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Abstract

Diffusion controlled phase transformations are studied by means of the phase-field
method. Morphological evolution of dendrites, grains and Widmanstatten plates
is modeled and simulated.

Growth of dendrites into highly supersaturated liquids is studied for binary
alloy solidification. Phase-field equations that involve both temperature and solute
redistribution are formulated. It is demonstrated that while at low undercooling
heat diffusion does not affect the growth of dendrites, i.e. solidification is nearly
isothermal, at high cooling rates the supersaturation is replaced by the thermal
undercooling as the driving force for growth.

In experiments many crystals with different orientations nucleate. The growth
of randomly oriented dendrites, their subsequent impingement and formation of
grain boundaries are studied in two dimensions using the FEM on adaptive grids.

The structure of dendrites is determined by growth conditions and physical
parameters of the solidifying material. Effects of the undercooling and anisotropic
surface energy on the crystal morphology are investigated. Transition between
seaweeds, doublons and dendrites solidifying out of pure substance is studied and
compared to experimental data. Two- and three-dimensional simulations are per-
formed in parallel on adaptive and uniform meshes.

A phase-field method based on the Gibbs energy functional is formulated for
austenite to ferrite phase transformation in Fe-C. In combination with the solute
drag model, transition between diffusion controlled and massive transformations
as a function of C concentration and temperature is established by performing a
large number of one dimensional calculations with real physical parameters. In two
dimensions, growth of Widmanstatten plates is governed by the highly anisotropic
surface energy. It is found that the plate tip can be approximated as sharp, in
agreement with experiments.

Descriptors: heat and solute diffusion, solidification, solid-solid phase transfor-
mation, microstructure, crystal growth, dendrite, grain boundary, Widmanstatten
plate, phase-field, adaptive mesh generation, FEM.






Preface

This thesis concerns modeling of microstructures arising during diffusion controlled
phase transformations by means of the phase-field models. The first part of the
thesis contains introduction to the field and a review of important works published
in the literature. The second part consists of published or submitted papers listed
below

Paper 1. 1. Loginova, G. Amberg and J. Agren, ‘Phase-field simulations of non-
isothermal binary alloy solidification’, Acta materialia, 49, 573-581, 2001

Paper 2. J.A. Warren, 1. Loginova, L. Granasy, T. Borzsonyi and T. Pusztai,
‘Phase-field modeling of alloy polycrystals’, Proceedings of Modeling Casting and
Advanced Solidification Processes X, edited by D. Stefanescu, J. A. Warren, M.
Krane and M. Jolly, 2003.

Paper 3. 1. Loginova, J. Odqvist, G. Amberg and J. Agren, ‘The phase-field ap-
proach and solute drag modeling of the transition to massive 7 — « transformation
in binary Fe-C alloys’, Acta Materialia, 51, 1327-1339, 2003

Paper 4. . Loginova, J. Agren and G. Amberg, ‘On the formation on Wid-
manstatten ferrite in binary Fe-C - phase-field approach’, submitted to Acta mate-
rialia

Paper 5. I. Loginova, H. Singer, J. Bilgram and G. Amberg, ‘Morphology dia-

gram of thermal dendritic solidification by means of phase-field models in 2 and 3
dimensions’, to be submitted to Journal of crystal growth
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Division of work between paper authors

The papers presented in this thesis are written in collaboration with other re-
searchers. Professor Gustav Amberg acted as the supervisor and the project leader
in all investigations, except Paper 2. Professor Jonh Agren from the Department
of Materials Science and Engineering was the respondent’s second adviser in the
projects resulted in Papers 1, 3 and 4.

Paper 1. This work was performed by the respondent.

Paper 2. This work was done during the respondent’s visit to NIST, Gaithersburg,
MD, USA, under the supervision of Dr. James Warren. The respondent extended
the grain boundary model of a pure material to a binary alloy case, and performed
the simulations on adaptive grids.

Paper 3. The respondent performed the phase-field part of the paper which in-
cluded the model derivation, programming and the phase-field simulations.

Paper 4. The work done by the respondent included the model derivation, inclu-
sion of high anisotropy and the simulations. A parallel adaptive FEM code written
by Minh Do-Quang was used to perform the calculations.

Paper 5. The idea of the paper is due to Herman Singer and Prof. Jorg Bil-
gram from ETH, Switzerland, who provided the experimental part of the paper.
The respondent worked on the part involving simulations: writing a parallel Fi-
nite Difference code and performing large number of two and three dimensional
calculations, as well as visualization of the results.
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CHAPTER 1

Introduction

Phase transformations controlled by diffusion are familiar to everyone. The sim-
plest example would be making ice cubes out of water, i.e. solidification of a pure
substance. In general, the manufacture of almost every man-made object involves
a phase transformation at some stage. In metals, phase transformations lead to
different pattern formation; most of them can only be discerned by means of a
microscope, after special preparation procedures, e.g. etching.

Compositional and structural inhomogeneities, appearing during processing of
materials, may consist of spatially distributed phases of different composition and
crystal structures, grains of different orientations, domains of different structural
variants, and structural defects. When such inhomogeneities form patterns or have
self-repeating shapes, they are referred as microstructures.

In a single phase alloy microstructures can be revealed due to local composi-
tion changes, i.e. microsegregation. Microsegregation results because the growing
solid is of different composition (usually less rich in solute) than the parent liquid.
The redistribution of the excess solute rejected into the liquid depends significantly
on the complicated shape of the solid microstructure. Understanding underlying
physical processes of microstructural formation is of great technological impor-
tance. The size, shape, and spatial arrangement of the local structural features
in a microstructure play a critical role in determining the physical properties of
materials.

Probably the most fascinating and most studied pattern formation is dendritic
structures, which appears in metals and other materials, such as ceramics. Den-
drites are also a key element in the neural system of animals and man. The
name comes from the highly branched tree-like morphology: the Greek for tree is
'devdpor' (dendron). Figure 1.1 gives an example of an equiaxed dendritic structure
computed in 3 dimensions, other examples on experimentally observed dendrites
can be found in Paper 5. In metals, dendrites appear during solidification which
begins with nucleation. Once a nucleus has formed, it starts to grow. Usually the
interface between solid and liquid becomes unstable and breaks up into a dendritic
morphology.

There are several control parameters that can be used to control the growth
pattern, for example, the flow. In some industrial applications a homogeneous
material is preferred which means that the dendritic structures must be avoided,
for example, by applying a forced flow to obtain a less heterogeneous solidified
material. In other products, such as high quality turbine blades of super-alloys,
the dendrites are forced to grow along the axis of the turbine blade, which results in
improved temperature properties of the blades. The dendritic structure is probably
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FIGURE 1.1. Solutal dendrite.

the most common crystal structure in metallurgy determining to a high degree the
thermal and mechanical properties of solidified materials.

In a casting, there are millions of dendrites forming independently out of solu-
tion and subsequently communicating through heat and solutes diffusion. When the
dendrites approach each other, they impinge and form grain boundaries. Within
each grain the atoms are all aligned, and adjacent grains differ in orientation. The
subsequent process when some of the grains shrink and disappear while others grow
is called grain growth. Grain growth occurs because of the tendency to reduce the
total grain boundary area and thus to reduce the associated surface energy. This
allows some grains to grow at the expense of others and hence for the mean grain
size to increase with time. The properties of a material are dependent on the size
of its grains and therefore it is of interest to gain a better understanding of this
process.

Another example of a microstructure is Widmanstéitten precipitates. They are
plate- or needle-shaped crystals that develop into parent grains from grain bound-
aries. Widmanstitten plates are regular patterns which can be observed if the
parent crystal is sectioned along the direction of growth of plates. An example of
the Widmanstatten plates is given in Figure 13 of the Paper 4. The plates were first
discovered by Alois von Widmanstatten in the beginning of the 19th century, when
he studied the regular crystallographic features visible by the naked eye on etched
plane sections of metallic meteorites. Since their discovery, Widmanstétten struc-
tures have been found, albeit on a much finer scale, in many artificially prepared
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alloys, and perhaps most notably in steels containing less than 0.5% carbon by
weight. In these alloys, for certain ranges of parent crystal size and transformation
temperature, Widmanstatten plates of low-carbon ferrite grow in parent grains of
higher-carbon austenite. Again, ability to control growth of the precipitates is of
great interest for materials science.

This thesis concerns modeling of microstructural development of dendrites,
grains and Widmanstatten plates. Ideally, microstructure predictions encompass
all the scales involved in materials processing, from the atomistic spacing, through
dendritic and grain mesoscale, to the macroscopic dimension of the product, with
the corresponding timescale differences. However, since computers are not yet
capable of achieving this task, modeling of microstructural formation has to be
approximated and somehow performed at various levels.






CHAPTER 2

Modeling phase transformations

Diffusion controlled phase transformations considered in this thesis concern two-
phase systems of pure substances and binary mixtures. In particular we study
solidification where a solid phase grows out of liquid, and solid state transformation
where the parent phase is solid. Independent of the transformation’s type, the
underlying diffusion nature of the processes is the same.

In a classical approach to modeling phase transformation, diffusion equations
are formulated in the bulk phases and then boundary conditions are specified on
the moving phase interface. As an example, the growth of a single crystal into an
undercooled pure melt is classically described by the Stefan problem

T = aV?T, x € Qp.s(t)
oT liquid
LVn = —Cu la—n] o X E aQ(t) (1)
O'TM Vn
T = Ty——K—-— o0t
7 L X €0

where €, ¢ are the regions of liquid and solid phases, separated by the interface 0f2,
T is the system temperature, T}, is the melting temperature, ¢ is the heat capacity,
« is the thermal diffusivity, L is the latent heat of fusion, V), is the normal velocity
of the interface, IC is the interface curvature taken to be positive if the center
of curvature lies inside the solid, o is the surface tension and p is the interfacial
mobility.

The first equation of (1) describes the heat diffusion in the solid and liquid
phases. The second equation is the classical Stefan condition, implying that the
normal velocity is proportional to the jump in the temperature gradient across
the interface. This is the condition of heat conservation at the interface. The
Gibbs-Thomson relation (the last equation in (1)) defines the change of the melting
temperature at the interface due to capillary and kinetic effects.

When a pure melt is held in a metastable state, i.e. at a temperature below
Ty, the solidification can be initiated by a small disturbance of the system, e.g. by
introducing a crystal seed. During growth of the crystal the latent heat is released
at the interface, and the rate at which the heat is conducted away specifies how
rapidly the interface can move. The latent heat is released more rapidly when the
growing solid has a large surface area. On the other hand, the interface is associated
with a surface energy which would in turn imply that a small interfacial area is
desirable. Surface energy has a stabilizing effect on the growth since it determines
the smallest scale in the pattern. The actual shape of the crystal is determined by
a compromise between these two competing effects [2, 3.

5
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In alloys, the diffusion of chemical species controls the motion of the solidifica-
tion front in a manner analogous to the way the motion is governed by the thermal
diffusion in the case of a pure substance. In metals thermal diffusion is much faster
than chemical diffusion, thus the chemical effects on the interfacial instabilities are
dominant. When the interface advances, the solute is rejected from solid in much
the same way as, in the pure thermal case, it releases latent heat, thus governing
the interface motion [2, 3].

During phase transformations the interface of a growing crystal is a subject to
morphological instability. For example, when a bump is formed on a planar solid-
ification front advancing into an undercooled melt, the local temperature gradient
ahead of the interface will increase, and thus cool the front more efficiently there,
causing an amplification of the disturbance. The basic morphological instability of
a planar and spherical front was first investigated by Mullins and Sekerka [4, 5].
It was demonstrated that a perturbation of the planar interface will grow if its
wave length is greater than the marginally stable wavelength defined by the ma-
terial properties and growth conditions. The stability analysis has been applied
extensively in different contexts, for example under rapid solidification conditions
[6] and in the case of anisotropic surface tension and interface kinetics [7].

In spite of the apparent simplicity of the Stefan problem (1) analytical solutions
are known only for a few special cases in a simple geometry, e.g. planar fronts.
Ivantsov [1] found an analytical solution of (1) for a paraboloid of revolution,
representing the shape of an isothermal dendrite tip advancing with a steady-state
velocity into a pure undercooled melt. In the absence of capillary and kinetic effects,
the Ivantsov solution is formulated in terms of Peclet number (product of the tip
velocity and radius). However, these quantities can not be defined separately from
the Ivantsov solution. The remedy for solving complicated models of the phase
transformation is thus numerical computations which are discussed in the coming
sections.

2.1. The sharp-interface method

Direct numerical simulations of crystal growth, e.g. solving the Stefan problem,
involve explicit tracking of the phase boundary, since its location and shape are
parts of the solution itself. In the front tracking methods, the interface is repre-
sented by a surface mesh, while the thermal and velocity fields are discretized on
another mesh, a base-mesh. The time-dependent problem is then solved by advect-
ing the surface mesh according to the velocity condition in eq.(1), and solving the
heat equation in the solid and liquid given the location of the interface and using
the Gibbs-Thomson relation as the boundary condition.

In [23] an approach based on the immersed boundary method is used to transfer
data between a fixed temperature grid and interfaces. The position of the interface
is updated by using the kinetic term in the Gibbs-Thomson equation. A different
algorithm is implemented by Almgren [24], where the surface mesh is advected
by minimizing an energy function chosen such that the Gibbs-Thomson condition
holds. Impressive simulations of 3 dimensional dendritic growth of a pure material
with the sharp-interface method were done by Schmidt [25]. A combination of
a front tracking technique and FEM results in a method with impressively low
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demands of computer resources. In the method, both the surface mesh and the
base-mesh are adaptively changed according to a post-error estimation. Though
this method seems to be very attractive, it requires a lot of administration, because
the surface mesh must be re-mapped and adjusted at each time step to prevent
degeneration of the mesh elements.

The complicated interfacial patterns arising during phase transformation, e.g.
dendrites, require adjustment of the surface meshes. Merging and splitting of
the interfaces are inherently difficult, since it becomes necessary to redefine mesh
connectivity to represent the new geometry. This difficulty increases significantly
with number of space dimensions.

2.2. The level-set method

In the level-set method [26, 27, 28] the problem of explicit front tracking is
avoided by introducing an extra field variable 1)(x,t), which is a signed distance
function, or level-set function. For every point in the domain, the level-set function
gives the distance to the closest phase interface, defined as the zero level-set. The
evolution of the level-set function is governed by the advection equation

b=V V¢ (2)

where V is the interface velocity, obtained through the Stefan condition. The
temperature is updated in the bulk phases and special temperature interpolants
are constructed at the solid/liquid interface to satisfy the Gibbs-Thomson condi-
tion. The benefit of the level-set method is that it is independent of the width
of the diffuse interface introduced in the phase-field method. Simulations are per-
formed using the sharp interface formulation. The inherent problem with the level-
set method is that eq.(2) does not preserve the distance property of the level-set
function and a reinitialization procedure must be performed after every interface
update. Another problem is extrapolation of the interface velocity into the bulk
phases. These technical difficulties reduce the attractiveness of the method for
simulating dendritic growth.

2.3. The phase-field method

In the phase-field method the interface between two phases is treated as a region
of finite width, where different state variables have gradual variations, i.e. phase-
field method employs the diffuse interface model. An auxiliary variable, phase-field
or order parameter ¢(x, t), is introduced into the model to indicate the state of the
system at every point. The phase-field variable keeps a constant value in the bulk
phases (e.g. ¢ = 0 in liquid and ¢ = 1 in solid) and varies smoothly but rapidly
over the phase boundary.

An evolution equation for ¢ and the transport equations are derived thermody-
namically for the whole system, without distinguishing between the phases. The
thermodynamic and kinetic coefficients entering the model are chosen to match
the corresponding parameters in conventional sharp interface equations through
asymptotic analysis.
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The indisputable computational advantage of the phase-field methods is avoid-
ing explicit front-tracking of the phase boundary. In combination with relative
simplicity of solving phase-field equations numerically, this makes the method ex-
tremely attractive for modeling microstructural evolution in the materials science
community. However, the phase-field method is not only a mathematical tool for
avoiding front tracking. Its underlying diffuse interface nature is directly linked to
the thermodynamics of phase transformations. In contrast to the sharp-interface
method, non-equilibrium effects at the phase boundary are included into the phase-
field models automatically.

An overview of the phase-field method and its derivation are given in the fol-
lowing chapters.



CHAPTER 3

The phase-field method

In this chapter literature on the phase-field modeling that is the most important and
relevant to the thesis is reviewed. Detailed summaries on modeling microstructural
evolution by the phase-field methods can be found in the extensive reviews [18,
19, 20]

3.1. Solidification of pure materials

The phase-field equations originate in the works of Cahn and Hilliard [9] on
the free energy of nonuniform systems and Allen and Cahn [8] on an antiphase
boundary motion. Early works on phase-field methods investigate dendritic so-
lidification of pure materials. Langer [10] and Fix [11] were first to introduce a
phase-field model for first-order phase transition. A similar diffuse interface model
for solidification was independently written by Collins and Levin [12]. Significant
early work on development and analysis of the phase-field models, including effects
of anisotropy, was done by Caginalp et al [13, 14]. The computations of Kobayashi
(21, 22] in 3 dimensions demonstrated the potential of the phase-field approach as a
computational tool for modeling complicated, realistically looking dendritic struc-
tures. His work generated considerable interest in the material science community
for the phase-field method.

Wang et al [29] put derivation of the phase-field models on a thermodynamically
consistent basis. General conditions were developed to ensure that the phase-
field variable takes on constant values in the bulk phases. Wheeler et al [30]
performed an asymptotic analysis of the phase-field model to recover the classical
free boundary problem in the limit when the interface thickness vanishes. Nowadays
this analysis is often referred in the literature as the sharp-interface limit.

The phase-field model proposed in [30] was extensively used [31, 32] to study
the dendritic growth and to compare its different aspects to experimental obser-
vations. In particular, cleaving phenomenon was simulated in 2 dimensions [31],
which includes splitting of the dendrite tip into two branches and subsequent pre-
dominant growth of one of them.

Despite the success of simulating realistically looking dendrites, early simula-
tions were limited to high undercooling rates. Karma and Rappel [33] proposed a
phase-field model where parameters could be adjusted to eliminate interface kinet-
ics, thus allowing to perform simulations at low undercoolings. Moreover, in their
thin-interface asymptotic limit, the interface thickness could be the order of the
capillary length in order to produce accurate results, while in the previous models
it must be much less than the capillary length. Quantitative phase-field simula-
tions of free equiaxed dendritic growth have been carried out in 3 dimensions by

9
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Karma [34] at low undercooling and by Bragard [35] at high undercooling with the
incorporation of anisotropic interface kinetic effects. For the high undercoolings,
the phase-field simulations were performed using as an input interfacial properties
computed from atomistic molecular dynamics simulations.

3.2. Binary alloy solidification

The growth of a crystal from an alloy melt results in a local change in the com-
position over the phase change boundary. This is because the equilibrium condition
for a binary system requires continuity of chemical potentials of the components
at the phase boundary. A typical concentration profile is shown in Figure 3.1. The
composition has a rather constant value in the growing phase, jumps across the in-
terface and then relaxes to its far-field value ¢, in the parent phase. The difference
in composition at the moving interface, assuming local thermodynamic equilibrium
under normal solidification conditions, can be described by the partition coefficient

Cg
k=2 ®)
where cg and ¢y, are concentration of solute at the solid and liquid sides of the inter-
face, respectively. The values of cg and ¢, for a given temperature can be obtained
through a phase diagram (Figure 4.1), whose derivation is described in details in
Section 4.2. Under rapid solidification conditions k£ may become a function on the
interface velocity V.

Langer and Sekerka [15] considered a model of diffuse interface motion in a
binary alloy system with a miscibility gap in a solid solution phase. Caginalp et
al [16] studied solidification of a binary mixture by the phase-field method. They
showed that the phase-field equations reduce to the traditional sharp interface
models in the limit when the thickness of the interfacial region ¢ is taken to zero.

