
Self-similar boundary layer lab
– FPG –

FLUID MECHANICS/STRÖMNINGSMEKANIK SG2214

Lab exercise location: Strömningsfysiklaboratoriet
Teknikringen 8, hall 49, ground floor

Lab exercise duration: approximately 2h

Own material: bring a notepad and a pencil since you are expected to
take notes for the lab report

Comments on this Lab-PM and the following appendix can be e-mailed to:
jensf@mech.kth.se

Prerequisities
Before attending the lab, each student is obligated to ask one unique question
on a subject related to the lab PM (theory, procedure, instructions etc.). A
student without a prepared question will not be allowed to perform the lab.
Note that the lab will be performed in groups of four, implying that you need
to prepare at least four questions in order to ensure that you have a unique
question to ask. Time for questions is given during the brief introduction of the
lab, which is given by the assistant.

Aims and objectives
The aim of the present lab is:

• to deepen your understanding of self similarity

• to develop your knowledge of the effect of pressure gradients on boundary
layers

• to get acquainted with the performance and evaluation of measurements

Examination
In this course (SG2214) the lab and lab report is part of the homework assign-
ments, INL1 (3 ETC). The lab including the report roughly corresponds to a
three-days work load. The lab exercise involves data acquisition (about 2 hours),
data analyses, derivation of the von Kármán momentum integral equation and
comparison with theoretical/numerical results from the Falkner-Skan similarity
solution. A passing grade for the homework assignment will be awarded when
your lab report is approved. See detailed instructions about the analyses and
content of the report in the appendix of this lab PM.
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Figure 1: A sketch of the open-circuit wind tunnel.

Experimental setup
The lab will be performed in a open-circuit wind tunnel and in figure 1 a sketch
of this circuit is shown. The flow is driven by an axial fan (frequency controlled
AC-motor), which is located downstream of the test section. As may be noted,
the test section of the wind tunnel constitutes only a fraction of the entire circuit
and in figure 2 a close-up of the test section is shown. The cross-sectional area
of the test section is 0.40 × 0.50 m2 (width × height). In order to obtain a
good flow quality in the test section, i.e. low levels of velocity fluctuations
and a uniform velocity profile, a honeycomb followed by three successively finer
meshed screens are installed at the inflow of the wind tunnel. The honeycomb
directs the flow to become parallel to the centre line of the test section, and
the screens make sure to successively break down the eddies in the flow. The
contraction directly upstream of the test section also provides a strong damping
of relative fluctuation levels and velocity variations in the cross-sectional area
of the test section.

The setup, shown in figure 2, consists of a flat plate with pressure holes
at different downstream locations from the leading edge in order to allow for
measurements of the static pressure, a traversable total pressure tube probe and
an exchangeable bump, which can be mounted in the ceiling in order to setup
a boundary layer edge velocity variation close to Ue(x) = axn. This variation
is taken as an ansatz in deriving the Falkner-Skan similarity equation in the
next section. The bump will be mounted in the setup on your arrival so that
an accelerating flow is obtained giving rise to a Falkner-Skan boundary layer
over the downstream part of the plate. Three experimental measurements of
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Figure 2: A sketch of the flat plate mounted in the test section.

boundary layer profiles through a boundary layer under an accelerating free
stream will be performed. Each profile at a different downstream location.
The coordinates are x, y and z for the streamwise, wall-normal and spanwise
directions, respectively.

The boundary layer velocity profiles are measured indirectly by a total
pressure tube probe. In an irrotational flow, such as in the free stream outside
the boundary layer, the total pressure, defined as

ptot = pstat + 1
2
ρu2 , (1)

is constant (Bernoulli’s equation). In equation (1), pstat is the static pressure, ρ
the density of the fluid and u the velocity. A boundary layer is not irrotational,
which is why the total pressure is not constant. Instead, one can use the fact
that the static pressure pstat is constant through the boundary layer in order to
determine the velocity at the position of the total pressure probe. The dynamic
pressure, defined as

pdyn = 1
2
ρu2 , (2)

which corresponds to the second term on the right hand side of eq. (1) is obtained
by measuring the pressure difference between the static pressure and the total
pressure.

The pressure difference between the static pressure on the flat plate and
and the total pressure at some distance above the plate is connected to a pres-
sure transducer, which converts the pressure to an analog voltage. The voltage
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Figure 3: Falkner-Skan solutions to some different n values. The arrow points
in the direction of increasing n = −0.08, − 0.04, 0, 0.06, 0.12, 0.18.

is measured by an AD-converter and saved on disk by a computer for later
evaluation.

