caused by intermittency. As these events are rare, the
breakup rate exhibits a superexponential dropoff for large dissipation. In the STF,
where strong and intermittent excursions from the mean are absent, the dropoff
in the breakup rate occurs at much smaller threshold values than in the case of
three-dimensional turbulence.

The differences between the STF and real HIT for high threshold values reflects
the intriguing dynamics of turbulent fluctuations and the difficulty of modelling them.
Indeed, only for these two cases are the statistics of aggregate breakup high enough
to allow us to assess the superexponential dropoff and thus reveal the importance
of turbulence: extremely robust aggregates break only due to the occurrence of
corresponding extremely intense fluctuations, typical of the intermittent nature of
small-scale turbulent flows. Any stochastic surrogate that does not possess these
critical features would severely underpredict the breakup rate, as is the case for the
STF analysed here.
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For very large threshold values, a dropoff in the breakup rate is also seen for the CF
where the aggregates are released close the wall (CF-Ωw). It represents the situation
where the aggregates are too strong to be broken by the mean shear, and only intense
but rare turbulent fluctuations within the near-wall region are able to overcome the
aggregate strength. A similar dropoff is likely to occur also for the other cases if
trajectories are followed for long enough: recall that the breakup rate represents the
inverse of the mean time for which an aggregate survives in the flow. Measuring the
small breakup rates expected for large threshold values therefore requires very long
trajectories. Exploring this region of high threshold values presents a problem for
future work.

In addition, figure 9 shows the breakup rate for the exponential model of Kusters
(1991) (dashed curve). This model is based on the simple dimensional assumption that
energy dissipation fluctuations, which govern breakup, have a Gaussian distribution.
As a consequence, the following prediction of the breakup rate is obtained:

f (K)εcr
= (4/15π)1/2

(ν/〈ε〉)1/2 exp(−15/2 εcr/〈ε〉). (3.1)

The exponential model predicts a very sharp dropoff at intermediate threshold values
and a constant breakup rate for small threshold values, which strongly disagrees with
the breakup rate found in the simulations. The discrepancy originates mainly from the
simplified assumption of a Gaussian-like dissipation.

The observation made from figure 9 suggests that weak aggregates in the
wall-bounded flows are broken by turbulent fluctuations shortly after their release,
while on the other hand strong aggregates survive for a longer time, during which they
move further downstream where they eventually suffer breakup due to the mean shear.
To explore this further, we examined the spatial location at which breakup occurs
in the wall-bounded flows. Two cases are considered: aggregates released inside the
boundary layer of the BLF (figure 10) and aggregates released in the centre-plane
of the CF (figure 11). Figure 10 shows the average streamwise and wall-normal
coordinates at which breakup occurs for different threshold values. As can be seen,
with increasing threshold values the aggregates on average move further downstream
and come closer to the wall before suffering breakup. The average breakup location
for weak aggregates is therefore close to the average location where the aggregates
were released. Figure 11 shows the p.d.f. of the breakup location in the CF for three
different threshold values. It can be seen that weak aggregates predominantly break
in the bulk of the channel close to the point of release, whereas strong aggregates
move further downstream and predominantly break close to the wall. This observation
is important for applications, and might open a way to tailor turbulent filters with
different selection properties depending on the spatially evolving intensity of the
turbulent background.

3.3. Evolution of the number of aggregates
Strong aggregates can move away from the point of release towards the high-shear
zones close to the walls: this fact has a clear influence on the breakup behaviour,
and leads to the high breakup rates at large threshold values in wall-bounded flows
(cf. figure 9). This preferential breakup in specific regions of the flow is also reflected
in the time evolution of the number of aggregates, Nεcr(t), present in the suspension.
From (2.7), it is understood that Nεcr(t) is proportional to the cumulative exit-time
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values of aggregates released in Ωi in the BLF (see figure 2).
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FIGURE 11. (Colour online) Distribution of the wall-normal distance where breakup
occurs in the CF for aggregates released in Ωc (see figure 3). Different curves correspond
to different values of the critical dissipation.

distribution. As in the previous section, we limit the discussion to three cases, namely
aggregates released inside the boundary layer in the BLF, aggregates released in the
centre-plane in the CF and aggregates released in HIT. Not shown is the time
evolution in the STF, for which the time evolution of the number of aggregates has
the expected result of a Poisson process.