Wheeler et al [36, 37] and Boettinger et al [38] presented a model that in-
cludes gradient energy contributions for the phase-field and for the composition
field. They studied interface velocity dependence on the solute profiles. While at
low solidification rates equilibrium behavior was recovered, at high solidification
rates non-equilibrium effects such as solute trapping naturally emerged from the
model. By solute trapping one understands the velocity dependence of the jump
in concentration which provides a mechanism whereby the jump vanishes at high
rates of solidification leading to a partitionless transformation. In the subsequent
work [39] Ahmad et al showed that solute trapping occurs when the solute diffu-
sion length D;/V is comparable to the diffuse interface thickness, where Dy is a
characteristic solute diffusivity in the interfacial region. Loginova et al [40] (Paper
3) investigated the transition between diffusion controlled and massive transfor-
mation v — « in Fe-C alloys. The solute trapping was observed when far-field
composition of Austenite was below a critical value for a given temperature. In
this case the solute profile comprises a spike traveling with constant velocity; the
variation of the composition occurs inside the diffuse interface.

Warren and Boettinger [41] derived a phase-field model for isothermal solidifi-
cation of a binary alloy, applying constant diffusivities within the solid and liquid
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FiGure 3.1. Sketch of the concentration distribution in a binary alloy.

phases, and performed 2D simulations of dendritic growth into a highly supersat-
urated liquid. This model has also been used to study directional solidification at
high velocities [43], solidification during recalescence [42], Ostwald ripening and
coalescence [44]. A desirable extension of the isothermal model is to study the
effect of heat flow due to release of latent heat. Inclusion of heat flow effect due
to release of latent heat represents a severe numerical problem since the tempera-
ture and solute evolution occurs on completely different time-scales. A simplified
approach was proposed in [42], where the spatial variation of the temperature is
neglected and the heat equation is replaced by a heat balance of an imposed heat
extraction rate and the latent heat release rate.

Bi and Sekerka [45] proposed a general phase-field model for binary alloy solid-
ification which included energy gradients of phase-field, concentration and internal
energy. Loginova et al [46] (Paper 1) derived a model for simultaneous heat and so-
lute evolution. The inherent difficulty of different time-scales was circumvented by
applying adaptive grids and implicit time-stepping schemes. It was demonstrated
that at high cooling rates the supersaturation is replaced by the thermal undercool-
ing as the driving force for growth. Even though realistic microstructural patterns
were obtained in [41, 46], the models still exhibit interface thickness dependent
results and presence of solute trapping.

Recently Karma [47] re-examined existing phase-field models for binary alloys
in the thin-interface limit. He demonstrated presence of solute trapping in the
low growth regime due to the jump of chemical potential across the interface.
He proposed a new model which includes a so-called “anti-trapping” term which
yields the same computational benefits as the thin-interface limit of the symmetric
model (i.e. with equal diffusion coefficients in liquid and solid) for dendritic growth
of pure substances [33]. Ramirez and Beckermann [48] extended [47] to a non-
isothermal case and demonstrated good agreement with simple analytical solutions.
Thermosolutal dendritic growth was simulated in 2 dimensions for equal heat and
solute diffusivities. However, their model leads to inaccurate results when the
diffusivities differ significantly.
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3.3. Grain growth

Both solidification and solid-solid phase transformations take place to reduce
the bulk free energy, whereas coarsening and grain growth are driven by reduction
in the free energy associated with a decrease in the total grain boundary area. Chen
and Yang [49] proposed a model for describing grain growth, in which the grains
of different orientations are represented by a set of nonconserved order parameter
fields. Assigning N order parameters to the N allowed orientations, they simulated
grain growth kinetics in 2 and 3 dimensions [49, 51]. A similar multiorder param-
eter model, the so-called multiphase-field model, for grain growth was proposed by
Steinbach et al [50]. In this model, a special constraint is imposed, requiring that
the sum of all order parameters in every point must be 1, which implies that the
order parameters represent the volume fraction of grains of different orientations.

Recently, Kobayashi et al [52, 53] proposed a new phase-field model to study
the crystalline grains. Different from multiorder parameter models for grain growth,
it uses two order parameters to describe a grain structure: one represents the crys-
talline order, the other reflects the crystalline orientation of the crystal. Whereas
the relaxation of the crystalline orientation parameter simulates the grain rota-
tion, which is absent in the multiorder parameter models, this order parameter
is undefined in a disordered liquid phase. The main property of the model is in-
variance under rotation of the reference frame, the property which earlier models
(49, 50] have lacked. The authors extended the model [54, 55, 56| to simulate
simultaneous processes of solidification, impingement of arbitrary oriented crystals
and consequent coarsening. Based on [52, 53] Grandsy et al [57, 58] proposed a
model for nucleation and growth of multiple particles in binary alloys. Warren et al
[59] (Paper 2) simulated complex solidification processes which occur when many
crystallites grow independently out of solution communicating through the diffu-
sion field. The simulations demonstrate impingement of particles, grain boundary
formation, coarsening and grain growth.

3.4. Other applications

There has been an extensive study of the effect of fluid flow on dendritic growth
of pure substances. It was shown that due to natural convection [60] and forced
flow [76, 77, 78, 80| the dendrite tip pointed into the flow grows at a much faster
velocity than the other tips. Eutectic and peritectic morphologies have been suc-
cessfully modeled by means of the multiphase-field method [84, 85, 86]. Recently,
the phase-field models for multicomponent alloys were reported [63]. In the area of
solid state phase transformation the following phenomena were considered: marten-
sitic transformations in single and polycrystals [88], phase transformations under
applied stress [89] and ferroelastic transformations [90]. Morphological pattern
formation in thin films and on surfaces were studied by a number of investiga-
tors [91, 92]. Among the latest applications of the phase-field method are crack
propagation [93] and electrochemistry [94].
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Derivation of the phase-field method

4.1. Derivation of phase-field models

There are different approaches to phase-field modeling of diffusion controlled
phase transformation. In this chapter we examine a thermodynamical treatment
based on an entropy functional and a geometrical method where the equations are
derived backward from the sharp interface method.

4.1.1. Thermodynamically consistent derivation. This approach is found
in many papers on the phase-field method [29, 30, 31, 41, 46, 62]. The derivation
of the evolution equations is based on basic concepts of irreversible thermodynam-
ics. Here we present a rather general derivation of a binary alloy solidification
following the work of Bi and Sekerka [45].

We first postulate a general form of an entropy functional over the system
volume V'

35 2 5%{ 2 g2 2
5= /( (6.X,0) = 2o - x| —§|Ve|)dv (4)

where the thermodynamic entropy density s is a function of the phase-field variable
¢, the concentration X of a solute B in solvent A and the internal energy e. The
entropy functional contains the gradient energy terms associated with the formation
of an interface. The parameters €x, €, and ¢4 are constants.

The internal energy and mole fraction are conserved quantities, their evolution
is governed by the normal conservation laws

X4+V-Jx=0 (5)

e+V-J,=0 (6)

Consistent with the second law of thermodynamics, we postulate that the local
entropy production is a non-negative quantity. This can be achieved by adopting
the following linear laws of irreversible thermodynamics for the diffusional and heat

fluxes
0s 0s
J, =M,V <£> M. xV <5X> (7)
0s 0s
Jx = MxxV <5X> + Mx.V (&) (8)

where My y and M, are related to the inter-diffusional mobility of B and A and
the heat conduction, respectively. The second law requires M,, and Mxx to be
positive. The coefficients M,y and My, describe the cross effects between the heat

13
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flow and diffusion and are equal according to the Onsager’s reciprocal theorem.
It should be emphasized that the gradients V(ds/0X) and V(ds/de) are to be
evaluated isothermally and under fixed composition, respectively. Since there are
gradient terms of X and e in the entropy functional (4), the variational derivatives
in eq.(7) and (8) are given by

0s  0s

- _ 7 272
5o ae—l—seVe 9)
os  Os 2 =2
ﬁ_a—X_FgXVX (10)

The phase-field variable is a non-conservative quantity, therefore to guarantee
that the entropy increases, a special relationship is derived

. ds 0s
= My— = M, | — + 2V 11
where M, is a positive mobility related to the kinetic coefficient. Eq.(11) is often
called Allen-Cahn equation [8].

For the case of a regular solution, the energy density and the entropy density
can be written in the form

e(T,X,0) =ea(T,0)(1 — X)+ep(T,0)X + Q)X (1 — X) (12)

5 (e(T, X, 8)) = sa(T, ) (1 — X) + s5(T, )X — - [XIn X + (1 — X)In(1 — X)]
Vom (13)

where e4 and eg are the energy densities of the pure components, s, and sg are
their entropy densities, (¢) is a thermodynamic constant associated with the
enthalpy of mixing, T is temperature, R is the ideal gas constant and V,, is the
molar volume, taken as a constant. We postulate the energy density of a pure
material according to [29]

ea(T,¢) = ex(T)(1 = p(¢)) + ei(T)p(¢) (14)

where % and e are energy densities for the liquid and solid phases, respectively,
and p(¢) is an interpolating function which satisfies p(0) = 0 and p(1) = 1. The
entropy density s, then can be found by integrating ds4 = de /T over temperature
at constant ¢

T o du r . du
sa(T,0) = (L=p(@) [ i)~ +p0) [ b +Ka9)  (15)
where ¢ (1) and ¢4 (T') are the specific heats of the liquid and solid phases, respec-
tively, and K4(¢) is an integration constant obeying K 4(0) = K4(1) according to
the third law of thermodynamics. The corresponding relations for the component
B can be obtained by replacing the subscript A by B.



4.1. DERIVATION OF PHASE-FIELD MODELS 15

Helmholz free energy density is constructed using eq. (12) and (13)
f(TaXa ¢) - G(T,X, ¢) - TS (G(T,X, ¢)7X7 ¢)
= IO - X)+ T OX HONX0-X) g

g XIn X + (1 - X)In(l — X)]

where
fA,B(Tv ¢) - eA,B(Tv ¢) - TSA,B(Tv ¢) (17)

are the free energy densities of pure A and B. Substituting (14) and (15) into (17)
yields an explicit expression for f4

FA(T,6) = FI(T.0)(1 — p(o) + F5(T,00(0) ~TKA9) (19
where
() = h5m) -1 [ S (19)

with a similar expression for fg.

In order to apply the evolution equations (5),(6) and (11) we need to evaluate
the driving forces for the phase transformation. Namely, we need to calculate
V (0s/0e) x 4, V (0s/0X), , and (0s/09), x terms in the eq.(9), (10) and (11). By
first noting that

Oe Oe
de = Tds + (8—X>57¢ dX + <8_¢> y do (20)
we obtain
0s 1 1
\Y (—) =V==—-—=VT (21)
Oe X T 172
Furthermore, we use
df = —sdT + e dX + oe fo} (22)
- 0x),, ).,
to recognize
1 1
B HE -, e
e, 5,0 T,¢
0s 1 [0e 1 8f>
os N = __ (XL 24
(). =7 (50) =7 (), .
In order to evaluate V (9s/0X), , we first write
Os 0 ([ Os 0 [ 0s
) == (= — | == X 2
R
next, we calculate the second derivatives
0 [ Os 1 0°f 1 dQ(¢)
— | == = —= =H,(T,¢p) — Hg(T,p) — =———(1 — 2X
3(1) <8X>e,¢ Tad)aX A( 7¢) B( 7¢)) T d¢ ( ) (26)
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J [ 0s 1 [of R 1 2
X (8—X>e,¢__f <6X2>T7¢__V—mX(1—X) + 759) (27)
where the following notations were introduced
_10fa5(T.9)
Hap(T,¢) = T 06 (28)
Substituting eqs.(26) and (27) into (25) gives
s\ _ _ LG
v (a—X>¢ - [HA(T, 6) ~ Hp(T.) ~ =5 1 2X)] v
R 1 2
+ [—V—miX(l ol TQ(qﬁ)] VX (29)
And finally, the term in eq.(11) is given by
3). -+
99/, x - T \o¢ T,X
Q
= T - X) - By o)X - 20— x) @

The general phase-field equations for a binary alloy solidification can be ob-
tained by substituting expressions for the fluxes into eq.(9), (10) and (11). Here
we present a simplified version under the commonly used assumptions e, =ex =0
and MeX = MXe =0

(6 = M|V BT X) - Hu(T X - X0 )
. I R 1 2
+ V- |[Mxx (HB(T, ¢) — Ha(T,6) + %%(1 - 2X)) w] (31)
Oe . de - Oe . M.,
\ a—TT + a_¢>¢+a_XX:V' {TZ VT}

4.1.2. Reduction to the isothermal model [41]. From the derived model,
several existing phase-field models can be recovered under certain assumptions. For
example, a model of a pure substance by Wang et al [29] can be obtained if X = 0.
In this section we recover Warren and Boettinger’s model [41] for isothermal binary
alloy solidification. They assumed an ideal behavior of the solution, i.e. Q(¢) =0,
so that phase-field and diffusion equations in (31) become equivalent to eq.(3.2)
and (3.6) in [41]. In order to continue, we evaluate H 4 g explicitly using expression
(18) for the free energy

) K(9) (3)

Hy=p'(¢)
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Since we are interested in temperatures near the melting point 7j;, we can avoid
integration from absolute zero (as in eq.(19)) by integrating of d(f4/T)/d(1/T) =
e4 to obtain

fX(T) = f3(T) _ _/T La(u)

T Iy w?

where we have used f%(Tw) = f5(Ty) and defined LA (T) = e%(T) —e5(T). Thus,

LA(Ty) is just the latent heat (per unit volume) of A. To proceed further, we need

to specify the energies e (7T') and e%(T). For Ni-Cu alloy considered in [41] one

may assume that the heat capacity for the pure, single-phase materials, is constant
and that ¢ = ¢5. Then

ei(T) = ei(Tur) + ci(T — Tiy) (34)

du (33)

ei(T) = ei(Tn) + ci(T = Tiy) (35)
which gives e (T) — e5(T) = e5(Ty) — €5(Thr) = La and

HA(T,0) = FO)La [ u = K0) =1 @ (1 - 7 ) ~ K400

T

(36)

Choosing the interpolation function p(¢) = ¢*(6¢? — 15¢ + 10) and K(¢) as a
double well potential K (¢) = —Wag(o), g(¢) = #*(1 — ¢)?, where W, is the
energy hump between the free energies of the liquid and solid, we obtain

Ha=Wad )+ 30901 (1~ 7 (37)
and similarly for B
Hi = Wi () + 09(0)Ln (1~ 1 )

In the expressions above Tj; and T3 are the melting temperature of the pure A
and B and we accounted that p'(¢) = 30g(¢). Equations (37) and (38) are exactly
the same as eq.(3.3) in [41]. Taking the parameter My x = V,,D(¢)X (1 — X)/R,
where D(¢) is the diffusion coefficient, we fully recover the Warren-Boettinger’s
model [41] for the isothermal solidification of Ni-Cu alloy.

4.1.3. Geometrical description. Beckerman et al [61] presented a simple
geometrically motivated derivation of the phase-field equations for a binary alloy
starting from the phenomenological Gibbs-Thomson interface relation

&:Tﬁ—TijLcL—FIC (39)
A

where g4 is the linear kinetic coefficient, my, is the liquidus slope from an equilib-

rium phase diagram and [' is the Gibbs-Thomson coefficient. If one considers the

interface as represented by a constant value of ¢, the normal 77 to the interface and

the curvature K can be evaluated as follows

Vo

Vel

n=

(40)
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! Vg V|V¢|]
K=V -iti=— |V¢—- —5 41
v | Vo ()
The normal velocity of the interface is given by
1 9¢
= —— 42
Vol o >
Substituting eq.(41) and (42) into the Gibbs-Thomson condition (39) yields
1 9¢ Vo¢-VIVe| A
—— =0 |V ——— |+ (T5; - T \Y% 43
i 01 l 0= g | T Trme) Vol Y

A variation of ¢ in the normal direction across the interface can be obtained as a
steady state solution of eq.(43) (more details are given in Section 4.2)

6= % (1 + tanh 2%) (44)

where n is the coordinate normal to the interface and § specifies the width of the
diffuse interface. Using eq.(44) one can compute

_ 09 ¢(1-9)
vl = 22 - AL (45)
Vo]  On? 62
Substituting eq.(45) and (46) into eq.(43) results in the phase-field equation
1 0¢ _ ¢(1—¢)(1 —29) A ¢(1—9¢)
5 =" V24— 2 ]+ (TM—T+mLXL)T -

Finally, the diffusion equation can be derived by using phase-field weighted values
for the average concentration
0X

S =V -1(1 - )DsVXs + $DLVX,) (48)

where the phase concentrations can be expressed in terms of average mixture con-
centration

X
A ) )
and
kX
=59 0)

where k is the solute partition coefficient. We shall notice that in the method
only the values of T;}, my and k are required. Even though this derivation is not
mathematically strict, it does provide a sense of the relationship between terms in
the phase-field equation and quantities like the interface curvature and velocity.
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4.2. The equilibrium phase diagram

In most analysis of alloy solidification, it is assumed that the solid/liquid in-
terface behaves locally as if it were in a state of equilibrium. This means that
the reaction rates, in the small volume which makes up the very thin but finite
interface layer, are expected to be rapid in comparison with the rate of interface
advance. As a result, the transfer of atoms and changes in their arrangement,
which are required in order to maintain the continuity of the chemical potentials
in both phases, are relatively rapid and can be neglected. The assumption of local
equilibrium means that, if the interface temperature is known, then one can obtain
the liquid and solid compositions at the interface by reference to the equilibrium
phase diagram (Kurz and Fisher, [3]).

In this section we demonstrate a derivation of the equilibrium phase diagram for
Ni-Cu alloy from the phase-field model of Warren and Boettinger [41]. The phase-
field equations nondimensionalized with a characteristic length [ and a diffusion
time [%/D are given by

6 = My [e2V26 — Ha(T,6)(1 - X) — Hp(T, $) X

) Vi, (51)
X = V|VX + 22X (1 X)(Hp(T, 6) — Ha(T, qﬁ))Vqﬁ]

with the phase-field parameters

(T:2)?Bads -
M, =m."205_ M.§ 52
4= 6v3oaD 6 (52)
6V20L,41 &2
g2 = TAAEZK (53)
3La 1 Wag

where (4 is the kinetic coefficient, 04 is the surface energy of pure A and dj is the
capillary length. The parameter § = [/dy is a non-dimensional interface thickness.

We now apply an asymptotic analysis for & — 0 proposed by Caginalp and Xie,
[62]. We consider a stationary one-dimensional interface and introduce z to be the
coordinate which measures the distance to the interface, i.e. ¢ = 1/2. Then the
equations (51) can be presented as

o=2 lX(l = X) (I (W= W)g(6) + p(6) (An () ~ AA(T))>(l5)

dz dz 1—-X
2%
0=y [0 (1= X)HA(6.T) - XHa(6.T) (56)

where we introduced the following functions:

anm = (Lo ) e =T (Lo ) 6

m
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We seek a solution in the form of an asymptotic expansion in powers of the small
parameter 0:

¢ = ¢+ 00"+ 6207 + ... (58)
X = XO446X'4+82X2%2+ ...

Taking into account the dependence of the parameters on the interface thickness
g, the phase-field equation (56) can be written as

0= My [¢.. — Wag(9) — 0 (1 - X)Aq + X Ap) 309(¢)] (59)

Substituting (58) into (59) and formally equating terms with equal powers of § lead
to the O(1) equation

0= My, — Wa(20" — 66" +4¢"")) (60)

It is known that this equation has a solution
%(2) =0.5 1+tanhi 61
() =05 (14 tanh 2 (o1

assuming solid on the left (¢(—oo) = 0) and liquid on the right (¢(c0) = 1). For
stationary profiles, the diffusion equation (55) gives

70 4 <ln 1 i(X + p(¢)(Ap(T°) — AB(TO))> dz =0 (62)

—00

where TV is independent of z. Evaluation of the integral results in

liquid Vv, 11 11
] —ANT) — Ag(T)= 2 (L= - =) —Lg|= - —
[nl—XLozid AT 5(T) R < A(T T;}) B(T T£>)63)

Hence, we obtained the first relation for the solid and liquid compositions and
temperature. The second relation is calculated through the phase-field equation.
Subtracting (60) from (59) and collecting terms, which contain § yields

L=, —Wa(2—126° +126")¢" = 309(¢°)((1 — X°)A4 + X°Ap) = H
(64)

Since ¢V is a solution to the homogeneous equation £ = 0, the Fredholm alterna-
tive theorem implies that a necessary condition for the solution of

Lot =H (65)
is that ¢? be orthogonal to H, i.e.,

7 30g(¢°) [(1 — XA, + XOAB] ¢dz =0 (66)

In order to calculate the integral we express ¢ from (55)

. X9
% = S0 (Ax — Ag)XO(1L — X0) (67)
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This gives the desired relation in terms of usual variables, with X and Xg denoting
the limits of X from the two directions,

iqui Vin 1 1
(1= X = (1) = =20 (1 - ) (68

Manipulating with expressions (63), (68) provides the liquidus and solidus lines as
shown in Fig.4.1

1 — cap(—Ay)
crp(—Ap) — exp(—An)

1 —exp(—Aa)
;X?l; -
T eop(Ap — A4)

Xs = (69)

(70)
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FiGURE 4.1. The phase diagram of Ni-Cu alloy.