The pressure gradient over the plate (or indirectly the free stream velocity
distribution) is determined by measuring the pressure at 16 pressure holes in the
plate (separated by about 4 cm), by means of an inclined pressure manometer
giving the pressure differences in cm meth pillar.

Theoretical background
For a boundary layer, a pressure gradient is the same as a varying free stream
velocity, since Bernoulli’s law is valid in the free stream. A decrease/increase in
the free stream velocity corresponds to an increase/decrease in the pressure. The
pressure gradient thus induced is called an Adverse Pressure Gradient (APG),
if the pressure gradient is decelerating the flow, and an Favourable Pressure
Gradient (FPG), if the pressure gradient is accelerating the flow.

During the lectures the concept of boundary layer similarity will be in-
troduced and the Blasius similarity equation derived. The solution is part of
the family of Falkner-Skan similarity solutions, for the specific constraint of zero
pressure gradient. The Falkner-Skan similarity equation is derived by opposing
a boundary layer edge velocity variation according to

Ue(x) = axn , (3)
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which gives rise to a streamwise pressure gradient dp/dx in the x-momentum
equation. The Falkner-Skan equation is readily derived as

f ′′′ + n+ 1
2

ff ′′ − nf ′2 + n = 0 , (4)

where the primes denote derivatives with respect to the similarity variable η =
y/δ. See the lecture notes for a complete derivation of above equation for the
specific case of n = 0, i.e. the Blasius equation. Note, that the boundary layer
scale δ

δ =
√
xν/Ue(x) , (5)

is a function of x in both the numerator and the denominator for n 6= 0. The
equation can be solved numerically using the no-slip boundary condition (f(0) =
f ′(0) = 0) and the free stream condition (f ′ = 1 as η → the boundary layer
edge). Having assessed the solution of equation (4), for a given n, the velocity
distribution is recovered as

u(x, y)
Ue(x)

= f ′(η) . (6)

In figure 3 the solution of equation (4) is shown for some different n values.
An important quantity when considering the flow past an aerodynami-

cally smooth body is the skin-friction, which is the leading contribution to the
overall drag. This quantity has to be assessed in any fuel efficiency estima-
tion when considering any type of aerodynamically smooth vehicle. It is often
convenient to express the skin-friction in a dimensionless coefficient, i.e. the
skin-friction coefficient (cf ) defined as

cf = τ0

Pdyn
= 2τ0

ρU2
e

, (7)

where Pdyn is the dynamic pressure in the free stream and τ0 is the wall shear
stress defined as

τ0 = µ
∂u

∂y
|y=0 . (8)

Here µ denotes the dynamic viscosity, which has the dimension [kg/(m·s)].

Experimental procedure
The lab will be performed as follows:

• brief introduction to the lab

• modification of the ceiling in order to create a variable free stream velocity
close to Ue(x) = axn

• determination of the streamwise pressure distribution

• experimental measurements of boundary layer profiles through a boundary
layer under an accelerating free stream at three streamwise positions

• the experimental data, three velocity profiles and the streamwise pressure
distribution, and a folder of useful Matlab programs will be e-mailed to
you for post-processing and comparison with the Falkner-Skan similarity
solution. Note, a back-up of your data will always be found on one of the
lab computers.
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Appendix: Lab exercise and report
When you hand in the lab report all pages should be marked with your name
and personal civic number. The analytical derivations are to be handed in hand-
written and intermediate steps have to be explained in words. For the plotting
and analyses some Matlab programming is required. For the Matlab post-
processing of the data a folder, FPGlab_mfiles, with Matlab programs will be
used. Without this folder you will not be able to carry out the analyses described
below. The lab report should contain the following figures and analyses:

(0) you will calculate the air properties at the specific day you carried out the
lab.

(1) you will compare the measured velocity profiles with the corresponding
solutions to the Falkner-Skan similarity equation. The profiles shall be
plotted using the displacement thickness (δ?) and the local free stream
velocity (or equivalently the boundary layer edge velocity, Ue) to scale the
wall-normal coordinate y and the local velocity u(x, y), respectively.

(2) you will use the streamwise pressure distribution to calculate the free
stream velocity variation and from that determine the acceleration pa-
rameter n.

(3) (i) you will derive the von Kármán momentum integral equation, which
correlates the wall shear stress to the boundary layer parameters.
(ii) by using this equation you will express the skin-friction coefficient in
an expanded form.

(4) you will calculate the local skin-friction coefficient (cf ) based on the ex-
perimental data using the von Kármán momentum integral equation and
compare it with the numerical solution.