In figure 12(a), the evolution of the number of aggregates released inside the
boundary layer in the BLF is displayed. The figure shows Nεcr(t) in semilogarithmic
coordinates, with the different curves corresponding to different threshold values. It
is clear that for small threshold values (lower curves in figure 12a), the number
of aggregates decays exponentially as Nεcr(t) ' N0 exp(−f (N)εcr

t). Deviations from the
exponential decay observed at later times are due to statistical noise, as the number
of aggregates is already very small. The slope f (N)εcr

, as suggested by (2.6), provides
an estimate of the breakup rate. The exponential decay represents the case where
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FIGURE 12. (Colour online) Evolution of the number of aggregates in semilogarithmic
coordinates for: (a) BLF with aggregates released in Ωi; (b) CF with aggregates released
in Ωc; (c) HIT. The curves are plots of ln(Nεcr(t)/Nεcr(0)) for different threshold values
normalized by the slope f (N)εcr

of the pure exponential decay. For clarity, the curves are
shifted upwards by a fixed increment such that εcr increases from bottom to top. The
dashed lines indicate the linear regions used to fit f (N)εcr

. In each panel, the inset shows the
breakup rate as a function of the critical dissipation obtained from exit-time measurements
(solid symbols) and from linear fits to ln Nεcr(t) (open symbols); the former is the same
as the data plotted in figure 9. The solid line in the inset of (c) shows the quasi-Eulerian
proxy (2.5).

the aggregates are broken by uncorrelated turbulent fluctuations in the vicinity of the
point of release.

On the other hand, for large threshold values (upper curves in figure 12a), the
evolution of the number of aggregates shows a different pattern: after an exponential
decay at earlier times, a relaxation sets in at intermediate times, which eventually turns
into an abrupt decrease at later times. Of these three stages, the relaxation following
the exponential decay of Nεcr(t) is caused by aggregates surviving early breakup and
moving away from the point of release. However, later, when these aggregates come
close to the wall, they suffer abrupt breakup as represented by the third stage.

The good news here is that despite such non-trivial time evolution, estimating
the breakup rate from the linear segments of ln Nεcr(t) provides a reasonable
approximation. This is shown in the inset of figure 12(a), where we compare the
breakup rate measured by the mean exit time, as plotted in figure 9, with the
estimation from the linear segments. The latter is very close to the former, which
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implies that for the threshold values considered, the rate of breakup in the BLF is
controlled by the early breakup events in the vicinity of the point of release of the
aggregates.

The evolution of the number of aggregates released in the centre-plane of the CF
is shown in figure 12(b). As in the BLF, for small threshold values (lower curves
in figure 12b), the number of aggregates decays exponentially, implying that the
aggregates are broken by short-time correlated turbulent fluctuations in the vicinity
of the point of release. On the other hand, for large threshold values (upper curves
in figure 12b), the evolution of Nεcr(t) is delayed and its decay sets in only after the
aggregates have been in the flow for a certain time. This delay reflects the time it
takes for the aggregates to get entrained into turbulent eddies, which transport them
to the higher-shear regions close to the wall where they eventually suffer breakup.
The breakup rate estimated from fitting the linear segments of ln Nεcr(t) is shown in
the inset of figure 12(b), together with the exact breakup rate obtained from exit-time
measurements as plotted in figure 9. Good agreement with the exact breakup rate is
observed also in this case.