The given relations are identical to those obtained via the common tangent
construction presented in [87].

4.3. Anisotropy

For many materials, including metals, the surface energy and the kinetic coef-
ficient depend on orientation of the phase boundary. These effects were not taken
into account in the derivation outlined in Section 4.1.1. Since anisotropy has a
crucial impact on the shape of microstructures it is necessary to modify the phase-
field equations to account for anisotropy. The most widely used method to include
anisotropy is to assume that the parameter ¢, in eq.(4) depends on the orienta-
tion of the interface with respect to the frame of reference through the anisotropic
surface energy

o = oon(7) (71)
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Then the variational derivative in eq.(11) must be recalculated

5_5 - % . 2 2 ﬁan—(ﬁ)
5 = aa 5Vl )Z@f P (g)v‘ﬁ (1) 8(% >ﬁ (72)
+ g (oraggt) + 3 (ot g

The choice of the anisotropy function 7(7) strictly depends on the modeled mi-
crostructure. In the case of three dimensional dendritic growth the common choice
is [34]

dy () (9)) + ()
1—3y Vol

(i) = (1=37) |1+ (73)

which reduces to the standard four-fold variation of 7 in two dimensions
n(#) = 1+ ~cos(40) (74)

where 7 is the strength of the anisotropy and ¢ = arctan(¢)/¢;) gives an approxi-
mation of an angle between the interface and the orientation of the crystal lattice.
With this method of including anisotropy, an asymptotic analysis for the interface
width approaching zero, yields the same form of the anisotropic Gibbs-Thompson
equation that is employed for sharp interface theories [17]. The anisotropic Gibbs-
Thompson equation requires o + ¢” to be positive, which results in the restriction
on the value of v < 1/15, implying that we may use only mild values of anisotropy
for simulating dendrites.

In other cases, such as faceted morphologies, highly anisotropic interfacial prop-
erties are required. When o + ¢” changes sign, this gives rise to orientations that
are forbidden and a crystal interface with missing orientations. Formation of flat
sides when the polar plot of the anisotropy function has a narrow minimum or a
cusp can be predicted by the Wulff construction [64], which determines an equi-
librium shape of a crystal. Strong anisotropy of the kinetic coefficient [65] and the
interfacial energy [66] were studied in a case of faceted solidification. An example
of such an anisotropy function would be

n(0) =1 +]sin(0)| (75)

This function is non-differentiable at the cusps # = nm and needs to be regularized
[66]. Strong anisotropy of the surface energy was implemented for modeling growth
of Widmanstatten plates, as described in Paper 4.

4.4. Noise

Dendrites have complex shapes due to the appearance of secondary sidebranches
behind the growing tips of primary stalks [68]. The physical origin of the side-
branching is small noise perturbations, initially localized at the tip. Amplification
of these perturbations to a macroscale along the sides of a steady-state needle
crystal leads to giving birth to the sidebranches. The sidebranches consequently
appear behind the tip, which implies presence of a continious source of noise at
the tip. The experimental results [67] indicate that the thermal noise, originating
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from microscopic thermal fluctuations inherent in the bulk matter, is responsible
for the appearance of the sidebranches.

Typically noise is included into phase-field models in a rather ad hoc manner.
Kobayashi [69] introduced noise by adding a term which is evaluated using a ran-
dom number generator and showed that sidebranching strongly depends on the
strength of noise. Other studies [41, 30], used a similar technique by including a
noise term into the phase-field equation, thus simulating fluctuations only at the
interface. However, these interfacial fluctuations give rise to the sidebranches only
in the system with high driving forces (high undecooling and/or supersaturation).

Pavlik and Sekerka [70] derived stochastic forces due to thermodynamic fluctu-
ations for anisotropic phase-field models. Based on general principles of irreversible
thermodynamics, they showed that the stochastic forces are anisotropic. Granasy
et al [57, 58] demonstrated by means of the phase-field method that the ther-
mal fluctuations in the melt are responsible for nucleation of crystalline particles.
Karma and Rappel [71] incorporated thermal noise quantitatively into a phase-
field model for pure solidification. They related the amplitude of noise to physical
quantities. Two types of noise were considered in [71]: the non-conserved interface
noise originating from the exchange of atoms between the two phases, and conserved
bulk noise originating from fluctuations in the heat current in the solid and liquid
phases. The authors demonstrated that for typical growth conditions at low under-
cooling the conserved noise is the most relevant one. The long-wavelength interface
fluctuations driven by the conserved noise amplify to a macroscopic scale by the
morphological instability on the sides of dendrites. In contrast, the non-conserved
noise in the evolution equation for ¢ drives short-wavelength fluctuations that are
damped and do not affect sidebranching. Consequently, at low undercooling the
non-conserved noise can be left out to speed-up computations.

Theoretically, purely deterministic phase-field simulations of dendritic growth
should produce needle-like dendrites with absent sidebranches. However, if the
diffuse interface region is not properly resolved, e.g. a coarse finite difference mesh
is used, calculations will usually exhibit sidebranching typical of real dendrites
because discretization errors introduce noise into the calculations. Therefore, one
should introduce noise into phase-field models in a controlled way, as in [71].






CHAPTER 5

Numerical solution of the phase-field equations

5.1. Finite Difference approach

Most numerical work with the phase-field model has been performed with Finite
Difference discretization on uniform structured grids [21, 31, 41, 57]. This can be
explained by the fact that the finite difference techniques are conceptually simple,
and what is more, coding of a Finite Difference algorithms is straightforward and
very compact. Typically second-order central differences are used, though applica-
tion of more sophisticated stencils has been reported [35]. Temporal discretization
of the time-derivatives can be done using explicit (e.g. Forward Euler, Runge-
Kutta ) or implicit (e.g. Backward Euler, Crank-Nicholson) methods. For the
explicit schemes, the solution on the next time step can be explicitly formulated
using the current approximation. For implicit schemes it is necessary to actually
solve a large system of algebraic equations to update the solution. It is then not
surprising that most of the studies of dendritic growth utilize the explicit schemes.

This approach works well when a single diffusion field is considered in the prob-
lem (e.g. thermal or solutal). Then the diffusion coefficient and phase-field mobility
are typically of the same order, thus imposing similar demands on stability. Stabil-
ity condition gives the relation between time step and grid spacing which must hold
to prevent uncontrolled growth of errors. However, when several diffusion fields are
included into the model, their diffusivity may differ by several orders of magnitude,
imposing unreachable demands on the time-step. Consequently, implicit time dis-
cretizations are preferred for complex systems. Implicit time-steppings and their
parallelization were studied in [73]. The Finite Difference methods lead to struc-
tured systems approximating PDEs which are easy to parallelize [57, 72]. A part of
the simulations presented in Paper 5 was performed using parallel implementation
of the explicit Finite Difference scheme. For dendritic growth, numerical experi-
ments demonstrate that the Finite Difference codes are most efficient in the case
of high driving forces, when diffusion length is small and dendritic microstructures
are highly branched.

5.2. Methods based on adaptive grids

Diffuse interface methods for modeling microstructural evolution feature large
scale separation. Commonly several orders of magnitude must be resolved: thick-
ness of the phase boundary is of order nanometers, while characteristic features
of a microstructure could only be observed on a scale of micrometers. This scale
separation is the main computational drawback of the phase-field methods, often
preventing results to be quantitative. On the other hand, the variations of the
phase-field and diffusion fields are typically localized over the interfacial region.

25
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This motivates one to use adaptive grids which would follow migration of the phase
boundary. Adaptive Finite Element methods in combination with the phase-field
models have been applied to simulate dendritic solidification of pure materials [74].
Provatas et al [75] have used a dynamic quad-tree data structure in their adaptive
code. They get mostly quadrilateral elements, which are combined with triangu-
lar element to avoid hanging nodes. Toénhardt and Amberg [60, 76, 77] studied
convective effects on dendritic growth using FEM on adaptive triangular grids. A
Finite Element method on octagonal elements was used in a 3 dimensional refine-
ment algorithm developed by Jeong [78]. A 3 dimensional solutal dendrite shown
in Figure 1.1 was calculated by the thesis author using the isothermal approach
[41]. The adaptive mesh consists of tetrahedra which are bisected according to an
elegant recursive refinement algorithm of Arnold [79].

Braun and Murray [32] have done calculations using a general adaptive Finite
Difference technique coupled with a phase-field model. Recently, Lan et al [80, 81]
applied Finite Volume method for simulating dendritic growth in 2 dimensions
on adaptive quadrilateral grids. The benefit of applying adaptive Finite Volume
methods is that hanging nodes do not represent a problem. Also these rather
structured grids are potentially easy to partition for calculations in a parallel en-
vironment. Parallelization of adaptive Finite Element code in 2 and 3 dimensions
was performed by Do-Quang et al [82]. In the code, dynamic mesh partitioning to
achieve load balance is performed after every grid change. Part of the simulations
reported in Papers 4 and 5 was performed by means of this parallel code. For the
dendritic growth, application of adaptive grids is most beneficial at a low under-
cooling/supersaturation, since low driving forces result in a decreased velocity, an
increased tip radius and a large diffusion length.

5.3. Finite-Difference-Diffusion-Monte-Carlo method

An interesting hybrid approach for diffusion-limited growth problems was pro-
posed by Plapp and Karma [83]. Their idea is based on a multiscale diffusion
Monte Carlo algorithm which allows off-lattice random walkers to take longer and
computationally rare steps with increasing distance away from the phase boundary.
The method was applied to simulate dendritic growth of a pure substance [35]. The
computational domain is split into two parts: the first one contains solid phase and
a thin layer of the liquid phase surrounding the interface, the second part contains
the remaining liquid. The phase-field equations are solved by means of the Finite
Differences in the first domain, while the large-scale diffusion field is represented by
an ensemble of off-lattice random walkers and is evolved using the diffusion Monte
Carlo method. The two solutions are connected at some distance from the moving
interface. The method is essentially effective in the low undercooling limit where
the dendrite tip radius is one or more orders of magnitude smaller than the char-
acteristic spatial scale of variation of the surrounding thermal field. This makes
the performance of the method similar to the performance of the adaptive Finite
Elements approach.
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Abstract—A phase-field method for two-dimensional simulations of binary alloy solidification is studied.
Phase-field equations that involve both temperature and solute redistribution are formulated. The equations
are solved using the finite element method with triangular elements on unstructured meshes, which are adapted
to the solution. Dendritic growth into a supersaturated melt is simulated for two temperature regimes: (a)
the temperature is prescribed on the boundary of the computational domain; and (b) the heat is extracted
through the domain boundary at a constant rate. In the former regime the solute redistribution is compared
with the one given by an isothermal model. In the latter case the influence of the size of the computational
domain and of the heat extraction rate on dendritic structure is investigated. It is shown that at high cooling
rates the supersaturation is replaced by thermal undercooling as the driving force for dro2@01 Acta
Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Keywords:Phase-field; Kinetics; Diffusion

1. INTRODUCTION only been applied to very simple systems. Typically
Over the last 10 years the phase-field method hgseat flow d“f'”g .50I|<.j|flcgt|on of pure subgtanqes or
. ) . ...Isothermal diffusion in binary alloys obeying ideal
been extensively used for simulations of dendritic " . . .
olution thermodynamics have been studied. How-

growth. In the phase-field method a new variabl f technological point of Vi it Id b
o(x, y, 1) is introduced to indicate the physical state Yo" 'fom a technological point ot view, It would be

of the system at each poirttakes on constant valuesvaluable to perfqrm simulations on real alloys, which
in solid and liquid and changes steeply but smoothl redusually r_n;;ltlcotr_nponent and have complex ther-
over a thin transition layer that plays the role of th c\)Nynamlc w:jegac 'l[(t).ns. 11 derived h field
classical sharp interface. The governing equation dalrr;en an h o€ l'ngﬁ;.f[. ] . e“V? %’ P asel-l N
coupled with modified transport equations are applierafl‘O el or Isot ermal soll .'.'Ca“of‘ of-a binary afloy,
in all of space without distinguishing between th@pp_lylng constant diffusivities W|th|_n the_solld ‘_alnd
phases. This permits simulations of growing morphd'-q,UId phases, {md performed twq—d|men5|onal simul-
logies without explicitly tracking the phase boung-ations of dendritic growth into a highly supersaturated
aries. liquid. This model has been explored in several pap-

Solidification of a binary mixture has been studie®"s: for example, [9-12]. A desirable extension of the
by Caginalpet al. [5, 8]. It is shown that the phase-model is to study the effect of heat flow due to release
field equations reduce to the traditional sharp inteRf latent heat. However, the numerical implemen-
face models in the limit when the thickness of thdation is not trivial since the temperature and solute
interfacial regiond vanishes. At the same time com-evolution occurs on completely different time-scales.
putations demonstrate that the phase-field methofs Simplified approach was proposed in Ref. [4],
produce an interface close to the sharp interface prowhere the spatial variation of the temperature is neg-
lem even for relatively largé. lected and the heat equation is replaced by a heat bal-

Despite the great success in predicting qualitativegnce of an imposed heat extraction rate and the latent
realistic microstructures, the phase-field method h&eat release rate.

The present report is part of a project where the

ultimate goal is to apply the phase-field method to

* To whom all correspondence should be addressed. Fa§g_mulate processing of real alloys. As a first step, the
+46-8-796-9850. phase-field formulation [1] is applied, with the major
E-mail addressirina@mech.kth.se (I. Loginova) difference being that simultaneous heat flow and dif-

1359-6454/01/$20.00) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
PIl: S13596454(00)00360-8
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fusion are taken into account. The paper is organizeld and the heat flux, are given by the linear laws
as follows: Section 1 gives an overview of the modedf irreversible thermodynamics

derivation; numerical aspects are presented in Section

2; in the next two sections results of truly non-iso- oS dS

thermal calculations of dendritic growth for two tem- Je = LAB\BV@ + Léev& ®)
perature regimes are presented and discussed.
2. MATHEMATICAL MODEL Jo = Lg\BV§ + Lgevgs (7)
Xg e

In this section the phase-field model given in Ref.
[1] is considered with modifications accounting for
temporal and spatial evolution of the temperaturgsd, and L4, are related to the inter-diffusional
field. The formulation is based on an entropy funcmobility of B and A and the heat conduction, respect-
tional ively. The coefficientL, = L4 describes the cross
effects between heat flow and diffusion and will be

€2 neglected. The second law requifdg, Lgg and L2,
S= J<3(¢,XB,G)2|V¢|2)dQ (1)  to be positive. It should be emphasized that the gradi-
) entsV(dS/0xgz) and V(0Sde) are to be evaluated iso-

thermally and under fixed composition, respectively.
The variational derivatives in equations (6) and (7)
where the thermodynamic entropy densifig a func- are given by
tion of the phase-field variablg varying smoothly

between 0 in the solid and 1 in the liquid, the mole 8S 0s  Ug—la 8
fraction xg of a solute B in solvent A and the internal &  OXs TV, (8)
energy densitye, and (2 is a spatial region occupied
by a mixture.

Anisotropy is included in the system because the 8S 9s 1
phase change kinetics depends upon the orientation e ode T 9)
of the interface

€ = en = €(1 + ycoskp) (2) whereT is the temperature and the quantity on the

right-hand side of equation (8) is known as the inter-
diffusion potential in binary substitutional alloys. The
wheree is related to the surface energyand inter- chemical potentialgt, and g under the assumption
face thicknessy is the magnitude of anisotropy in theof an ideal mixture have the following form
surface energyk specifies the mode number and the
expressior = arctan,/¢,) gives an approximation Ua = °Ua(d, T) + RTIN(1—xg) (10)
of the angle between the interface normal and the
orientation of the crystal lattice.
The evolution of the non-conserved phase-field Us = °Ug(@, T) + RTIN xg (11)
variable is governed by
The expressions of the molar Gibbs energy for pure

. oS materials are presented as in Ref. [7]
¢ = My @)
6¢ o
A= WagO)T + [ -eTs  (12)
where M, is related to the interfacial mobility. The STy T
evolution ofxg ande is governed by the normal con- + p(q))AHA](l TA CaT Inﬁ

servation laws

& vy, @) UE = Wog)T + [(T)-ceT2 (13)
+ p(q))AHB](1—_|_lE;>—cE,TIn_I_lB
e=-VJ, (%) i i

where g(¢) = ¢*(1—¢)?> and W,, W are constants.
whereV,, is the molar volume. The diffusional flux €3(T4) and e3(TE) are the energy densities of pure
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solid A and B at their melting point§4 and Tg, D = Ds + p(¢)(D.—Ds) (29)
respectively.AH, and AHg are the heats of fusion

per volume,c, andcg are the heat capacities afrd

is the gas constanp(¢) is a smoothing function, whereDs, D, are the classical diffusion coefficients

chosen such that’(¢) = 30g(¢). in the solid and liquid, respectively.
The phase-field equation (3) in the present model To complete the derivation of the model, the
is used as derived in Ref. [1] internal energy density is postulated according to
Ref. [5]
¢ = M3 V-V S i 14
9 n ¢) % nng ay ( ) e= (]_—XB)eA + Xg€s (20)

0 0
T LA | YR CEATATRR

The internal energy densities of pure materials under
the assumption of equal solid and liquid heat

capacities are
where

- e = G(Th) + Ca(T-TA) + P@)AHA (1)
Ha(@: T) = Wag (9) + 309(¢)AHA(TT,%)

(15) & = e(T8) + Co(T—TE) + p(9)AHs
L1 Inserting equation (20) into equation (5) with
A T2 ol .
Ho(@, T) = Weg'(9) + 309(¢)AHB(TTB) L2, = KT? implies that the heat equation has the form

CT + 30g(p)AFP + Nig = V-KVT  (22)
The diffusion equation is now obtained by combin-
ing equations (4), (6), (8) and (10)—(13). However, as
pointed out earlier, the gradieM(dS/dxg) must be where the following formulae are introduced
evaluated isothermally, therefore the diffusional flux
may be written €= (1-Xg)Ca + XgCs (23)

R
Js = L&s mexB (16) AH = (1-xg)AHa + XsAHg (24)

+ (Ha(9, T)—Hg(9, U)th]

andN = 0e/oxg. Similar to the heat capacity and the
latent heat of fusion of the mixture the thermal con-
ductivity of the mixture is approximated by a

IC;S\/mopfa(;Ii?ch)lr;iSL Z?\?:Stl?aaim) with the normal Fick sWeighted sum of conductivities of the pure materials

Xa(1—Xg) K= (1-xg)Ka + XsKs (25)

A
Lgs =D RV,

7)
Again, equal solid and liquid thermal conductivities

. S - . .. of both materials are assumed. Following Ref. [8], the
whereD is the normal Fickian coefficient of interdif- heat equation is simplified by dropping thg term

fusion of A and B. In this case the so-called thermo-
dynamic factor is unity because the ideal solution is
assumed. The final diffusion equation is then obtained
by combining equations (4), (16) and (17) and takes
the form

cT + 30g(¢)AFp = V-KVT (26)

A similar heat equation was derived in Ref. [12] for
the case of a dilute alloy.