Below subsections (0–4) describe carefully above four items with step-by-step
guidelines on how to carry out the derivations and analyses. Everything that
should be included in the lab report are numbered in bold text as 0.1, 0.2, ... 4.2
et cetera.

HINT: Start Matlab on the computer and open a new m-file and save it with
your name placed in the folder FPGlab_mfiles. On the first line you write
clear all in order to clear all variables each time you run the script. Program
the items (0)–(2) and (4) in this m-file for the calculations and plotting (item
(3) is only carried out with paper and pencil).

(0)
Air density and viscosity

In the analyses of the experimental data and comparison with the theoretical
results you will be needing the dynamic- as well as the kinematic viscosity. The
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dynamic viscosity of air with the unit kg/(m·s) is temperature dependent and
may be calculated using the Sutherland’s law

µ = µ0

(
T

T0

)3/2
T0 + S

T + S
, (9)

where µ0 = 1.7894 × 10−5 kg/(m·s), T0 = 273.11 K and S = 110.56 K. The
density can be calculated using the universal gas law as follows

ρ = patm
R T

, (10)

where patm, R and T correspond to the atmospheric pressure (Pa), the specific
gas constant (R = 287 J/(kg·K) for air) and the temperature (K). Having
calculated µ and ρ the kinematic viscosity (m2/s) may be calculated as

ν = µ

ρ
. (11)

(0.1) µ

(0.2) ρ

(0.3) ν

(1)
Experimental profiles

In order to analyze the measured mean velocity profiles, taken at the down-
stream locations x = 0.23, 0.41, 0.55 m, you need to read in the data from your
data files, and for this you can use the function,

[Y, Uy] = read_lab_data_JF(file_name) , (12)

provided in the Matlab package. Here, file_name is the name of the data file
and should be entered as a text string (Example: file_name = ′fpg_x23_gr1′).
The experimentally measured mean velocity profiles are functions of the wall-
normal distance Y and are here denoted Uy. These profiles are taken at discrete
positions above the wall with a known relative displacement, but with an un-
known absolute position. This means that the position of the wall, Ywall, has
to be determined in order to get the absolute positions correct. Once Ywall is
known the wall position can be subtracted from the y-vector of the profile and
in that way re-defining the position of the wall to be at y = 0. The Matlab
program

[Ywall, ny] = FPG_LAB_JF_P1(Y, Uy) (13)
takes as argument two vectors, the mean streamwise velocity distribution in the
wall-normal direction (Uy) and its corresponding wall-normal coordinates (Y).
The program returns estimates of the wall-position Ywall and the acceleration
parameter ny using the Falkner-Skan similarity equation in an iterative least-
squares fit sense to the data. Note the dimensions of the arguments: Y [mm]
and Uy [m/s].
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In order to plot the data
u(y/δ?)
Ue

(14)

δ? and Ue have to be determined. The latter can be taken as the mean of
the last points of the measured velocity in the free stream (check so that the
points chosen to calculate the mean has roughly reached a constant value). The
displacement thickness, as defined in the lecture notes, is

δ? =
∫ ∞

0

(
1− u(y)

Ue

)
dy , (15)

which may be integrated using the TRAPZ command in Matlab (type "help TRAPZ"
in the command window and read/learn about Z = TRAPZ(X,Y)). NOTE: you
should add the no-slip boundary condition at the wall before calculating the
above integral. The ∞ symbol simply indicates a point infinitely far away from
the plate, in practice it corresponds to the points in the free stream outside
the boundary layer. You should repeat above procedure for each one of the
measured profiles.

Theoretical profiles

In order to compare your measured profile with the corresponding Falkner-Skan
solution you use the solver

[f, fp, fpp, fppp, eta] = FS_solver_JF(ny) , (16)

which takes the only argument ny (from program 13) and where [f, fp, fpp,
fppp, eta] correspond to the similarity function, its derivatives and the simi-
larity variable [f, f ′, f ′′, f ′′′, η]. Note, that the similarity variable is η = y/δ
and the wanted variable is y/δ?. For any solution of the Falkner-Skan equation
there is a unique coefficient b relating δ? to δ as δ? = bδ and hence y/δ? = η/b.
b can be integrated analytically using the theoretical Falkner-Skan solution,
provided from program (16), as

b = δ?
δ

=
∫ ∞

0
(1− f ′) dη = η(∞)− f(∞) . (17)

(1.1) the n-values for the three different profiles.