Lastly, the evolution of the number of aggregates in HIT is shown in figure 12(c).
In contrast to the wall-bounded flows, no qualitative difference in the decay of Nεcr(t)
for different threshold values is seen, and for all threshold values an exponential decay
is observed, as indicated by the dashed lines. The breakup rate estimated from this
initial decay is shown in the inset of figure 12(c), together with the exact breakup rate
from figure 9. The latter is available up to threshold values εcr/〈ε〉 ∼ 5; beyond this
value, exit times are large compared with the duration of our numerical simulation,
which precludes exact measurements of the breakup rate. As can be seen from the
inset, for threshold values smaller than εcr/〈ε〉 ∼ 5, the approximated breakup rate
is very close to the exact breakup rate, while for larger threshold values it is in
good agreement with the quasi-Eulerian proxy shown by the solid curve. This close
agreement indicates that breakup in HIT resembles breakup in short-time correlated
force fields, which justifies modelling breakup as a first-order rate process.

4. Conclusions

We have reported the first systematic study concerning the estimation of the breakup
rate of small aggregates in fully developed turbulence upon changing both the flow
configuration (bounded and unbounded) and the injection region (relevant only for
the bounded-flow cases). Also, we have discussed theoretical and phenomenological
ideas concerning the definition of the breakup rate in terms of the so-called exit
times measured along the trajectories of all aggregates, or in terms of other proxies,
such as breakup rates defined by means of fully Eulerian quantities or by using a
fast decorrelation hypothesis along Lagrangian trajectories. Our main approximations
are the assumptions that breakup occurs instantaneously once the dissipation at the
position of the aggregate exceeds a predefined threshold value and that aggregates
behave like tracers with only a one-way coupling with the flow (i.e. no inertia and
no feedback on the flow). In future work, the former restriction could be overcome
by considering certain time-relaxation properties of the aggregate backbone; the latter
can be relaxed by considering inertial aggregates (still one-way coupling).

We have found that breakup is typically the result of two competing effects: a
systematic influence of the mean turbulent profile, overlaid by intermittent and bursty
events induced by turbulent fluctuations. In turbulent regions dominated by small
dissipation events, important for large and easy-to-break aggregates, the breakup
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rate shows a similar pattern in all flows considered. In particular, we found that
the breakup rate in the different flows exhibits a qualitatively similar power-law
scaling. This can be explained by noticing that weak aggregates are broken by
turbulent fluctuations in the vicinity of the point of release. As the local properties
of turbulence at the injection point are expected to be similar, in dimensionless units,
the breakup rate assumes similar values.

On the other hand, breakup rates driven by large dissipation events are significantly
different between the four flows. Compared to HIT, the bounded flows lead to
persistently high breakup rates even for large values of the threshold dissipation. This
is due to the fact that in non-homogeneous flows, aggregates can be broken also by
the mean flow if they travel enough to reach regions close to the boundary. On the
contrary, the STF shows very small breakup rates for large threshold dissipations,
due to the absence of both a mean profile and intense intermittent fluctuations
characteristic of realistic homogeneous and isotropic turbulent flows.

The study presented here can be viewed as a first step towards the systematic
development of models for aggregation kernels and breakup rates, to be used in
spatially distributed population balance and compartment models. Furthermore, it
helps us to devise experiments for measuring breakup rates. Experimental approaches
to measuring breakup rates can be divided into two types. One type of approach
measures the time evolution of the aggregate size distribution, from which the
breakup rate is deduced, for example by means of a PBE model. The difficulty of
this approach is that the time resolution for measuring the size distribution of such
small aggregates is of the order of seconds, at best. Also, as the resolution of the
measured size distributions is relatively coarse, the PBE model typically needs a
predescribed function for the breakup rate. Despite these difficulties, results from this
approach have yielded valuable insights into aggregate breakup: it was found that
under certain conditions, a power-law breakup rate is in agreement with experimental
data (Babler & Morbidelli 2007). A power-law breakup rate in the limit of small
threshold dissipation (corresponding to large aggregates) was also found in our study.
In the second type of approach, discrete breakup events of aggregates are observed
using, for example, stereoscopic microscopy together with particle velocity tracking.
Such an approach has been pursued by Lüthi and coworkers (Saha 2013). However,
the experiments turned out to be fairly tedious in terms of both following the
aggregate and observing its breakup. Hence, the methodology of and insight provided
by our work can serve as valuable input for the experimentalist.
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