. Vin
Xg = V-D| Vxg + HXB(:L_XB)(HB(QD, T) (18)
3. NUMERICAL ISSUES

—Ha(e, T)Vo

For convenience, the governing equations (14),
(18) and (26) are transformed into dimensionless
form. Length and time have been scaled with a refer-
The diffusion coefficient is postulated as a functiorence lengthl=0.945 and the diffusion timel?D,,
of the phase-field variable respectively. The non-dimensional temperature is
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defined a®) = (T—T*)/AT, whereT* is the tempera- duced into the phase-field model causes fluctuations
ture of the liquidus associated with an initial solutet the solid/liquid interface, that leads to the develop-
composition. ment of a dendritic structure. According to Refs.
In the present phase-field formulation the interfacfl3,14] the physical origin of the noise is stochastic
thickness is treated as an input parameter. Fromfarces appearing in the system due to thermodynamic
physical point of view, it is desirable to takeclose fluctuations near the dendrite tip. The noise is
to the capillary lengthl,=7.1x10*° m. However, included as proposed in Ref. [1] by modifying the
this requires extremely dense grids and time-consumhase-field equation
ing computations. To validate the choicedthe ste- o
ady growth of a dendrite tip was investigated for ¢—¢—M,uor16g(9)((1—xs)Ha + xgHs)  (28)
6=4.9x10°8 1.7<10°8 4.5x10 °and 2.2<10 °m.
The same rate of convergence of the liquid concen-
tration at the interfaces towards the sharp interfacewherer is a random number distributed uniformly
theory predictionxs' was obtained here, as thatbetween—1 and-+1, a new number is generated for
reported in Ref [1]. The dendrite tip speed for thesevery point of the grid, at each time-step.is an
values of§ is 1.2, 1.0, 0.94, and 0.93 cm/s, respeciamplitude of the fluctuations taken as 0.4.
ively. With §=4.9x1078 m, as chosen for the present A specific feature of binary alloy solidification is
calculations, the tip speed thus varie80% when that the changes of and¢ are highly localized over
the interface thickness is reduced by a factor of 2the solid/liquid interface. The width of the interface
almost down to the nominal value. This indicates thas much smaller than the other length scales, which
the phase-field method produces an interface reasanakes the use of an adaptive unstructured mesh ben-
ably close to the sharp interface problem even faficial. Initially the computational domain is spatially
relatively larged. discretized with large triangular elements and then the
Following Ref. [1] a Ni—Cu alloy is chosen for theinterface region gets the highest resolution. As the
simulations. All the phase-field parameters are relateaterface evolves during the computation the mesh is
to the physical properties of the alloy and given iradaptively changed by splitting or merging the
Ref. [1]. The physical data used in the calculationglements according to an error-function
are presented in Table 1. The magnitude of anisotropy

yis 0.04 andk=4 employs four-fold symmetry, which _ _
allows one to reduce computational costs by per- Err~ . (Vo + VO + 25Vxg)ndl'  (29)
forming calculations only in one-fourth of the ¢
domain. . o _ + looj ¢2(l*¢)2dﬂ
The whole region initially contains supersaturated Qe

(0.86) and undercooledAT=20.5K) melt, specifi-
cally for the alloy compositionx§ = 0.4083 and
T=1574K, except for a small nuclei of a circularwhere (), is the area of an element andq, is its
shape with non-dimensional radiug=2, placed in boundary with normaln. This technique provides
the centre of the domain. The initial distribution @f accurate results with a minimum number of elements.
is based on the solution of one-dimensional phas€&or more details the reader is referred to Ref. [6].
field equation for isothermal coexistence of liquid and The system of non-dimensional equations is trans-
solid at a planar interface of a pure metal formed into a discrete problem by the use of Galerkin
formulation of the finite element method, with linear
1 VX + yP—r, basis functions. The time derivatives are discretized
o(x ¥, 0) = 2[1 + tan%(mﬂ (27) by a first order finite difference approximation, the
diffusion terms are made implicit and when it is poss-

Zero Neumann boundary conditions frg and ible the other terms are also chosen implicitly.
are imposed at the boundaries. The boundary cofilthough the numerical scheme is quite stable, the
ditions for temperature will be defined later. time-step is chosen significantly below the stability

It was shown in Ref. [1] that stochastic noise introlimit to satisfy an accuracy requirement. A Fortran
code was developed by means of FemlLego [2,3]

Table 1. Physical data for Ni, Cu which performs automatic code generation from a
: high-level Maple specification.
Nickel(A) Copper (B) The numerical scheme was verified on the iso-
K 1728 1358 thermal model, equations (14) and (18). A square
ATJ,((J),mB) 2350 10F 1728 1P computational domain of non-dimensional = size
o (In?) 0.37 0.29 750X 750 is used in the simulations. Minimum and
D Eng e . maximum mesh resolution was defined as a compro-
¢ PIKM?)] 5 42% 10P 3.96¢10° mise petween number of gridpoints and an implicit
K [I/(Ksm)] 84.0 200.0 numerical noise produced by the model. With 0.625

and 10 no secondary sidebranches are developed
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when a=0. The steady-state growth velocity of theequations (14), (18) and (26) are solved with
dendrite tip was chosen as a reliable quantity to defifle=1574K as initial and boundary conditions for the
time-step. It was found that witht=0.2 the numeri- heat equation. This is done in order to fit the non-
cal scheme gives an error of the tip speed ca 3% othermal temperature regime to the isothermal case.
Solute redistribution obtained for isothermal calcuThe results of this simulation are shown in Figs 2
lations is given in Fig. 1. and 3.

As one would expect, the temperature does not
vary much, neither in time nor in space, for example,
the spatial temperature difference does not exceed

To complete the model describing cooling of a melL.6K all the time (Fig. 4). However, comparison of
with growing nuclei, thermal boundary conditions aréhe solute patterns (Figs 1 and 2) shows that the com-
to be specified. Different types of boundary conposition behaviour is very sensitive to even small
ditions determine different thermal regimes affectinghanges in the temperature field. Increased melt tem-
the temperature variation in space. In this sectioperature reduces sources of instability, which leads to

4. TEMPERATURE FIXED ON THE BOUNDARY

0.474

less developed structure of the non-isothermal den-
drite. The length of the primary arms is about 6% less
than the corresponding one calculated under iso-
thermal conditions. The solute diffusion length is

_% \:. 0446 larger compared to the isothermal growth, as well as

_g ;:: spacing of interdendritic liquid pockets. The value of

/ )_: '7::\ \ 0417 the composition at the solid/liquid interface is
/ ,_.\: z \ decreased since the operating point in the phase dia-

".,/'"_1 ( 0.389
] /djf),ll},

=

ayy

gram has moved to the left due to the increased tem-
perature.

Figure 3 demonstrates spatial redistribution of the
temperature field with imposed interface location at
time 2.75 ms. As predicted by the Gibbs—Thomson

1 (el Sy ; condition, the tips are the coldest parts of the dendrite
s 72 BN e v/ due to the large curvature here. The location of the
= "E ' hottest point during the crystal growth varies and in
i general corresponds to one of the tips of those sideb-
w ranches which grow towards each other and form a

closed liquid pocket. Melt in this pocket is of highest
temperature due to release of latent heat by these

Fig. 1. Concentration field, isothermal model. Time is 2.75 mggrowing sidebranches. The less sharp the sidebranch

A
7 3
/

0.470

<

tip, the higher temperature of the sidebranch.

The maximal value of the system temperature as a
function of time is given in Fig. 4. The curve is
slightly oscillating because the temperature is taken

;’ \ﬂ g at different grid points wherever the maximum value
o~ 7N occurs. The local peaks occur when two or more side-
s L 0414 branches growing towards each other merge and stop

=
s

hi‘\"‘.

?ﬂlm\

0.386

growing and consequently to produce the latent heat.
Then another sidebranch surrounded by hot melt
starts to release more latent heat than the others and
becomes the hottest place in the system. Fig. 5 shows

‘*'»{V vuse® ‘sauy “w'*”/ the area of the dendrite tip with imposed isotherms,
"t_‘ Yl E\U which are refracted over the interface. This reflects
A the change of the temperature gradient owing to the
el D
- | = release of latent heat.
L2 The results presented in this section indicate clearly
% 7‘? that for a supersaturated binary alloy the development
K\ ¢ of dendritic patterns is governed mainly by solute dif-

fusion, but the temperature variation alters signifi-
cantly the morphology of the microstructure.

Fig. 2. Concentration field given by the non-isothermal model
with temperature fixed on the boundary. All the physical and

phase-field parameters are the same as in isothermal calcu-

5. RECALESCENCE CALCULATIONS

lations. Time is 2.75 ms. The color scheme uses yellow—red . . .
palette in grey scale for low and high concentration values, 1hiS Section represents the results obtained for

respectively.

simulations of dendritic solidification in the thermal
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1675.40

.
167505

1574.00 ?

//-\ Y NN

Fig. 3. Temperature field corresponding to the solute redistriFig. 5. Location of isotherms near the dendrite tip. The picture

bution in Fig. 2. The lighter color, the higher the temperature. corresponds to the run in Fig. 3.

The solid/liquid interface is shown as a band where
0.1<¢<0.9. Time is 2.75 ms.

\

There is a lot of numerical and physical issues,
which should be investigated for these types of simul-
: : : ations. In these calculations the effect of the cooling
15758 i~ — — & i rateand the size of the domain is analyzed. The com-

: : : ‘ putations are performed in two square domains
6.9X10 % and 2.2810 ° m on a side (which will be
referred to as “large” and “small” boxes), for three
cooling rates: 2.X10°% 3.4x<10% and 1.3<10° K/s.

In order to keep the same non-dimensional geometry,
6=1.62x10"8 m is chosen for the “small” box.

Figure 6(a and b) shows the temperature—time his-
tory for all cooling rates, in the “big” and “small”
box, respectively. Three curves represent each simul-
ation: two dashed lines show the minimal and maxi-

: : : ; mal value of the system temperature calculated by the
157221 et s e et e i e NON-iSOthermal model, the solid line ¥ t) obtained

: : : j through the heat balance [equation (30)]. It is neces-
1574.0 03 1 15 3 75 sary to note thaff(t) calculated by the isothermal

Time, ms approach differs significantly (2K as the worst) from
Fig. 4. Maximal temperature of the system vs time, minima‘he s_hort—termT(t)_ erendence in_ Fig. 6 in Re_f' [4].
temperaturéT=1574K is kept on the boundary all the time. T(t) is very sensitive to the choice of numerical as

well as physical parameters which were not unam-
guously defined in Ref. [4].

1576.0 T T T T

1575.6

K
-
o
~
o
IS

- -
o o
~ ~
o &
= N

Temperature,

1574.6

1574.4

regime when a heat flux is extracted from the domairtl).i . .
This regime is modeled in two ways: (a) the iso- In general, both the models give a simila(t)

; . haviour. Initially, at the highest cooling rates
thermal model is coupled with a heat balance [4?e
which neglects temperature variations in space 3.4x10" and 1.10° K/s)_the temperature. falls

down because the composition heeds more time to be

- changed and to cause solidification. As a crystal starts
ar _ _; , AHd {1.]' o(X, Y, t)dS] (30) togrow, the latent heat release increases the tempera-
Sls ture, that is, recalescence occurs. For the lowest coo-
ling rate, the initial growth of the nuclei is fast enough
) to overcome the imposed heat extraction rate and,
where T is the cooling rateS is the area of the hence, the temperature—time curve initially has a posi-
domain,AH and€ are evaluated for the compositiontive slope.T(t) given by the isothermal model initially
far away from the interface; (b) non-isothermal modeipproximates an average temperature, but later the
with Neumann boundary conditions for the heat equatent heat of fusion is released faster, and therefore,
ation. The heat fluxQ imposed on the outer boundaryfor all three cooling rates the time evolution is faster.
C As a result, the isothermal model gives an overesti-
mated values of the temperature.
of the computational domain. Comparison of the dashed curves in Fig. 6(a and

@ " ra

. . CTa . .
is related toT by Q = R wherea is the side length
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(@) temperature fields are presented in Figs 7 and 8. Com-
1580 : paring these figures one should remember that the real
side sizes of the boxes differ by a factor of three.
At the lowest cooling rate [Figs 7(e) and 8(e)] the
temperature rise reduces the melt undercooling which
gives the least developed crystal. In this case the sol-
idification is driven by solute change in both phases,
solid and liquid. The higher the heat extraction rate,
the greater the influence of the size of the compu-
tational domain on the crystal growth. While the den-
dritic morphology calculated in the “small” box [Fig.
7(c)] consists only of primary stalks with no pertur-
bation on the interface, the corresponding mor-
1565 . phology in the “large” box [Fig. 8(c)] has well
¢ e fime, ms ! e developed secondary arms. It should be noted, that
(b) due to the high value of heat extraction rate the inter-
face stays planar (which gives the crystal a diamond
shape) before perturbations appear at the interface
1585 and secondary sidebranches start to develop.
The most intriguing morphology is presented in
Fig. 8(a) and obtained for the highest cooling rate in
the “large” domain. The morphology growth exhibits

1585

a
>
8

1578

Temperature, K

1570 | /7
7

1590

1580

K

- 1575

f's_’ an almost circular shape with cells developing at the
5157" later times. The explanation is that for very high coo-
E 1565 ling rate, the solidification of a binary alloy is gov-
K

erned mainly by the heat transfer. When a melt
freezes quickly, composition does not have time to
be changed and to cause instability. The presence of
L solute trapping in this simulation is observed when
1550 05 1 15 3 25 the interface velocityV reaches its maximum value
Time, ms of 0.03 m/s, which corresponds to the largest
Fig. 6. Temperature—time dependence for the boxes of siggdercooling of the melt. The partition ratio at the
2.28x10°°m (a) and 6.%10°° m (b). Results for the cooling moment isc/c, = 0.97, as opposed to an equilibrium
rates 2.X10°% 3.4x10% and 1.310° K/s are shown from top yglue of 0.85.
to bottom. The solute trapping effect in the phase-field models
was studied in Ref. [15]. It was shown that for a
planar interface the solute trapping occurs when the
b) obtained for the same cooling rates shows theolute diffusion length ahead of the interface is com-
influence of the domain size. In outline, at the samparable with the interface thickned3/V~§ where
time the temperature of the melt in the “large” boxD, = D(¢ = 0.5). For thed used in the calculations
has a lower value than the temperature in the “smalthis givesV=0.01 m/s. The simulations of directional
domain. This feature can be explained by the fact thaolidification [16] demonstrate that the interface
a larger box contains fewer nuclei per area, and thugmains stable for velocities above 0.024 m/s. Hence,
less latent heat is produced in the box. It is interestingualitatively, the growth behaviour of the dendrite is
to notice that a larger computational domain andonsistent with the significant solute trapping.
higher heat extraction rate cause greater spatial vari-It should be concluded that a crystal morphology
ations of the temperature field. The maximum temdepending on the heat extraction rate varies from
perature alteration is c& ™ the “large” box and 1.2 smooth primary stalks without secondary arms (low
in the “small” one. The tendency of a slightlycooling rate) to well-developed dendritic structure to
decreasing difference of maximum and minimunplanar or cellular shape at extremely high cooling
temperature as time goes is due to reducing fractioate.
of melt. Therefore, the assumption made in Ref. [4]
about absence of the temperature gradient in space
can be accepted for a small computational domain
with a low imposed heat extraction rate, but in other The presented results are thought to be a first
cases spatial variation of the temperature field shouddtempt to model non-isothermal dendritic solidifi-
be taken into account. cation of a binary alloy. Removing the isothermal
The calculated growth morphologies vary signifiassumption makes the computations much more time
cantly among the three cooling rates and the compaensuming, due to the large difference between ther-
tational domains. Solute patterns and correspondimgal and mass diffusivities.

1560 A\

1555

6. CONCLUSIONS
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(c) (e)

l 1574.386 l 1579.606

1574.204 1579.573
1574.203 1579.540
1574.112 1579.507

1574.020 1579.474 flzgea18

Fig. 7. Solute and temperature redistributions (top and bottom rows, respectively) obtained in the “small” box

(2.28x10°° m), for the cooling rates 1:810°, 3.4x10* and 2.1xX1C® K/s varying from the left column to the

right one. Time is 1.4 ms. The concentration and the temperature fields employ the same color scheme as in

Figs. 2 and 3, respectively. The black line shown with the temperature field represents the location of the
solid/liquid interface.

()

0.469

0.427

0.406

1574.710 7 REE00
1573.990 (AN 1576.628 B IeaD

. 1573.268 1576.367

1581.309
1572.546 1576.106 1581.274

1571.825 \ 1575.845 1581.239

Fig. 8. Solute and temperature redistributions (top and bottom rows, respectively) obtained in the “large” box
(6.9x10°° m), for the cooling rates 1:81C°, 3.4x10* and 2.1xX10° K/s varying from the left column to the
right one. (a) and (b) are given at time 1.7 ms, while the others are at 2.5 ms.
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For low cooling rate and many nuclei the spatial 2.
temperature variation is small and may be neglectedg,'
and thus the isothermal approach is applicable. Howy
ever, the non-isothermal effect becomes visible for
higher cooling rate and fewer nuclei, when the spatiab.
temperature difference is not small compared to thé:
difference between solidus and liquidus in the phase
diagram.

On increasing the cooling rate, the growth eventu-
ally becomes governed by thermal diffusion rather8.
than redistribution of solute. Due to limitations on the
width of the diffuse interface the results for the high-
est cooling rate, showing strong solute trapping, mayo.
not be quantitatively correct. However, qualitativelyll.
the predicted behaviour is in agreement with what is
expected at high cooling rates. }3

14.
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Abstract

Recent results using a phase field model of polycrystalline alloy dynamics are pre-
sented, using two numerical techniques: adaptive grids and parallel grids. The
growth of alloy dendrites, and their subsequent impingement to form grain bound-
aries is demonstrated within the model, and topics for future research are discussed.

1. Introduction

Phase field models of solidification have enjoyed wide application in recent years
because of the ease with which complex microstructures can be simulated with only
a small set of differential equations derived from basic thermodynamics principles.
[1, 2, 3, 4]. Phase field models are a subclass of the more generic diffuse interface
models which are based on a functional representation of the free energy density in
terms of specifiable field parameters {¢; (%), p2(Z, ... , on (&)}, where, for example,
¢i is an order parameter for a crystalline phase (i.e., Allen-Cahn [5]). The free
energy density is expanded around the homogeneous (i.e. absence of gradient) free
energy density, f(¢;), with the addition of a penalty for interfaces (where V¢; # 0.)

The traditional phase field model of solidification of a binary alloy material
starts from the free energy

]::/dV [f(¢,c)+%2F2(V¢>) , (1)

where f(¢, ¢, T) is the homogeneous free energy density of an alloy of concentration
¢ and temperature T in the solid ( ¢ = 1) and liquid (¢ = 0). The free energy den-
sity f, interpolates between the two bulk phases, and has the shape of a double well
in ¢, with minima (equilibrium) at ¢ = 0,1 . The stationary states of the functional
Flo, ¢, T| represent equilibrium values of ¢. The time-evolution of this system can
be written as local equations that are cast in terms of the functional gradients of
F [6]. The calculations considered in this paper will be for an isothermal alloy, and
thus we will ignore the temperature in subsequent discussions. Similar models of
phase field statics and dynamics of alloys have been presented elsewhere, but with
a focus on different phenomenology [7, 8, 9, 10]).

1
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In Eqn. 1 the gradient energy coefficient a determines the magnitude of the
penalty induced by the presence of interfaces. The competition between the desire
of the system to remain in one of the bulk phase minima of f (liquid or solid) and
the cost of high gradients results in a finite interface width. The function I' also
contains any anisotropy of the crystalline energy at the liquid-solid interface [11].

The phase field model given by Eqn. 1 has produced faithful simulations of
solidification by using a single order parameter to identify a liquid and a solid phase.
However, ideally the evolution of a crystalline phase - whether during solidification
and impingement, coarsening, grain growth, or sintering - should not omit the
physical effects of crystalline orientation, or of misorientation at grain boundaries.
Recent work has allowed phase field models of solidification to be extended to
include the effects of grain boundaries [12, 13, 14, 15, 16] and in particular, one
of these models [12, 14, 17, 18] (and its extensions) has been used to produce
polycrystalline microstructures of alloy dendrites. In this proceeding we will present
a brief overview of the alloy model of grain growth, show some of the application
areas, and show some of the methods by which solution is obtained.