(1.2) two figures showing the unscaled and the scaled data of the three velocity
profiles.
Figure 1: the three measured profiles unscaled form, i.e. Y (mm) vs U
(m/s). Add the no-slip condition to the vectors before plotting and add
a solid line through the symbols (you can also use different colors and/or
different symbols for the three profiles).
Figure 2: the three measured profiles scaled form, i.e. Y/δ? vs U/Ue. Add
the no-slip condition to the vectors before plotting and add the corre-
sponding Falkner-Skan profile (program 16). Take n to be the averaged
value from the three profiles using program (13). To the figures you should
add the correct labels using the Matlab commands xlabel and ylabel.
NOTE: save the b-value calculated using (17) with η and f values corre-
sponding to the averaged n-value of the three profiles using (16), it will
be used later for calculating δ using relation (17) in (4.1).
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(2)
Free stream velocity variation

The static pressure distribution measured during the lab can be used to cal-
culate the free stream velocity variation and in turn estimate the acceleration
parameter n, independent of the method used in exercise (1) above. We use the
fact that the total pressure is constant in the free stream and can consequently
calculate the free stream velocity using equation (1) as

U∞(x) =

√
2{ptot − pstat(x)}

ρ
=

√
2∆p
ρ

. (18)

The pressure difference (∆p) above was measured using an inclined pressure
manometer where the difference is measured in terms of cm meth pillar (∆h∗)
and hence the pressure is recovered as

∆p = ρmeth · g∆h∗ · sin(β) (19)

where ρmeth, g and β correspond to the density of meth (790 kg/m3), the
gravitational acceleration (9.82 m/s2) and the angle of inclination of the pressure
manometer, respectively. β has been noted down during the lab. Note that
when measuring with the inclined pressure manometer you always measure a
pressure difference between a pressure of interest (hstat) and a reference pressure
(href ), as an example ∆hstat = href − hstat. Thus, in order to retrieve ∆p in
equation (19) you will be needing ∆hstat and ∆htot since

∆p = ρmeth · g(∆hstat −∆htot) · sin(β) = ρmeth · g∆h∗ · sin(β) . (20)

Note also that ∆h∗ in equation (19) should have the dimension [m]. The meth
pillar values h(x) in [cm] and the corresponding x-positions can be loaded using
the file_name = ′pressure_data_FPG′ with

[X, h] = read_lab_data_JF(file_name) , (21)

where the first values correspond to href−hstat(x) (= ∆hstat) and the last value
in the file to href − htot (= ∆htot). The corresponding x-positions to hstat(x)
is given in X (note that the last element of X is just a dummy zero).

Having calculated the free stream velocity distribution U∞(x) (from re-
lation 18), which we here denote Ux, you shall use the Matlab program

[nx] = Ufit_JF(X, Ux) , (22)

which takes as argument two vectors, the mean streamwise velocity distribution
in the streamwise direction Ux and its corresponding streamwise coordinates X
[m], where the latter is a priori known and was loaded into Matlab by executing
(21). The program (22) returns an estimate of the acceleration parameter nx
in a least-squares fit sense to the data using relation (3). It plots U versus
X along with the curve fitted line. Save the figure and include it in your lab
report. Compare the n (nx) obtained here with the n-values you obtained using
the method in exercise (1) (i.e. ny). Bring this in as a result in your lab report.
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(2.1) figure of the free stream velocity variation along with the curve fitted line.

(2.2) the n-value, using this method, for the favourable pressure gradient case.

(3)
Derivation of the von Kármán momentum integral equation

In this exercise you will derive the von Kármán momentum integral equation,
which correlates the wall shear stress to the boundary layer parameters. Apart
from the displacement thickness eq. (15) we will be using the momentum thick-
ness (θ) defined as

θ =
∫ ∞

0

u(y)
Ue

(
1− u(y)

Ue

)
dy , (23)

see the lecture notes for its derivation.

(i) The von Kármán momentum integral equation is derived by integrating the
boundary layer equation

u
∂u

∂x
+ v

∂u

∂y
= U

dU
dx

+ ν
∂2u

∂y2 (24)

from y = 0 to y =∞, where∞ corresponds to any distance outside the boundary
layer. As described in the lecture notes the pressure gradient term (1st term
on the RHS) can be expressed in terms of the velocity U(x) at the edge of the
boundary layer, which has been done here. If we add and subtract u(dU/dx),
we can rewrite eq. (24) as

(U − u)dU
dx

+ u
∂(U − u)

∂x
+ v

∂(U − u)
∂y

= −ν ∂
2u

∂y2 . (25)

Now, show by integrating above equation from y = 0 to y =∞ that one gets

δ?U
dU
dx

+ d
dx

(U2θ) = τ0

ρ
, (26)

which is the von Kármán momentum integral equation.

Hints in the integration of equation (25):

• 1st term on the LHS: use the definition of δ? and the fact that U only
depends on x.