2. The Model

We introduce the model of Kobayashi et al [12] as our starting point, modified
to include alloy effects:

= [av [f(¢, )+ LTH(V6],0— ) + sa(@) V0] + Sh@)IVOE] . 2

In comparison with Eqn. 1, two terms have been added to Eqn. 2, associated
with the energy cost of a grain boundary. Specifically, we have introduced an order
parameter 0 that represents the local orientation measured with respect to a fixed
axis (in two dimensions) of the crystal lattice. The values of # span —7/N <
6 < /N, where N is the rotational symmetry of the underlying two-dimensional
crystal lattice. The parameter 1) is defined as the direction of a normal to the level
sets to ¢, i.e. tan(yp) = (0¢/0y)/(0¢/0x). The parameters s and € are coupling
constants and g and h are specified as ¢?, although quite generally they need only
be monotonically increasing functions of ¢. The monotonic nature of ¢ and h is
required if the effects of crystalline orientation are to be reduced or eliminated in
the liquid phase.

The homogeneous free energy f(¢,c) takes a form introduced in elsewhere [8,
10]. As noted, in addition to the double well in ¢, f(¢,c), in each phase the
properties of an ideal solution are assumed, with parameters taken from the Ni-Cu
system (c is the concentration of Cu.)

3. Solutions using adaptive grids
The above free energy, using the standard approach of irreversible thermody-
namics, can be postulated to have the following relaxational dynamics:

¢ =—My (3)
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FIGURE 1. (a) Here we show a calculation on an adaptive grid of
five simultaneously nucleated grains of differing orientation. The
hues are the concentration of Cu in a Ni matrix (as in [10]). The
dendrites grow towards impingement, but coalescence is inhibited by
the energy cost of a forming grain boundary. The high resolution
(and therefore high accuracy of the calculation) of the interface is
shown in part (b), where the computational grid is shown, and two
levels of magnification by a factor of three.
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c=V- <M vst) (4)
P = —‘;—g (5)

where My(c) and M.(¢) are mobilities and P is a function of |V#| ensuring a
constant value of # in the non-interface regions

P (e|VO|)=1— e PreslVOl @6*ﬁ169|V9| (6)
€

where (3, and (5 are constants. The variational derivatives in the right-hand sides
of (3)-(5) can be evaluated as follows

¢ = —M, ( Z Pun < 6¢xk> + 25¢| V| +e§¢|v9|2> (7)

6=V- (M <22—J;Vc+ ai;f¢v¢>> (8)
P (eg|V0]) $%0 = V - [qs? <|v9| + 69> ve] (9)

For the details in the equations (7) and (8) the reader is referred to equations
(3.1)-(3.9) in Ref.[10]. The factors of ¢* in the equation (9) come from a de-
sire for symmetry when the polar vector (¢, 0) is given a Cartesian representation
(pcosb, psinb) [12]

Using the femLego framework', we are able to solve the above equations on
adaptive grids, which are dynamically adjusted to variations of the solutions. In
Fig. la we see a dendritic microstructure, with five nuclei introduced at ¢ = 0.
The dendrites grow towards impingement, but solute buildup and misorientation
at the grain boundaries prevent coalescence. Fig. 1b shows the grid automatically
generated by the femLego software [19]. As is evinced by the fineness of the mesh,
this method allows for highly accurate solutions, and its properties under a variety
of simulational environments are still being explored.

4. Solutions using parallel grids

Adaptive grid calculations are not trivially parallelizable because of necessary
inhomogeneities introduced to increase the grid density where it is most needed.
Using a fixed grid opens up another approach to solving the above equations: using
a parallel grid system. One of the major advantages of parallel computations is the
increase in size and decrease in real time over which large simulations can be done.
For the study coarsening, nucleation or any other effect requiring good statistics,
a large simulation requiring many nuclei must be implemented.

The model described in previous sections was modified to incorporate nucleation
of crystalline particles [14], as opposed to the simultaneous introduction of nuclei

Lavailable for free at http://www2.mech.kth.se/~gustava/femLego/ or
http://www.ctcms.nist.gov



Phase Field Modeling of Alloy Polycrystals 5

used above. This has been achieved by extending the orientation field to the
liquid (where it is random and fluctuates). This notion of an ordered liquid is
founded on the observation liquids have short range order. Note, that the evolution
of crystalline atomic order (structural ordering) leads to the definition of crystal
orientation as well (orientational ordering), i.e., they are two intimately related
aspects of crystallization. In our model the phase and orientation fields are strongly
coupled to mimic this, thus the structural and orientational ordering take place
simultaneously at the crystal-liquid interface.

With these changes, our phase field model has been adapted for parallel pro-
cessing using the message passing interface (MPI) protocol. This and the use of
a GNU/Linux PC cluster consisting of 36 nodes allow us to perform large-scale
simulations of nucleation and growth (e.g., on a 7000x7000 grid, yielding ~ 720
dendritic particles; see Fig. 2), which provide satisfactory statistics for determin-
ing the Avrami-Kolmogorov exponent p, that characterizes the time evolution of
solidification: X (t) = 1 — exp[—(¢/ty)?] [20]. Here X is the solidified fraction and
tp is a time constant. For the familiar Ni-Cu system (at 7" = 1574 K, and 0.8
supersaturation), we obtained p ~ 3 that satisfies the p = 1 + d relationship (d
is the number of dimensions), expected for constant nucleation and growth rates.
This approach has been adapted to the regular solution model using interaction
parameters that reproduce the Ag-Cu phase diagram. With its flower-like eutectic
particles, the solidification patterns from the simulations (Fig. 3) closely resemble
to those seen in laser melting experiments on Al-Si [21].

If orientational ordering is slow, a uniform orientation cannot be established
along the perimeter of the particles, and polycrystalline particles form. (Note
that in the case of low symmetry molecules orientational ordering might be the
rate limiting factor for growth). It is worth mentioning that during this process
the governing equations automatically take into account the free energy penalty
for creating grain boundaries. Due to the intrinsic mechanism for nucleating new
grains, our approach is able to model complex polycrystalline structures [22] such
as spherulitic multidomains seen in polymeric [23] or electro-deposited systems [24].

5. Future directions

In this proceedings we have attempted to demonstrate the power of two comple-
mentary techniques for computing alloy microstructures using a phase field method.
It is unlikely that either method will be designated superior, but instead each will
find application in areas where the benefits of each method are evinced. The adap-
tive grid method promises high accuracy, and applicability to physically realistic
parameter regimes, while the parallel approach allows for enormous calculations,
yielding statistically significant results for studies such as nucleation and coarsen-
ing. It is likely that these methods can be unified under certain circumstances,
resulting in a powerful tool-set for the prediction of microstructures.
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sional grid (7000x7000). The calculation is optimally done on a
parallel machine in order to render the computation in less than
a month. In (a) the whole computational domain is shown for the
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region bounded by the small box in (a).



Phase Field Modeling of Alloy Polycrystals

¥ iy o
Vg
- -‘ |

Ya b=

)

_‘.._F..-

il
-
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Abstract

The transition between diffusion controlled and massive transformatiero in Fe—C alloys is investigated by
means of phase-field simulations and thermodynamic functions assessed by the Calphad technique as well as diffusional
mobilities available in the literature. A gradual variation in properties over an incoherent interface, having a thickness
around 1 nm, is assumed. The phase-field simulations are compared with a newly developed technique to model solute
drag during phase transformations. Both approaches show qualitatively the same behavior and predict a transition to
a massive transformation at a critical temperature belowTihEne and close to the/a + y phase boundary. It is
concluded that the quantitative difference between the two predictions stems from different assumptions on how the
properties vary across the phase interface yielding a lower dissipation of Gibbs energy by diffusion in the phase-field
simulations. The need for more detailed information about the actual variation in interfacial properties is emphasized.
0 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction does not involve any composition change, and thus
long-range diffusion is unnecessary. The growth of
If austenite §) in low-carbon iron alloys is  massive ferrite ) occurs with a constant growth
quenched to sufficiently low temperatures, but still rate that is more or less independent of crystallo-
above the martensite start temperativtg it will graphic orientation relationships in contrast to the
be decomposed by a massive transformation thatmartensitic transformation. Thermodynamically a
yields a characteristic blocky or massive micro- partitionless transformationy —o is possible
structure. The massive transformation is par- below theT, temperature, at whickr andy of the
titionless like the martensitic transformation, i.e. it same composition have same Gibbs energy. How-
ever, at what temperature the massive transform-
ation really becomes kinetically possible has been
* Corresponding author. Fax46-8-100411. a matter of considerable controversy over the
E-mail address: joakim@met.kth.se (J. Odqvist). years. It may be argued that if the interfacial reac-
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tions of the migrating o/y are rapid enough the
interface will be essentially in thermodynamic
equilibrium, the so-called local equilibrium
hypothesis. In that case the transition to a massive
mode of transformation would occur when the
undercooling is so large that the composition of
the parent yfallsonthe a/a + ¥ phase boundary
of the binary Fe-C phase diagram. On the other
hand it has been claimed that the massive trans-
formation may occur far inside the ¢ + y two-
phase field. The subject and the different view-
points were recently discussed in an extensive
review by Hillert [1]. He emphasized that the inter-
actions between solutes and the migrating phase
interface are essential in order to understand the
transition to the massive mode of transformation.
It is thus necessary to anayze the so-called solute
drag effect in detail. Hillert and Sundman [2] were
first to show by simulation that the solute drag
effect during solidification of binary aloys predicts
atransition to a partitionless mode of solidification
at high undercoolings. Their approach was to solve
a steady state diffusion equation over the interfa-
cia region and evaluate the part of the available
driving force that is dissipated by diffusion. Dif-
fusion in the parent liquid was treated analytically
by a Zener—Hillert type of approach. Agren et al.
[3,4] replaced the diffusion profile inside the phase
interface with a single representative composition
and were able to model the transition between
Widmanstétten growth of o« into y and a par-
titionless mode of transformation at high super-
saturations.

Over the last decade the phase-field approach
has been tremendously successful in predicting
microstructures during solidification [5] and solid
state transformations [6]. In this approach the inter-
face between two phases is treated as a region of
finite width having agradual variation of the differ-
ent state variables, i.e. the diffuse interface model.
So far, neither the actual properties of the interface
nor the thermodynamic and kinetic properties of
the aloys have been emphasized. The attention has
mainly been drawn to the capability of the method
to predict very redistic microstructures and the
treatment of the interface has been regarded as a
mathematical “trick” to solve the difficult moving
boundary problem.

Nevertheless, the physical pictures behind the
solute drag modeling and the phase-field approach
are very similar. Of course, the similarity isusualy
less evident because the interface thickness used
in the numerical phase-field calculations has been
much too large to have any physical significance.
However, recently Ahmad et al. [7] compared the
phase field model with various solute-drag models
and they found that under steady-state conditions
the two approaches are indeed very similar and the
phase-field calculations will exhibit both solute
trapping (massive growth) and solute-drag effect.
Their results thus suggest that the phase field
approach is capable of treating the transition to
massive transformation as well as solute drag
effects provided that the interface is given
realistic properties.

The purpose of the present report is to apply the
phase-field method to the y —o transformation in
binary Fe-C and demonstrate that a transition to
massive transformation is predicted during iso-
therma growth if reasonable properties are given
to the a/y phase interface. The predictions will be
compared with a newly developed technique to
model solute drag and we shall investigate under
what conditions the two approaches are qualitat-
ively or even quantitatively consistent. No com-
parison will be made with other solute-drag treat-
ments e.g. sharp-interface models.

The main purpose is thus to study the situation
at the phase interface and al calculations will be
made for a one-dimensional geometry although the
phase-field formulation is readily extended to the
full three-dimensional geometry.

2. Phase field formulation of the y —«
transformation in Fe-C

The phase-field formulation of the isobarother-
mal y —a transformation is based on the Gibbs
energy functional:

_ Gm(q)!quT) 22 2
G= J(Vm + 2|V¢| dQ (@)
Q
where G,,, denotes the Gibbs energy per mole of
substitutional atom and V,, is the molar volume per
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substitutional atom and will be approximated as
constant, @ is the phase-field variable taken O in
o and 1in y. The u-fraction uc is defined from the
normal mole fraction of C, xc as

_ X
1-Xc

As aready mentioned, the temperature T is
assumed constant al over the whole system. How-
ever, it may of course vary in time but heat con-
duction is assumed so rapid that al temperature
gradients can be neglected. The molar Gibbs
energy G, is postulated as a function of the phase-
field variable:

Uc

@)

Gn = (1-p(#)Gs + p(9)GEL + 9(9)W 3
where

9(9) = ¢*(1-9¢)? 4)
p(9) = ¢°(10—15¢ + 6¢7) )

and the choice of the parameter W will be dis-
cussed later. G% and Gt, denote the normal Gibbs
energy functions of the oo and y phases and are
taken from the assessment of Gustafson [8]. The
complete expressions are given in Appendix A. It
should be mentioned that g(¢) and p(¢) have been
chosen so that dp/d¢ = 30g(¢).

The evolution of the phase-field variable @ is
governed by the Cahn-Allen equation [9]

- oG _ 10Gy Lo
The kinetic parameter M, is related to the interfa-
cial mobility as will be shown later.The evolution
of the concentration field is governed by the nor-
mal diffusion equation. When u-fractions are used
and the molar volume is approximated as constant
the normal diffusion equation can be rewritten as
u

\T; = —=V-Jc (7)
The diffusional flux of carbon J: is given by the
Onsager linear law of irreversible thermodynamics:

0G
o U

Jo = —L”V( (8)

The quantity 6G/6uc is the norma chemical
potential of C denoted by .. If the so-called gradi-
ent terms are neglected we haved G.,/0 Uc = Uc
and Eq. (8) may be expanded in terms of the con-
centration and phase-field gradients

1 0°G
‘]C = _VDcqu_ L”aua;;V¢ (9)

Thefirst term corresponds to the normal Fick’s law
and we may thus identify the norma diffusion
coefficient of C as

,0°Gp,
Dc = VL o2 (10)
The second-order derivative corresponds to Darken's
thermodynamic factor and the parameter L” is related
to the diffusiona mobility [10] Mc by means of

u
L = WiyVaMc (11)

where Y., denotes the fraction of vacant inter-
stitials, i.e. 1-uc for yand yy, = 1—uc/3for a. For
a given C content the fraction of vacancies would
thus depend on the character of the phase, i.e. it
will depend on the phase-field variable. We have
postul ated

UcYva = (1=p(9))uc(1—uc/3) + p(@)uc(l—uc)
(12)

The diffusional mobility in the two phases could
differ by several orders of magnitude, therefore we
have chosen the following combination:

Mc = (M~ PO(Mg)P@ (13)

For substitutional solutes the mobility in the
center of the interface is most probably much
higher than in the any of the crystalline phases. For
interstitial solutes like carbon it may not be much
higher and the approximation represented by Eq.
(13) may not be too crude. The mobilities of car-
bon in o and y were taken from Agren [11,12].
The complete expressions are given in Appendix
B.
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3. Solute drag modeling of the y—a«
transformation in Fe-C

In the solute drag modeling the thickness (8) of
the interface is considered small enough compared
to the curvature of the interface to approximate the
diffusion field inside the interface as planar, see
e.g. in ref. 2. The steady-state solution of Eq. (7)
will be a good approximation inside the interface
because it is so much thinner than the distance it
travels. Eq. (7) takes the form

\'

v (e u) = Jc (14

where v is the interface migration rate. The flux is
given by Egs. (8) or (9) and is set to 0 in the grow-
ing o phase. For a given combination of
v and ug the solution of Eq. (14) yields a concen-
tration profile across the interface and thus also the
C content on the y side of the interface, i.e. ug>

The dissipation of Gibbs energy due to diffusion
inside the interface, expressed per mole of Fe and
defined as positive, is given by

Vin| ; Qe
y f Je g, (15)
S

AGEH =

By combining Egs. (14) and (15) and making
use of @ G,,/0 Uc = U One obtains

. doG
AGHf = — J' (Uc—u) g z% u:dz (16)

13

In order to perform caculations the variation in
thermodynamic properties and mobility inside the
phase interface must be known. In the solute drag
theory G,, is postulated as a function of both dis-
tance and composition. Severa choices are poss-
ible. One choice is to use Egs. (3) and (13) inside
the interface but rather than Egs. (4) and (5) one
simply postulates that g(¢) = 0 and p(¢) = z/6.
This approach was taken by Hillert and Sundman
[2] and will be used in the present report.

The interface has a finite mobility dueto interfa-
cia friction and often a linear relation between
interface migration rate and driving force is
observed experimentaly, i.e.

M

v VmAGm 7)
where AG, is the driving force needed to move
the interface and M is the interfacia mobility.
AGI, is defined positive for a spontaneous reaction
and is the Gibbs energy dissipated by the interface
friction. The total Gibbs energy dissipated in the
interfface is thus given by the sum of
AGY™ and AGL, The dissipation must be supplied
from the total driving force available over theinter-
face. It is given per mole of atoms and expressed
in terms of the individual chemical potentials on
p. 152 in ref. [13]. By instead introducing the
Gibbs energy per mole of Fe, G,, and its first
derivative we obtain

0Gr,
0 Ut
where AG' is defined as positive for the con-
sidered reaction to occur. For a given migration
rate v we may, by combining Egs. (9), (14) and
(16)—(18) find the u and u¥* that makes the dis-
sipated Gibbs energy exactly matchAGY'. In the
limit of low migration rates ug and ug* will
approach the local equilibrium values predicted by
the phase diagram but at high velocities they will
approach each other.

The solute-drag modeling of the interfacial reac-
tions may be combined with a treatment of C dif-
fusion in y ahead of the interface. By such an
approach it is possible to describe the gradual devi-
ation from loca equilibrium as the interface
migration rates increases. In principle such mode-
ling could be based on numerical methods as in
the DICTRA software [14] or semi-analytical
methods as the Green function formalism used
recently by Enomoto [15]. For the sake of sim-
plicity we will here take a simpler approach based
on the linear-gradient approximation. For the thick-
ening of a grain-boundary precipitate it yields the
following expression

,_ D (w-up)?
26(ug—ug”)(ug—ug)
where ¢ is half the thickness of the grain-boundary

precipitate and ug® is the carbon content in vy far
away from the interface, i.e. the initial content of

AGR' = GhL—Gh— (U~ ug) (18)

(19)
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y. By combining Eq. (19) with the previous result
we may calculate the thickness corresponding to a
given velocity. It should be emphasized that the
solute drag calculations may be performed inde-
pendently of the alloy composition ug”. As aready
mentioned, we then obtain u% and uZ® as func-
tions of migration rate v at a given temperature.
For a particular alloy content ug” we may use Eq.
(19) to establish a relation between v and €.

4. Approximate equivalence of the two
approaches for Fe-C

In order to demonstrate the similarity between
the phase-field and solute drag approaches Ahmad
et a. [7] considered a planar case and the steady
state formulation of the phase field, i.e.

_ Y
9= "V

where ¢ is given by Eq. (6). Their approach will
now be applied to the y —a transformation and it
will thus be dlightly modified. However, for the
convenience of the reader the derivation will now
be given in some detail.

By multiplying both sides of Eg. (20) with
d¢/dz and integrating across the interfacial region,
with a thickness 6, we obtain

JM <1aG ) gd2¢d¢>dzz 1)
)

(20)

V09 dz ~ dZ2dz

dep\?
J(efe
5
Applying integration by parts we find that the last
term inside the left-hand side integral vanishes

because d¢p/dz = O outside the interfacial region.
The first term may be expanded because

dG,  9G,d¢ G, duc
dz  0d¢pdz Oducdz

and Eq. (21) thus becomes

dG,, 9G,duc
f M ( dz duc dz )dz 23)
S

(22)

do\2
—Kmﬁz
S
i.e

3G, duc
_M(p\j;n[(eg;—Gﬁ,)— f ( a(jc (;;)dz} = (24)
)

dp\?
()
5
Integrating Eqg. (16) by parts and rearranging we
find

G duc\ . OGhL it
J(auc = )dz = (ug*—u ) + AGY (25)
S5

Inserting Eq. (25) in Eqg. (24) and dropping the
minus sign on both sides yieId

Moy~ [(GY—Gm) (UK"‘—UC) e AG"'“] (26)

_ (9}
} f (dz) @
13
By comparing Egs. (18) and (26) we find

M¢V [AG—AGET = v J (32)2& (27)
S

The quantity inside parentheses on the left-hand
sideisclearly AG,, in Eg. (17) and it only remains
to evauate the integral on the right-hand side of
Eq. (27). It should be emphasized that the left-hand
side of Eq. (27) comes out as an exact result when
steady state is assumed. The right-hand side is
more difficult but Ahmed et al. assumed it was
more or less independent of the quantities on the
left-hand side and set

1 .
Mgy, AGH-AGHT = va (28)

Comparing Egs. (28) and (17) we may thus ident-
ify.

1
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wherea = f (d¢/dz)?dz. For the simple case where

13

we approximate the variation in ¢ as linear inside
the interface we obtain a = 1/8. However, it
should be emphasized that generally the interface
thickness is less well defined for a diffuse interface
than in solute drag modeling. In principle the inter-
face extends over the whole region where ¢ varies,
which is strictly —o0 < z < o for the diffuse inter-
face. Thus, the integration should be performed
over that region. However, in practice it may yield
sufficient accuracy to extend the integration over a
finite region somewhat thicker than the thickness
used in solute drag modeling. In the present case
amore realistic variation in ¢ is given by the equi-
librium solution of Eq. (6):

6= ;[1 + tanh(z/ (25)] (30)

where 6 = e/VWI/V,, By numerical integration
over atheregion —36 < z < 36 and adopting Eq.
(30) one obtainsa = 0.235/6.

5. Physical parameters

As already mentioned, the complete set of ther-
modynamic and kinetic parameters for the Fe-C
system is given in appendices A and B, respect-
ively. The phase-field mobility M, is related to the
conventional interfacial mobility M by means of
Eqg. (29). In the present study different choices of
a will be tested. The interface thickness will be
chosen as 6 = 10~° m. For a pure element the para-
meters W, ¢, 6 and the surface energy o are related
as follows [16]:

o 6
W=V, —
5" 2

W
c=¢ 18V (32)

i.e. €2 = 3vV206. With the surface energy 6 = 1
Jm? and V,, = 7107 m® mol~* we obtain W =
29.698 10° Jmol €2 = 4.24 10°° Jm. We shall
assume that W and e are independent of tempera-
ture and composition.

(31)

6. Numerical details
6.1. Phase-field simulations

The standard second order central difference in
space and first order in time transform Egs. (6) and
(7) into a discrete problem. Zero Neumann bound-
ary conditions are applied for both variables. The
resulting non-linear systems of equations are
solved using the Newton—Raphson method.

From the experimental observations, we expect
two different regimes: “slow” growth, controlled
by C diffusionin ¥, and “fast” massive growth con-
trolled by the interfacial reactions. During slow
growth, we thus expect a parabolic behavior with
an interface velocity v that is essentially pro-
portional to 1/t except for the later stages when
impingement sets in and the system finally
approaches the state of equilibrium. During the
“fast” or partitionless growth, the solution should
yield a single concentration spike traveling with
constant velocity v until all the initial vy is transfor-
med into a. In order to simulate these regimes the
time step is adjusted to the interface dynamics
according to

o
oy

At (33)
where h is the space resolution in a uniform grid
and c is the Courant number taken as 0.01. With
this approach simulations of massive growth are
performed with constant time step equal to its
initia value 3.5- 1071° s, In the case of paraboalic
growth, the time step is gradually increased and
at the final time, when the equilibrium is nearly
achieved, At is 10° times larger than initially. The
choice of the grid resolution was verified based on
the known content of carbon in both phases at the
equilibrium. With h = 0.1125 nm the relative
error of equilibrium uc is 1.2%. Another test is that
the slope of the interface position vs Vvt is a con-
stant except for the later stages.

6.2. Solute drag simulations

The steady-state diffusion equation, i.e. Eq. (14),
reduces to an ordinary differential equation for the
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concentration of each solute over the interface. A
variable order backward differentiation formula,
usually referred to as Gear’'s method [17], is used
to solve this differential equation. We have used
the agorithm of Gear's method that is
implemented in the HARWELL Subroutine
Library [18].

7. Results
7.1. Phase-field simulations

Phase-field simulations were performed at a
number of temperatures and alloy contents. The
size of the system was 10 um, corresponding to an
austenite grain size of 20 um if ferrite is formed
a the austenite grain boundaries. As mentioned
earlier, 6 was chosen to be 10~° m. Thus both the
size of the system and the interface thickness were
given physicaly realistic values. In a first set of
calculations the parameter ain Eq. (29) was chosen
as 1/6, i.e. M, = M/ was applied in the phase-
field equation.

Theinitial state was aways homogeneous y with
a very thin layer of o (~ 4.5 nm) formed at the
left side of the system. The composition of the
initial layer of o was taken as 0.1-ug” if parabolic
growth was expected. However, the composition
of this layer does not affect the calculation because
it is adjusted automatically during the first few time
steps. In case of massive growth the initial compo-
sition was uniform over the domain.

As an example, Fig. 1 shows the con-
centration profile for an aloy with ug = 0.01
a T = 1093K and different instances
t = 1,10, 20....,60 s. Fig. 2 shows the half thick-
ness ¢ as a function of vt. As can be seen, the
growth is indeed parabolicup tot = 10 s where
impingement sets in. These results are in excellent
agreement with DICTRA [14] simulations using
the same set of data. The DICTRA simulations are
based on a sharp interface model and local equilib-
rium at the interface. At the same temperature a
completely different behavior is found for an alloy
with ug® = 0.001. In this case the massive growth
occurred with a constant growth rate of ca. 0.1 m/s

0.014

0.012} N ——

0.0101

0.008¢

u-fraction C

0.0061

0.004

0.0021

0

0 1 2 3 4 5 6 7 8 910
Distance (um)
Fig. 1. Phase-field calculation of carbon concentration profiles

at different instances, t = 1, 10, 20,... 60s. ug& =001 a T =
1093 K.

2.0
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1.6f
1.41
1.2+
1.0}
0.8f
0.67

Half-thickness (pum)

0.4r
0.2¢
0

0 1 2 3 4 5 6 7 38
t1/2(51/2)

Fig. 2. Phasefield caculation of half-thickness of ferrite pre-
cipitate as function of vt.

until al y was transformed into . The concen-
tration profile, atraveling wave, isshown in Fig. 3.

By performing phase-field simulations for a
large number of alloy compositions at each tem-
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Fig. 3. Phasefield calculation of carbon concentration profile
at interface during massive growth of ferrite, v = 0.1 m/s, for
ug° = 0.001 a T = 1093 K.

perature it is possible to establish a critical compo-
sition below which the massive growth occurs at
that temperature. Of course the critical composition
depends on the vaue of M,. In Fig. 4 we have
superimposed, on a part of the calculated Fe-C
phase diagram, curves a and b representing the
critical composition calculated for two different
choices of M. The T, line, where the Gibbs energy
of the y and o phases have the same vaue for the
same composition, has aso been included in the
diagram. The simulations also revea that the inter-
face velocity as well as the non-equilibrium par-
tition coefficient k decrease when the alloy compo-
sition ug® is increased and approaches the critical
value. This behavior isin agreement with the velo-
city dependence on k discussed in [7].

7.2. Solute-drag simulations

Solute-drag simulations were now performed
according to the approach outlined in section 3.
For a given temperature and composition of the
growing o Eqg. (14) was solved for a series of
interfacial velocities. For each velocity the C con-
centration profile across the phase interface as well
as the C content of y at the y-side of the phase

1150

—
(=3
W
T

Temperature (K)
S
(=}
T

950

900

u-fraction C (10-3)

Fig. 4. Cadculated Fe-C phase diagram with the T, line super-
imposed. Curves a and b are the critical compositions from
phase-field simulations using different choices of M,: & M/é
and b) 0.235M/4. Curve c) is the critical composition from sol-
ute-drag simulations. M is given in Appendix B.

interface were obtained and the Gibbs energy dissi-
pation due to diffusion, AGZf, across the interface
was subsequently obtained by integration of the
concentration profile and adding the contribution
dueto interfacial friction, AG},,. From the C content
on both sides of the interface the available driving
force, AGY, was calculated using Eq. (18). At
given temperature and composition of the growing
o the total dissipated Gibbs energy, AGYT +
AG., and the available driving force may be plot-
ted as functions of interfacial velocity. The general
appearance of the two curves is shown in Fig. 5.
The total dissipation, solid curve, starts from zero
a low velocities, and grows due to dissipation
caused by diffusion inside the interface, i.e. solute
drag. After a maximum it decreases at high velo-
cities but at very high velocities thereis an increase
due to the interfacial friction. If the interfacial
mobility is low in comparison with the diffusivity
inside the interface the dissipation caused by dif-
fusion and friction may overlap and there will be
no minimum. The available driving force derives
from composition differences across the interface.
At low velocities they will yield a negative value
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Fig. 5. Dissipated Gibbs energy by diffusion inside the inter-
face as a function of interface velocity obtained by solute-drag
theory. The solid line represents the dissipation inside the inter-
face. The dashed line denotes available driving force over the
interface.

if the o phase is chosen inside the equilibrium o
+ y phase field. It stays constant until the compo-
sition on the y side starts to decrease due to limited
diffusion inside the interface. Then it increases and
turns positive if it started from a negative value.
At very high velocities it will approach the differ-
ence in Gibbs energy between o and y when evalu-
ated for the same C content, U¢%* = ug.

Figs. 5 and 6 are based on uZ values inside the
o + y phase field where the driving force starts
from anegative value. From Fig. 5it isevident that
the curves must then intersect at an even number of
points. We have found that two cases occur. Either
the curves intersect at two points, one at a high
velocity corresponding to partitionless growth and
one at low velocity corresponding to slow growth
controlled by C diffusion in ¥, or they do not inter-
sect at al. We have not found any cases where
there are four but that could very well occur if car-
bon has a tendency to segregate to the interface.
At the intersections the dissipation exactly matches
the available driving force. On the left side of the
low velocity intersection and on the right side of
the high velocity intersection the available driving

T T T T

0.035
0.030y
0.025; ure

0.020f

u-fraction C

0.015¢

0.010r

0.005}

L
log (velocity, m/s)

Fig. 6. Carbon contents on the a and y side of the interface,
uZ and ug*, as functions of growth rate corresponding to the
intersections in Fig. 5. The dot denotes the highest C content
that o could grow with.

force is lower than required by the interfacial reac-
tions. In the range between the two intersections
the available driving force exceeds what is required
for the interfacial reactions and this range thus rep-
resents physically possible states. Moreover, if we
assume that Gibbs energy is only dissipated by dif-
fusional processes and interfacial friction then the
two intersections represent the only combinations
of growth rate, uz and u¥“ that are physicaly
possible. Aswe increase the C content of the grow-
ing o the two intersections move towards each
other until they finally meet in a point of tangency
between the two curves. At higher C contents of
o no solution at all is obtained. If ug values inside
the o one-phase field had been chosen the dashed
curve in Fig. 5, denoting the driving force, would
have started from a positive value at low velocities.
However, since we are primarily interested in the
possibility of partionless growth in the two-phase
field no such ug values were considered. In Fig. 6
we have combined the information on growth rate,
ug and u¥* for the intersections from a large
number of calculations. The parts stemming from
the high-velocity intersections have been dashed.
At low growth rate u¢ and u¥“ correspond to the
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contents given by the phase diagram, i.e. locd
equilibrium is established, but they approach each
other at higher growth rates. The point of tangency
between the dissipation and driving force curvesin
Fig. 5 appears as a maximum on the curve for
u denoted by the dot in Fig. 6 and the two curves
have then got very close to each other. This
maximum represents the highest C content that o
could grow with. With a mobility according to
Appendix B, the maximum C content of o fell
close to the equilibrium phase boundary for o.
However, the maximum C content and the corre-
sponding growth rate depend on the properties of
the interface. The higher the interfacial mobility,
compared to the diffusivity, the higher the
maximum content and the corresponding growth
rate. In order to demonstrate clearly the general
behavior the calculations presented in Fig. 6 were
made using an interfacial mobility ten times larger
than the one given in Appendix B. These calcu-
lations gave an o well inside the o + y phase field
and a growth rate about ten times higher. A calcu-
lation with the mobility 100 times larger than the
one in Appendix B yields a maximum even closer
to the thermodynamic limiting vaue, i.e. the T,
line.

7.3. Effect of diffusion in y and the transition to
massive growth

We would now like to study the transition from
partitional to partitionless growth and it will be
necessary to investigate how y of a given compo-
sition will transform to «. In the phase-field simul-
ations such a transformation occurs when y has a
content below a critical limit, presented by curves
aand b for different M, values, in Fig. 4. In order
to investigate the predictions of solute drag theory
it is necessary to account for C diffusion in y ahead
of the migrating y/c interface. 1t should first of al
be realized that the calculations for the interface
were made under steady-state growth, which
strictly implies that the transformation is par-
titionless. However, it has aready been mentioned
that the results could be used as a good approxi-
mation for non-steady state conditions, i.e. for par-
titional transformations.

We now apply Eqg. (19) and take ug and u¥“

as functions of growth rate from Fig. 6, or similar
diagrams calculated using different values of the
interfacial mobility. For a given aloy we may thus
establish a relation between half thickness ¢ and
growth rate. The result of a series of such calcu-
lations is given in Fig. 7. The aloys having
ug° = 0.008 and 0.005, respectively, are rep-
resented by the two curves at the bottom |eft corner
of the diagram. When ¢ is close to zero in the very
early stages, the assumption of local equilibrium
predicts an infinitely high growth rate. From Fig.
6 and Eq. (19) it is obvious that this could never
occur because as the growth rate becomes very
high uZ will approach ug and the numerator in
Eq. (19) becomes very small. It should be emphas-
ized that Eqg. (19) is only physically meaningful
for ug¢* > ug” when o grows with equal or lower
C content than y. In these two alloys ferrite will
thus grow under partitioning with a very high but
finite rate in the very early stages. For the aloy
having ug® = 0.003 there is a similar curve to the
left in Fig. 7 but, in addition, there is now a possi-
bility of having a partitionless transformation
because u¥® is lower than the maximum C content
of a. The partitionless growth could then occur

4.0 T -
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35 /I
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2 /.
wn 2.5¢ ! !
g /
S 20 ' '
£ /‘
2_'.‘ 1 1
cmv 1.5¢ :/
1.0r :/:
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0.5} /l

]

0 n . L1

-4 3 2 -1

log (velocity, m/s)

Fig. 7. Relation between half thickness € and growth rate pre-
dicted from Eq. (19) and Fig. 6. Each curve holds for adifferent
aloy content as indicated. The hatched area represents velo-
cities where no physical solutions are possible.
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with two different growth rates represented by the
two sides of the hatched area in Fig. 7. However,
as shown by Hillert [1] only the case of the highest
growth rate represents a stable situation. The criti-
cal C content below which the transformation y —
o is partitionless thus is the maximum of the ug
curve in Fig. 6. That value and corresponding
values at other temperatures are plotted as curve ¢
in Fig. 4.

7.4. Comparison between phase-field and solute-
drag simulations

The critical C content was calculated as a func-
tion of temperature by means of the solute-drag
theory and phase-field simulations. With the
mobility taken according to Appendix B solute-
drag theory predicts a critical composition close to
the o/ox + vy phase boundary, see curve cin Fig.
4. Phase-field simulations using M, = M/é gave
a critica composition amost in the middle
between the T, temperature and the phase bound-
ary, see curve a. However, it was argued in section
4 that a more redlistic variation of ¢ should be
taken into account when evaluating M,. The
relation M,=0.235 M/4 was then derived and the
corresponding critical compositions are given by
curve b. The discrepancy between solutedrag and
phase-field simulations is much smaller for this
choice of M, but is still not acceptable. However,
even though Eq. (28) was obtained as an exact result
it does not necessarily imply that the two
approaches must give the same result because the
diffusonal  mobilities and the thermodynamic
properties have a different variation across the phase
interface in the two approaches. In addition, in the
phase-field method all thermodynamic and kinetic
properties as well as dl their derivatives with
respect to distance are continuous over the whole
region where @ isdefined ( — ©» < z < «). The
interface is truly diffuse in this case. However, in
the solute drag theory these properties vary piece-
wise linearly over the interface, i.e. aready the first
derivatives with respect to distance are discontinu-
ous. Thus, both the concentration profile and the
quantity AGZTevaluated from the concentration
profile using Eqg. (16) will differ and as a conse-
guence the part of driving force available to over-

come the interface resistance will differ. In Fig. 8
the concentration profile has been plotted at 1000
K for the veocity 0.0122 ms™?! and uc =
0.00201. The dashed curve is obtained from the
solute-drag calculations and the solid curve from
phase field. In this case phase field and solute drag
gave a diffusional dissipation of 150 and 232 J
mol-, respectively. The total driving force, i.e.
including the spike ahead of the interface, is 270
Jmoltin both cases. That driving force leaves 120
to overcome the interface friction in the phase-field
simulation. FromM = 7.2 1071° m*J~s%at 1000
K and V,, = 7 10~® mmol ~* we obtain by means
of Eq. (17) v = 0.0123 ms ! in very good agree-
ment with the phase field result. On the other hand,
as can be seen from Fig. 8, this growth rate is not
enough to make the transformation partitionless
according to the solute-drag simulations and the
driving force across the interface, excluding the
spike in ¥, is 265 J mol-* leaving only 33 J mol?
to overcome the interface friction. However, even
if we neglect that slight decrease in driving force
it is obvious that not enough driving force is left
to overcome interface friction and we conclude that

0.018

0.016} a
0.014} ,
0.012

0.0101

u-fraction C

0.008f

0.006}

0.0041

0.002 . ’ . ;
-1 -0.5 0 0.5 1 1.5 2

Distance /

Fig. 8. Phasefield calculation of the concentration profile at
T = 1000 K, v=00122 m s?! uc=0.00201 using
M,=0.235M/$ (solid curve). Solute-drag calculation of the
concentration profile at the same temperature and ug =
0.00201 (dashed curve). M is given in Appendix B.
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according to solute drag theory the aloy uc =
0.00201 cannot grow partitionless at 1000 K.

We may thus conclude that the discrepancy in
the predicted critical composition for massive
transformation stems from a different variation in
thermodynamic properties and mobilities across
the interface in the two methods and that the inter-
face is not as diffuse in the solute-drag theory as
in the phase-field method. It should be emphasized
though, when the interface velocity is so high that
al the dissipation of Gibbs energy is due only to
interfacial friction the two approaches give exactly
the same results, provided that we choose the
interfacial mobilities in a consistent way. This is
simply because in Eqg. (17) no assumptions about
the variation of properties across the interface
enter.

8. Conclusions

As shown recently by Ahmad et al. isobarother-
mal phase-field smulations predict a transition to
partitionless transformation when the supersatu-
ration is high enough. Here we have considered
formation of ferrite from austenite in binary Fe-C
aloys and compared a novel method to simulate
the solute-drag effect with phase field simulations
using an interfacial thicknessin the order of atomic
dimensions. The methods predict qualitatively the
same behavior although the quantitative agreement
is less good. However, if the kinetic parameter
governing the evolution of the phase field is chosen
consistent with the actual variation of the phase-
field variable the discrepancy is much reduced. In
fact, in the limit of no dissipation by diffusion
exact agreement is obtained between the phase-
field ssmulations and conventional modeling based
on interfacial friction and an interfacial mobility.
The reason that a discrepancy remains when there
is diffusional dissipation is that different assump-
tions are made for the variation of properties across
the interface in phase-field and solute-drag mode-
ling, respectively. In the phase field method the
variation is expressed as a function of the phase
field variable, obtained from the solution of the
phase-field equation, whereas in solute-drag mode-
ling afunction of distance is postulated. At present

the detailed variation is unknown and thus one can-
not say that one assumption is better than another.
One thus needs to evaluate the variation in proper-
ties that best fit the experimental information on
the critical temperature. Another possibility is to
caculate the variation ab initio. Both these
approaches will be explored in the near future.
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Appendix A. Thermodynamic description of
Fe-C system, from Gustafson [8].

u
G = %Gy + 5 (*GEec—GEo)

Ue (Uc) | (1 Y| () e
+ 3RT{ 3In(?’> + (1 3)In(l 3>} (AD)
Uc( 1 _Ye) o mo
1S+ o
Gl = %Gk + Uc(°GEec—°GEo)
+ RT{uclnue + (1—ug)In(1—ug)} (A2)
+ UC(l_uC)LE\/a

The quantities introduced in the expressions above
are given functions of temperature:

0Gg, = 1224.83 + 124.134T

—23.5143TINT—0.00439752T2 (A3)
—5.89269-10°T2 + 77358571

0GE,—OGE, = 322050 + 75.677T (Ad)

. = —190T (A5)

(A6a)

-4 g-14 p24
10 315 1500)

Gm = —6507.5(T + Ly

ifr>1
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Gre = —9180.5 + 9.283T

™ T 716 (A6b)
—9309.8(6 + 15t 600)
ifr<1

where 1 = T/Tc and T, = 1043 K is the
Curie temperature.