• 3rd term on the LHS: integrate by parts and use the continuity equation,
∇ · u = 0, to replace the v derivative and the conditions v = 0 at y = 0
and u = U at y =∞. The result can be combined with the 2nd term on
the LHS to yield∫ ∞

0

∂

∂x
{u(U − u)} dy = d

dx

∫ ∞
0

u(U − u)dy , (27)

show this and use the definition of θ (equation (23) above).
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• On the RHS: use the definition of the shear stress equation (8) and the
fact that ν = µ/ρ.

(ii) Show that by expanding equation (26) and using the definition of the skin-
friction coefficient (cf ), eq. (7), one can obtain

cf = 2
{
dθ
dx

+ 1
U

dU
dx

(δ? + 2θ)
}
. (28)

In using above expression to calculate cf it is necessary to express the x-
derivatives with local parameters, specially when using experimental data since
the velocity profiles are taken locally in x and hence no derivatives are available.

Show that above derivatives can be expressed as

dθ
dx

= c2 (1− n)
2

1
Reθ

(29)

1
U

dU
dx

= n

(
c

Reθ

)2
U

ν
(30)

where we have used the similarity concept and introduced θ = cδ in (29), with
c being a constant for a given n. Hint 1: use eqs. (5) and (3). Hint 2: the
similarity concept also leads to Reθ = c

√
Rex, where Reθ and Rex are the

Reynolds numbers based on the momentum thickness and the downstream dis-
tance, respectively, using the local free stream velocity as the characteristic
velocity (note, Reθ = Uθ/ν, Rex = Ux/ν and

√
Rex = Uδ/ν).

(3.1) full derivation of the von Kármán momentum integral equation (26).

(3.2) full derivation of equation (28).

(3.3) full derivation of equations (29) and (30).

(4)
Skin-friction coefficient comparison between experiment and theory

Here we will be using the indices theo and exp on the boundary layer parameters
in order to indicate if it is the theoretical value or the experimental value we
are referring to. Since we are dealing with dimensional quantities we need to
have a δ (=

√
xν/U) to work with and since there is a pressure bump in the

ceiling there will be a virtual origin in the experimental setup, which will not
correspond to the position of the leading edge. This means that if we would
plug in the actual x-position where we have measured the profile it will not be
a fair comparison with theory, and hence we need to take this into account in
the comparison. One way of calculating δ directly is to use

δ = δ?,exp
b

, (31)

11



where b = δ?,theo/δ (see equation 17) is known from exercise (1). Above δ will
include any leading edge and bump effects and hence will be used in the rest
of this exercise (4). δ?,exp in relation (31) is calculated from the experimental
data using relation (15). NOTE: In this exercise it is enough if you pick one of
the three favourable pressure gradient velocity profiles.

– Theoretical cf
Using equations (6-8) show that cf can be written as

cf = 2 ν

δU
f ′′(0) = 2c

Reθ
f ′′(0) . (32)

In calculating the theoretical cf , denoted cf_theo, one would use the intermedi-
ate expression in equation (32) using the mean free stream velocity U determined
from the experiment in exercise (1), δ from relation (31) and the first element
in fpp from (16).

Note:
Equation (32) gives cf based on the velocity gradient at the wall (see eq. 8).
Here, the gradient is obtained from the numerical solution to the Falkner-Skan
equation, i.e. cf is calculated without input of any experimentally measured
data points close to the wall.

– Experimental cf
The skin-friction coefficient can be calculated using equation (32) by estimat-
ing the velocity gradient from data points closest to the wall, but with fairly
poor accuracy as soon as the external pressure gradient departures from zero
(i.e. when n 6= 0). Instead one can calculate cf from integral boundary layer
parameters without knowledge of how the velocity profile looks like close to the
wall. In calculating cf from the experimental data, denoted cf_exp, one should
use equations (28–30). The procedure is outlined below.

• You have two values of n, from exercise (1) (take the averaged ny-value
of the three profiles) and (2), and you should calculate the cf for both of
them.

• The c value should be calculated using the experimental momentum thick-
ness, θexp, using equation (23) with the same procedure as was used to
calculate the displacement thickness in equation (15). Note, c = θexp/δ,
where δ corresponds to the value calculated in equation (31).

• Reθ = Uθexp/ν, where the local free stream velocity U and the kinematic
viscosity ν are both known.

• The displacement and momentum thicknesses in equation (28) correspond
to the experimental values.

(4.1) cf from both experiment and theory (2 values originating from the two
different n-values and choosing one of the three velocity profiles).

(4.2) quantify the agreement in terms of their ratio (cf_exp/cf_theo).
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