0GE, = —237.57 + 132.416T

—24.6643TINT—0.00375752T2 (A7)
—5.89269-10°T2 + 77358.5T1
0GY—OGl, = 77207—15.877T (A8)
Lt = —34671 (A10)
V,, = 7 10~¢ mfmol (A1)

Appendix B Kinetic parameters for Fe-C

Diffusional mobility in o [11]:

—10_|_115)exp{0.5898 (BD

[1 + 72rarctan<l4.985—15_:|3_09)]}mzs‘1

Diffusional mobility in y [12]:

RTMZ = 0.0Z-lO“‘exp(

1
RTMZ = 4.529-107exp<—<_|_—2.221-104> (B2)

(17767 —u-26436) ) nés 1

Mohility of a/y interface [19]:

17700

M = O.O35exp(—_r

)m“J‘ls‘l (B3)
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Abstract

A phase-field method, based on a Gibbs energy functional, is formulated for v — «
transformation in Fe-C. The derived phase-field model reproduces the following
important types of phase transitions: from C diffusion controlled growth through
Widmanstéitten microstructures to massive growth without partitioning of C. Ap-
plying thermodynamic functions assessed by the Calphad technique and diffusional
mobilities available in the literature, we study two-dimensional growth of ferrite
side plates emanating from an austenite grain boundary. The morphology of the
ferrite precipitates is defined by a highly anisotropic interfacial energy. As large
values of anisotropy lead to an ill-posed phase-field equation we present a regu-
larization method capable of circumvent non differentiable domains of interfacial
energy.

1. Introduction

The transformation of austenite to ferrite upon cooling is one of the most studied
and well documented subjects in physical metallurgy. Nevertheless, some aspects,
which are technologically important as well as of fundamental interest, still remain
less well understood and they often lead to controversies. It is generally accepted
that at low undercooling more or less equiaxed and rather coarse ferrite parti-
cles form along austenite grain boundaries, so-called allotriomorphic ferrite. They
grow with a rate controlled by carbon diffusion in austenite. Calculations based
on carbon diffusion and local equilibrium at the austenite/ferrite phase interface
yield growth rates that essentially agree with the experimentally observed ones.
At higher undercoolings ferrite rather grows with a plate-like so-called acicular or
Widmanstiatten morphology, [1]. On the broad sides the austenite/ferrite phase
interface is partly coherent and already a long time ago the K-S orientation rela-
tionship between austenite and ferrite was reported by Mehl et al. [2]. Analytical
solutions based on carbon diffusion control and the Ivantsov solution seem capable
of representing the experimentally observed growth rates if local equilibrium is as-
sumed and proper account is taken for the effect of interfacial energy at the curved
tip. At even higher undercooling the ferrite growth turns partitionless, i.e. there is
no redistribution of carbon, and results in a characteristic blocky microstructure,
so called massive transformation. The transition to partitionless transformation
was recently analyzed by the present authors by means of the phase-field method
and solute drag modeling [4]
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For the transition from allotriomorphic to plate-like growth at least two different
opinions have been expressed. Townsend and Kirkaldy [5] suggested that plates
would develop from grain-boundary allotriomorphs by a morphological instability
of a similar type as discussed by Mullins and Sekerka [6] during solidification. On
the other hand Krahe et al. [1] argued that the coherent broad faces could only
grow normal to themselves by the migration of growth ledges and when this process
occurred by a sufficiently high rate, compared to the diffusion controlled growth of
the allotriomorph, then a plate would evolve.

In this paper we shall investigate the morphological instability hypothesis for
plate-like growth by means of the phase-field approach which is particularly suitable
for modeling pattern formation during phase transformations. It has been very
successful when studying the morphological instability during crystallization of a
liquid and the subsequent dendritic growth, see for example [19, 15]. In this
approach the interface between the phases is treated as a region of finite width
having gradual variation of the different state variables. An additional variable,
the phase-field, is introduced for the sole purpose of avoiding explicit tracking of the
position of the evolving phase boundary. The derivation of the phase-field equations
is based on thermodynamic principles; the coefficients of the equations are chosen to
match the corresponding parameters in the conventional sharp-interface equations
through asymptotic analysis.

The phase-field method has also been successfully applied when predicting mi-
crostructures during solid-state transformations [21] as well as other solid-state
processes such as grain growth and coarsening [20], facet formation [7, 13], multi-
component interdiffusion [18] etc.

However, to the authors knowledge, the formation of Widmanstéitten ferrite in
binary Fe-C has not yet attracted the attention of the phase-field community. As
mentioned, Odqvist et al [4] derived a phase-field model for v — « transformation
in binary Fe-C. They performed one-dimensional simulations and demonstrated
a transition between diffusion controlled and massive growth. A transition from
diffusion controlled to a massive transformation is predicted when the temperature
falls below the Ty line and close to «/a + v phase boundary. In the present study
we extend their phase-field approach [4] from one to two dimensions in order to
investigate growth of Widmanstitten plates emanating from an austenite grain
boundary. We introduce a highly anisotropic non-differentiable interfacial energy
and describe its regularization and numerical treatment.

2. Phase-field model

The phase-field formulation of the isobarothermal v — «a transformation is
based on the Gibbs energy functional

G= /( (/’“C’T) §|V¢|Q>d9 (1)

where (G, denotes the Gibbs energy per mole of substitutional atoms and V,, is
the molar volume of substitutional atoms and will be approximated as constant, ¢
is the phase-field variable varying smoothly between 0 in ferrite and 1 in austenite.
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The temperature 7' is assumed to be constant due to the rapid heat conduction.
The u-fraction uc is defined from normal mole fraction of C, x¢ as

To

uo= 125 ©)
The parameter € is related to the interfacial energy o and the interface thickness
§ by means of €2 = 3v/204 [4]. In the case of Widmanstitten plates the coherent
broad sides should have quite a low interfacial energy whereas the more or less
incoherent tip would have a much higher interfacial energy. The interfacial energy
thus is highly anisotropic, i.e. it depends strongly on the orientation of the phase

boundary

o = oon(f) (3)

where § = arctan(¢,/¢,) approximates the angle between the interface normal
and the x axis. oy is the maximum interfacial energy and is an input parameter.
The anisotropy function 0 < n(f) < 1 will be discussed in the following section.
The thickness of the interface also varies with due to anisotropy. In general we
expect a coherent interface to be much thinner than an incoherent interface. For
the perfectly coherent interface the thickness would vanish. For simplicity we have
chosen to represent the anisotropy in interface thickness with the same function,
ie.

§ = don(0) (4)

where dg is the thickness of the incoherent interface and is taken as an input pa-
rameter. For the anisotropic case we thus have €2 = 3v/20007(f)?,

The molar Gibbs energy G, is postulated as a function of the phase-field vari-
able

G = (1 —p(9)) Gp, + p(9)G], + g(9)W (5)

where
9(¢) = ¢*(1 — ¢)? (6)
p(¢) = ¢*(10 — 154 + 6¢%) (7)

and the choice of the parameter W was described in [4]. Here we have assumed
that it is constant and equal to the value of the incoherent interface, i.e. W =
600V /V20. G and G7, denote the normal Gibbs energy of the a and ~ phases
and are taken from the assessment of Gustafson [8]. The complete expressions are
given in Appendix A. The evolution of the non-conserved phase-field variable is
governed by the Cahn-Allen equation [12]

b= a0 g (LG gy O (0 00) O (09
b=y = - (G - evor 5 () - 5 (4 ®
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The kinetic parameter M, is related to the interfacial mobility M as My = 0.235M /¢
[4]. Taking the derivative of G, with respect to ¢ gives us the phase-field equation

. 0 0 0 0 G¢ — G w
¢ =M, <62V2¢ ~ 9 (eﬁga—j> + 8_y <6€I‘98—2>> + My <p'(¢)mvi% - gl(¢)_

The evolution of the concentration field is governed by the normal diffusion
equation. Assuming approximately constant molar volume and introducing u-
fractions the normal diffusion equation can be written as

Uc
- _Vv.J 10
7 o (10)
The diffusional flux of carbon J¢ is given by the Onsager linear law of irreversible
thermodynamics
0G
Jo=-L"V | — 11
¢ (511,(;) ( )

If the gradient terms in Eq.(1) are neglected, we find 6G /duc = 0G,,/0uc, which
is the normal chemical potential pc of carbon. Eq.(11) may be expanded in terms
of concentration and phase-field gradients
1 0’°G
Jo = ——DcVu,— L'V o
¢ =Ty, eV Duc0b
The first term corresponds to the normal Fick’s law and we may thus identify the
normal diffusion coefficient of C as

Vo (12)

0*G,,
ouZ,

De =V, L" (13)

The second-order derivative corresponds to Darken’s thermodynamic factor and
the parameter L” is related to the diffusional mobility M by means of

L” = ‘Z;_CyvaMC (14)

where y,, denotes the fraction of vacant interstitials, i.e. 1 —uc¢ for v and 1 —uc/3
for ae. For a given C content the fraction of vacancies would thus depend on the
character of the phase, i.e. it will depend on the phase-field variable. We have
postulated that

Uclva = (1 = p(¢)) uc(l —uc/3) + p(P)uc(l — uc) (15)

Taking into account that the diffusional mobility in the two phases could differ by
several orders of magnitude, we have chosen the following combination

Me = (Mg) " ()" (16)

The mobilities of carbon in « and 7 as functions of temperature and uc are taken
from Agren [9, 10] and presented in Appendix B. Finally, substituting Eq.(11)-(16)
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into Eq.(10), we obtain the diffusion equation
o = V- [(M&)T (MEPD (1 = p(9)uc(l — uc/3)

+p(¢)uc(l — uc)] ! (a;fc Vue + 6258¢v¢)} (17)

3. Anisotropy of the interfacial energy

As mentioned, Widmanstatten growth is characterized by a strong anisotropy
in the interfacial properties. Such strong anisotropy of the kinetic coefficient [13]
and the interfacial energy [7] were recently studied in a case of faceted solidification.
The facets are formed when the anisotropy function has a narrow minimum or a
cusp in a certain direction. In solidification the amorphous liquid is usually isotropic
and directions only need to be expressed relative the lattice of the growing crystal.
In the case of a solid/solid transformation the situation is more complex because
the anisotropy depends on the relative orientation of the crystalline lattices of
the two phases as well as the orientation of the phase interface itself. For a two-
dimensional case we thus need two parameters to represent the orientation of the
interface. The parameter # has already been introduced as the angle between the
interface normal and the x axis. We now consider cases where the orientation
relation between ferrite and austenite is such that it is always possible to have a
good crystallographic fit along an interfacial plane having the angle 6, with the x
axis. If a plate with coherent sides develops we expect it to grow with that angle
toward the z axis. We have thus used a modified anisotropy function presented in
7]

n(0) = —— (1 +7|cos(6 — bo)|) (18)

L+~
In the above expression 7 defines the amplitude of the anisotropy. It should be em-
phasized, that with this choice of the anisotropy function, see Eq. 3, the maximum
interfacial energy that represents the incoherent part of the interface is simply oy,
while the variation of v only affects the minimum interfacial energy representing
the coherent part, o,,;, = 09/(1+ 7). For the simulations to be presented later we
have rather arbitrarily taken oy = 1Jm™2.

One important aspect of applying strong anisotropy is to check for what values
of v the term n 4+ 1" in the anisotropic extension of the Gibbs-Thomson relation
remains positive [17]. Given this choice of the anisotropy function, n + n” =
1/(1 + ) > 0 for any non-negative 7. This is true everywhere, except at the
cusps 6 — 0y = nmw/2, where the first derivative n/(#) is discontinuous. A way to
circumvent this problem is to smooth the cusps by replacing () with a smooth
function where of § — 6y is close to nm /2. The regularized anisotropy function 7, (6)
is defined as follows

1+ B+ Asin(0 — 6y), —7/2 <0—0,< 7r/2+9
1+’YCOS(9—90), —7T/2+9<9 90<7T/2—
1+ B — Asin(0 — 6,), T/2—-0<0—60y<m/2 (19)

1

((0) = ——
n,(0) T
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Ficure 1. The solid plot represents the anisotropy function 7 cal-

culated with v = 10. The dashed line shows the corresponding reg-

ularized function 7,. A large angle = 7/10 was used in order to
visualize the smoothing of the cusps.

with A = ycos(0)/sin(f) and B = ~/sin(f), where § = 7/200 is a smoothening
angle. The anisotropy function and its regularization is illustrated in Fig.1

4. Numerical issues

For convenience, the governing equations Eq.(9) and (17) are transformed into
dimensionless form. Length and time have been scaled with a reference length
[ = 0.98p and the diffusion time [2/(RT Mg), respectively. The non-dimensionalized
equations are solved by the Finite Element method on adaptive unstructured grids.
A first-order semi-implicit time scheme is used for the diffusion equation, while the
phase-field equation demonstrates very stiff properties and needs to be solved with
fully implicit time-stepping. The resulting system of non-linear equations is solved
iteratively by the Newton-Raphson method. The complete Fortran/C/C++ code
was generated automatically by the symbolic computational tool femLego [14].
The discretized problem was solved in parallel, typically on 8 processors with the
dynamic load balancing performed after every grid refinement [16].

As it is characteristic for the phase transformations, the variation of us and
¢ are highly localized over the phase interface. The width of interface is much
smaller than the other length scales in the system, which makes the use of mesh
adaptivity beneficial. The mesh distribution follows the evolution of the interface:
the phase boundary region has the highest resolution, while the rest of the domain
is discretized with large triangles. In the present calculations, the smallest and
largest grid resolution was 0.25/ and 8/, respectively. The choice of numerical
parameters was verified by comparison with the results of 1D calculations [4] in
the case of diffusion controlled and massive growth.

In the present simulations, the initial state of the system was homogeneous
austenite, except for a thin layer of ferrite on the bottom of the domain. The
initial composition of C in ferrite was always u@> = 0.001, whereas initial u;* and
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Ficgure 2. Fe-C phase diagram. The superimposed dashed line
shows transition to partitionless transformation [4]. The points A,B
and C specify the operating points for massive transformation, Wid-
manstatten plates and diffusion controlled growth, respectively.

the temperature differed (see Fig.2). Fig.2) shows the Fe-C phase diagram with
imposed operating points for different types of phase transformations, discussed in
the following sections. In order to observe growth of the precipitates, the phase
boundary was perturbed from a planar shape with a single sinusoidal wave of
length 12/ and amplitude 6/. Zero-flux boundary conditions were imposed for both
variables.

5. Formation of Widmanstatten plates

5.1. Initiation. In all simulations a thin layer of ferrite was initially put along
the x axis which we take as the prior austenite grain boundary. First, we study
the initiation of a single Widmanstétten plate with 6y = 7/2, i.e. it will grow
perpendicularly to the grain boundary. The simulations presented in this section
were performed for 7' = 993K and an alloy content of u;° = 0.01, i.e. 0.22 mass%
C (point B in Fig.2). The results from a large number of simulations will now be
summarized. First it should be emphasized that the anisotropies which will now
be considered, 0 < v < 100 are much stronger than usually considered during
dendritic solidification where ~ is 3 or 4 orders of magnitude lower. The high
anisotropy turns out to be the key to understand the initiation of Widmanstitten
growth. Our simulations demonstrate that Widmanstatten plates will only develop
if the interfacial energy of the coherent sides, i.e. o¢/(1 + ), is below a critical
value, i.e. the anisotropy amplitude v should be larger than veriicar- If v < Veriticat,
the initial perturbation decays and we observe a classical diffusion controlled phase
transformation with a planar interface, i.e. the grain boundary allotriomorph. It
was also found, that the critical value of v depends on ¢§,, which is treated as
an input parameter in the present phase-field formulation. We vary dy from 10
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FI1GURE 3. The maximal interfacial energy of coherent sides for Wid-
manstatten growth as function of dy. States above the line repre-
sent allotriomorphic growth and states below the line Widmanstatten
growth.

nm down to 2 nm and for every case we find the smallest value of 7v.piicar above
which the Widmanstatten morphology is the stable growth mode. Fig.3 shows that
1/(1 + Yeriticar) depends linearly on &y. Some discrepancy from the linear behavior
of the data can be explained by the fact, that we used only integer values of v
to define veriricar- The parameter Ye.iicq varies from 43 to 10 for §y = 2nm to
dp = 10nm, respectively. A physically realistic value of dy falls in the regime 0.5 -
1.5 nm. The numerical treatment of such very thin interfaces, which implies not
only the use of highly dense grids but also solution of very stiff equations (since the
properties of the system differ significantly in the two directions) is extremely time-
consuming. Consequently, even with the sophisticated computational technique in
use and high performance computers it is hardly possible to simulate large-scale
problems for realistic interface thicknesses in a reasonable amount of time.

5.2. Characteristics of growth. The growth of a Widmanstatten plate for
0o = 5 nm and v = 20 is illustrated in Fig.4, where a time sequence of the phase
boundary defined as ¢ = 0.5 is presented. In agreement with experimental obser-
vations, e.g. [22, 23], the tip of the plate grows with a constant velocity, while
the sides grow parabolically. After a short transition period, the plate propagates
with a steady-state interface shape which can be divided into three distinct parts:
a circular tip, planar sides diverging at a small angle and a bottom part, where the
sides are parallel to each other. Except for the tip this shape is rather realistic. In
micrographs the observed tip is much sharper than simulated, see Fig.13.

The phase-field and diffusion fields for the final time are presented in Fig.5.
One observes the build-up of C in austenite at the sides and the increase of the
diffusion length downwards from the tip. The distribution of the fields at the tip,
Fig.6, deserves a special consideration. The large variation in the interface width
(the width of the transition layer in the phase-field variable) can be explained by
the fact that the interface width varies with orientation and is proportional to the
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FIGURE 4. Time evolution of a Widmanstatten plate obtained with
dp = 5nm and v = 20. The domain size is 0.8um x 2um

anisotropy function n(#) [17]. We can define the tip radius of the plate as the
one of the isoline ¢ = 0.5, however it would give us a value for the tip radius as
3 — 49y, see Fig.8, which is smaller than the interface width in the direction of
growth. This makes it inadequate to talk about the tip radius as such, but rather
consider the tip as being sharp which is consistent with metallographic observations.
One may then seriously question the applicability of the Gibbs-Thomson relation
to Widmanstatten growth and the whole classical Zener-like theory where the tip
radius plays the essential role. In the classical approach the Ivantsov solution yields
the growth rate of the tip as inversely proportional to the tip radius rather than
a unique rate and tip radius. When account is taken for the effect of interfacial
energy by means of the Gibbs-Thomson relation one finds a critical radius below
which the tip cannot grow and a radius at which the tip grows with a maximum
rate. Usually one then assumes that the tip would grow with this maximum rate
and the corresponding tip radius, the Zener maximum growth-rate hypothesis.

In our phase field calculation there is no need for such a hypothesis. As soon
as the interface thickness dy and the anisotropy are known the growth rate may be
determined by the simulations. In Fig.7 the tip velocity is given as a function of
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FicUurg 5. Distributions of the phase-field to the left and concen-
tration to the right. The concentration field is supplied with the
colormap, while for the phase-field blue color denotes ferrite and red
color - austenite. The distributions correspond to the time evolution
in Fig.4.
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FIGURE 6. Distributions of the phase-field (left) and concentration
(right) at the plate’s top. The axis are given in dy. The colormaps
are identical to ones in Fig.5

anisotropy for 0y = 5nm, which is too large a value to be really realistic. Anyhow,
we can read, for example, that the anisotropy of 0.05 would yield a growth rate
around 0.4-103ms ! and from Fig.8 that the tip radius would be 5. This growth
rate should be compared with the experimentally reported [22] for a similar C
content but a lower temperature, i.e. 973 K, which is 0.2- 10 3ms~!. On the other
hand, it is evident from Fig.3 that for a realistic interface thickness of 6y = 1nm
we should have o¢/(1 + ) < 0.015 in order to observe Widmanstiatten growth.
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FiGure 7. The tip velocity as a function of the interfacial energy
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w
T
[ J

6

5.5¢- /
0 il . /
c 45 R
) .
34 o
© o /
53.57 .
jol ) /
o]

250 %o

2 Il Il Il Il Il
0.025 0.03 0.035 0.04  0.045 0.05 0.055

1/(1+y)

FiGUurRE 8. The tip radius as a function of the interfacial energy
obtained for 0y = 5nm, T = 993K and initial u/>° = 0.01.

Such high anisotropy would yield a growth rate one order of magnitude large than
observed, see Fig.7.

We investigated the dependency of the tip velocity on the interface thickness
and the interfacial energy of coherent sides. First, we fixed Jp as 5 nm and varied
1/(1+4 7). We found that the tip velocity decays with increase of 1/(1 + ), Fig.7,



12 I Loginova, J.Agren, G.Amberg

o o o

o o = o N o

o [ o N} a w
| g ) i 7

dimensionless tip velocity
=

-0.05

0, nm

FIGURE 9. Variations of dimensionless tip velocity VI/RTME with
the interface thickness do. The top, middle and bottom lines are
obtained from the simulations with 1/(1 + 7) equal to 0.021, 0.032
and 0.38, respectively. These are the critical values for the growth of
Widmanstétten plates for dg equal to 2, 3 and 4 nm, respectively

while the tip radius (defined for the isoline ¢ = 0.5) increases, Fig.8. Second, we
fixed three values of 1/(1 + 7) allowing dy to vary. The dimensionless velocity
VI/RT M shown in Fig.9 reduces as 0, approaches realistic physical values and
increases with the decrease of the interfacial energy. For all the cases of 1/(1+ ),
the dependence is linear. It is interesting to observe that extrapolation of the data
to smaller values of 0y gives a negative velocity if the value of 1/(1 + ) is greater
than 1/(1 4 Yeriticar) for those dg. This indicates that as realistic values for dy are
considered, i.e. in the order of 1 nm or less, then Widmanstatten plates can only
grow if the anisotropy is large enough, i.e. v = 100.

5.3. Growth of colonies. Additionally, we simulated the growth of a colony
of Widmanstatten plates emanating from an austenite grain boundary. In order to
initiate the growth of the precipitates, the phase boundary was initially disturbed
by a combination of sinusoidal waves. The time sequence of the growth is presented
in Fig.10. The precipitates are tilted with respect to the grain boundary by 6y =
7/3. One notice, that perturbations having larger wavelength start growing faster,
while those of small wavelength may decay or grow significantly behind the others.

As a comparison, Fig.13 shows Widmanstatten ferrite plates that have devel-
oped from prior austenite grain boundaries in a low-alloy steel, white areas. The
austenite matrix has subsequently transformed to pearlite upon cooling. One ob-
serves that though the simulated plates look very realistically, their sides are too
smooth compared to the experimental plates. This is probably due to purely de-
terministic nature of the model. One can expect that modeling heat fluctuations in
the system in a similar way it was done for dendritic growth [24] would reproduce
even better the experimentally observed Widmanstatten morphologies.
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Ficure 10. Colony of Widmanstatten plates. Concentration dis-
tribution calculated for do = 10nm, v = 10 in a box 2um x 1um)

6. Transition between diffusion controlled and massive transformation

As it was shown in [4], depending on the initial content of C in austenite,
the v — « phase transformation can be either diffusion controlled or massive.
The latter occurs if the initial u >~ falls close to the a/a + 7 phase boundary.
The massive transformation is partitionless, i.e. it does not involve any change
of composition, thus a long-range diffusion is unnecessary. The time sequence of
the concentration distribution presented in Fig.11 was obtained for 7" = 993K and
ul” = 0.002 (point A in Fig.2). As one observes, the initial perturbation of the
interface does not develop into a Widmanstatten plate, but rather decays so that
the interface becomes flat. The massive growth occurs with a constant growth rate
until all of austenite is transformed into ferrite. The concentration profile in the
vertical direction comprises a traveling spike which is spread over a distance of 5dy.

A completely different behavior is found for an alloy with «° = 0.01 and
T = 1050K (point C in Fig.2). The concentration fields given in Fig.12 again
demonstrate the disappearance of the initial disturbance. However, in this case, the
excess carbon is build-up ahead of the interface and we observe diffusion-controlled
growth. The interface velocity is essentially proportional to 1/ \/(t) except for the
later stages when impingement sets in and the system finally approaches the state
of equilibrium.
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FicUure 11. Partitionless growth. Concentration field obtained for
do = 2nm, v = 50 in a box 0.32 x 0.8um. Initial conditions are
T =993K and u/” = 0.002
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Ficure 12. Diffusion controlled growth. Concentration field ob-
tained for 6g = 5nm, v = 19 in a box 0.32 x 0.32um. Initial condi-
tions are 7' = 1050K and u/;° = 0.01

7. Conclusions

Our simulations reveal that the anisotropy in the surface energy and interface
thickness plays the key role in determining whether Widmanstatten growth is pos-
sible or not. For the supersaturation, i.e. temperature and C content, considered
here a realistic thickness of the incoherent interface, i.e. somewhat lower than 1
nm, shows that v must be greater than 100 in order for Widmanstatten plates to
grow. It seems likely that higher supersaturation would require lower v for Wid-
manstatten growth. This is the subject of further research. If Widmanstatten
growth occurs, larger values of v give sharper tips and higher tip velocities. A
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Ficure 13. Experimentally observed Widmanstéatten ferrite plates
that have developed from prior austenite grain boundaries in a low-
alloy steel, white areas.

lower anisotropy value would make the tip more blunt and yield a lower tip veloc-
ity. The tip radius, upon which the classical Ivantsov-based theory is built, vary
approximately as proportional to anisotropy and for v = 100 it is less than 1 nm,
i.e. it is of atomic dimensions.

Our simulations thus indicate that the shape of a plate may be described as
two parallel sides growing out from the allotriomorph to some distance and then
two planar sides that meet in an atomistically sharp tip. Such a shape seems to
be in better agreement with metallographic observations than the parabolic shape
with its well defined tip radius predicted by the Ivantsov solution.

We also conclude that the present two-dimensional model predicts a transition
to a massive transformation, in agreement with our previous study, if the super-
saturation is large enough. We find it very encouraging that a single phase-field
formulation is capable of predicting three different growth morphologies of ferrite,
the allotriomorphic, Widmanstatten and massive growth.
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Appendix A. Thermodynamic description of Fe-C system [8]

G?n = OG%'e_FuTC(O %eC_OG%'e
+ BRT{*In (%) + (<) In (1 - ) } (20)
+ (1) Lo, + G
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= OG’}Y?e +uc (OG’}};‘eC B OG’}};‘e)
+ RT {ucln(uc)+ (1 —ue)In(l —ue)}
+ uc (1 - ’LLC) L’éva

(21)

The quantities introduced in the expressions above are given functions of the tem-

perature

0G%, = 1224.83 +124.134T — 23.5143T In T — 0.004397527
— 5.89269 - 107873 4 77358.5T "

°G%. o — "G4, = 322050 4 75.667T

e — —190T
Gmo— —e50r7 (T4 T e T s
=— T — if 7

m 10 315 T 1500/

7_4 7_10 7_16
G = 91805+ 9.7237 — 93098 [ — +——+ ) ifr <1
m * <6+135+600>’IT

where 7 = T/T¢ and T-=1043 K is the Curie temperature.

°GY., = —237.57+ 132.416T — 24.6643T In T — 0.003757527"
— 5.89269 - 1037 + 77358.57 1

°Groc — "G, = TT207.0 — 15.877T
L, = —34671

Appendix B. Kinetic parameters for Fe-C
Diffusional mobility in « [9]

2 15309
RTME =210 % 1015/T exp {0-5898 {1 + Z arctan <14.985 — T)] }

™

Diffusional mobility in ~ [10]

1
RTM), = 4.529 - 10 " exp <— (T —2.221- 104> (17767 — u026436)>

Mobility of a/ interface [11]
M = 0.035exp(—17700/T) m*/J/s

(22)

(23)
(24)

(25)

(26)

m?/s

(30)

m?/s

(31)

(32)
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Abstract

We have determined morphology diagrams in 2 and 3 dimensions for two differ-
ent phase field models (Wheeler [22] and Karma [20, 21]) for the parameters
undercooling and anisotropy of surface tension. The comparison with analytical
predictions show a qualitative correspondence, however the predicted shape of the
morphology boundary differs significantly from the shape found in our simulations.
The two investigated models show the same quantitative behavior. Our simula-
tions in 3D have shown that the shape of the morphology boundary is qualitatively
similar to the one in 2D. However we find that the border is shifted by an amount
of 0.32 on the anisotropy axis. Our simulated 3D structures show a qualitative
correspondence to the ones we have found in in situ experiments with xenon.

1. Introduction

Pattern formation is a universal process in nature and technology. The un-
derstanding of the underlying physical processes of these self organizing systems
is of vital interest in material science as well as theoretical physics. The growth
of a single component crystal into its undercooled melt shows a wide variety of
different structures. The best known morphology is the dendritic one, which is
considered to be a prototype for a whole class of phenomena like snow crystals or
cast metals as it evolves complex spatio-temporal structures far from equilibrium
from initially homogeneous starting conditions. The governing equations for this
system are known as the Stefan-problem [1] or sharp interface model:

ou

~—— = DV? 1

ot v 1)

Up = D(vu|solid - vu|liquid) ‘N (2)
u|interface = A-— B'Un - dOH (3)

where u denotes the dimensionless temperature field u = (I'—T)/(c,/L), with T
the far field temperature, the dimensionless undercooling A = (7,,, — 1) /(c,/L) =
ATL/c,, where AT, ¢,, L are undercooling, specific heat of the liquid, latent heat
and T}, the equilibrium melting temperature respectively. Equation 1 corresponds
to the classical diffusion equation. The domain is usually taken to be infinite so that
no finite size boundary effects affect the growth of the crystal. The temperature of

1
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the melt is assumed to be homogeneous T, < T, at the beginning of the experiment
and thermal diffusivity is the same in the crystal and in the melt (D = D, = D).
In order to initiate the growth of the crystal, a small seed at melting temperature
is placed in the center of the domain.

The conservation of energy is taken into account by the continuity equation
(eq.(2)). Eq.(3) is the well known Gibbs-Thomson relation which describes the
temperature at the interface for the non-isothermal case. The interface temper-
ature is dependent on the velocity of advancement (kinetic effect) and the local
curvature. The parameters dy and [ are the anisotropic capillary length and the
anisotropic kinetic coefficient respectively. For small undercoolings A < 1 the
kinetic term is usually neglected. Usually fce-structures are modeled, therefore a
fourfold anisotropy is used.

The dendritic morphology is the most studied morphology. The first attempts
to describe the dendrite tip analytically are due to Papapetrou [3] and Ivantsov
[2]. In the absence of capillary and kinetic effects Ivantsov showed analytically
(2] that a rotational paraboloid is a steady state solution of eqs.(1)-(3) in 2 and 3
dimensions. General reviews about dendritic solidification were given by Langer in
4, 5].

Brener et al. [6, 7, 8] tried in their mathematical studies for two dimensional
single component systems to develop a description of a large class of patterns found
in diffusional growth. They have constructed a morphology diagram and predicted
possible transitions between the morphologies. The two shape controlling parame-
ters are the undercooling (which controls the growth velocity) and the anisotropy
(leading to non-axisymmetric growth). Although only qualitatively, Brener et al.
established stability regions of dendrites and seaweed structures in 2 dimensions.
They suggested the distinction of growth morphologies [6] by two different criteria:
on one hand they distinguish between dendritic and seaweed (non-dendritic) struc-
tures. The second criterion is the distinction between compact and fractal growth.
They consider dendrites as patterns with orientational order whereas seaweed struc-
tures are patterns without obvious orientational order. They define compact growth
as growth with constant (albeit arbitrary) average density. Fractal structures are
defined as patterns with self-similar or self-affine internal structure with a scaling
range of at least one order of magnitude in length scales and non-constant average
density. Their morphology diagram is given in figure 2. For A > 1 the growth is
governed by kinetics. The morphology discrimination takes place in the diffusion
limited domain A < 1. For high undercoolings and moderately low anisotropies
compact and fractal seaweed is found. For moderately low undercooling and high
anisotropies compact and fractal dendrites are to be found. It has been stated that
doublon structures in 2D are the building blocks for seaweed growth [7].

In numerical studies with a phase-field model Kupferman et al. [9] and Ben-
Amar et. al. [10] have established already a morphology diagram for 2 dimensions
at high undercoolings (A = 0.6 —0.9) and anisotropies v = 0.0 —0.4. However they
have used the model of Kobayashi [11] which was not shown to be quantitative,
as far as we know. Furthermore their main emphasis was on the evolution of the
envelope shape and not mainly on the classification of the different morphologies.
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Experimentally both morphology types are found in 2 and 3 dimension. Den-
drites in 2D were already analyzed by Papapetrou [3]. Glicksman et al. [13] were
the first to grow dendrites in 3D. In quasi planar growth seaweed and doublon
structures were found by Akamatsu and Faivre [12] in solutal growth with SCN
and acetone. Only very recently Stalder and Bilgram [14] reported on the existence
of doublons and seaweed in 3 dimensions. They were characterized by Singer [15].

2. Model

In order to refine the mathematical (asymptotic) predictions of Brener et al.
and to establish a quantitative morphology diagram of the single component model
system it is necessary to solve eqs.(1)-(3) numerically. The direct solution of the
sharp interface model is rather tedious as it is a moving boundary problem. The
phase boundary has to be tracked at every time step leading to an evolving polygon
trait. Only very few research groups have attempted this direct approach [16,
17, 18]. Another, more motivating approach is to introduce a second variable,
the phase field ¢, which keeps track of the physical phase state at every point of
the system. The crucial mathematical parameter here is the interface thickness,
which determines how close to the Heaviside approach of the classical model the
phase field approach is. The most important advantage of this method is, that
the interface does not have to be tracked at all, as the phase variable is defined
for the whole domain of interest. The interface is found by identifying regions
of steep phase field changes. This commodity comes however at the expense of
solving two coupled differential equations. From the algorithmic point of view the
phase field method is much more elegant as it shifts the problem to simply solving
partial differential equations. It is important to note that this method is only a
substitute for solving eqs.(1)-(3) directly when they are recovered asymptotically
for vanishing interface thickness [23]. A rigorous investigation on asymptotics was
performed by Karma and Rappel [20, 21].

In this paper we present numerical simulations for two models of the phase
field approach which will be referred as the Wheeler-model and the Karma-model.
We have chosen both models in order to investigate the difference in the results
(if there are any) and to provide a more stable physical base for the quantitative
prediction of experimental morphologies.

The first numerical simulations of the Wheeler-model were presented in [22].
Shortly afterwards the proof of its thermodynamical consistency was given by Wang
et al. [23]. The non-dimensional governing equations can be formulated as:

i;g_f = 6(1—9) <¢ - % +30caAud(l — gb)) +e2V20 (4)
ou 10
5 =~ 0010156+ 66%)] + Vu (5)

The temperature field is non-dimensional with the melting temperature u,, = 0
and the initial temperature distribution u = —1. The phase variable ¢ is defined
from ¢ = 0 solid to ¢ = 1 liquid. A is the non-dimensional undercooling. The
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parameters m and « are defined as

\/EUJOLZ

@ = 12¢oT,, (6)
po L,

= 7

" DL (7)

with wy a chosen characteristic length scale, L the latent heat, ¢, the specific
heat, u = ¢,/(LB) the interfacial mobility, o the interfacial free energy and D the
thermal diffusivity. With the interface thickness ¢ the phase field model leaves
one degree of freedom £ = 6 /wy which is used to set the interface thickness. The
interfacial mobility u = p(n) is anisotropic, however we have decided that we will
choose an isotropic (average) value p = po for the simulations of both models.
The Laplacian in eq.(4) was modified in order to take into account the preferred
growth directions of the material. For the limit lim. o it can be shown that eq.(5)
reduces to the diffusion equation du/0t = VZu. An early asymptotic analysis
showed that the moving boundary conditions egs.(2) and (3) can be recovered with
O(e), which is sufficiently fast for a convergence [19]. Karma and Rappel have
shown in their model that even a second order accuracy can be obtained [21]. This
faster convergence is in particular useful since it allows to simulate the growth with
coarser grids or larger grids without loosing accuracy.

The first three-dimensional simulations were performed by Kobayashi [24]. Also
by means of phase field simulation Abel et. al. [25] showed that stable triplons
in 3 dimensions exist for channel growth. Plapp and Karma [26] used a random
walker algorithm to solve the phase field equations and simulate dendrites at very
low undercoolings.

In 2 dimensions the anisotropy with respect to growing angle is usually modeled
as

n(0) =1+ ycos4f, § = arctan <a¢/gi> , (8)

where v denotes the strength of the anisotropy. Anisotropic variables, e.g. the
surface energy can the be expressed as the product of a constant parameter and
n(#). The anisotropic 2D Laplacian in eq.(4) can be written as

o [ .0 ,
Ve =5, < ai) "oy (’7’7 a¢) £V (Vo). ©)

where ' denotes the differentiation with respect to 6.
In 3 dimensions the anisotropy can be expressed as

4y ny+ng+ng
=(1-3 1 y
o) = (1= 3) (14 o )

where n = V¢/|V¢| is the normal vector of the interface (in 2D and 3D). Then
the anisotropic 3D Laplacian is given by

om i (o)« (o) (o) o=
Vad Vol'ng, Volngg, VoPngg | +V (i v?l)l)

(10)




Morphology diagram of dendritic solidification in 2 and 3 dimensions 5

The governing equations in the Karma model are expressed by:

r@2 = 6 du(l— @)1 - 6) + WiV
ou , 199 (12)
a = DV U+ 55

In this model, the non-dimensional melting temperature is set to be zero, while the
far-field temperature is equal to —A. The phase-field variable is -1 in liquid and 1
in solid.

The anisotropic parameter 7(n) = 7yn(n) is chosen in such a way that the
kinetic term can be canceled. The parameter A and the capillary length d, are
connected in the following way:

Wo

do = a1 \ , (13)
where a; = 5/2/8 is a numerical constant and w(n) = wyn(n). The main difference
between the Wheeler model and the one from Karma is that in the latter one ki-
netics can be eliminated for any undercooling by a proper choice of the parameters.
Karma [20] showed that with his model quantitative results can be obtained al-
ready for interface thicknesses comparable to the capillary length wy =~ dy, whereas
in the Wheeler model the interface thickness must be much smaller than dy. It
was stated [21] that the Karma model is better suited for very low undercoolings
A < 1 where the kinetic term (v, can be neglected. In the Wheeler-model the
B = ¢,/Li — 0 leads to numerically unstable equations.

In the sharp interface limit ¢ — 0 the kinetic coefficient is recovered by the
relation

7(n)

Bm) = a5 o (14)

In the thin interface approximation, where 0u < |Uinserface| corresponding to
wv/D < Buv the kinetic coefficient can be written as

po) = o (1= ey ) 1

where ay = 0.6267 is another numerical constant. For small undercoolings the
effect of the kinetic coefficient is negligible S & 0. Therefore it is possible to choose
7(n) in such a way, that 3(n) vanishes:
asAw(n)?
r(m) = 22 (16)
For undercoolings higher than say 0.5 this choice of 7 is inappropriate as the
influence of the kinetic term significantly increases. MD simulations [41] have

shown that the correction term asAw(n)?/D7(n) in eq.(15) can be neglected for
high undercooling A ~ 1. This leads to

(n) = ailﬁ(n))\w(n). (17)

The application of Karma’s model to solidification at high undercoolings was
demonstrated by Bragard et al. [38]. In the phase-field equation (12) they replaced
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Au by a non-linear numerical function h(Au) in order to recover the linear relation-
ship between interface undercooling and velocity w|inter face = —Bvn. Moreover, the
interface kinetic coefficient was modeled anisotropically as in equation (14). It was
demonstrated in [38] that the growth morphologies depend on the anisotropy of
the kinetic coefficient. In the present study, the model with eliminated kinetics
(16) was used for the whole range of undercoolings.

3. Numerical schemes

The equations of Karma’s model (12) were first non-dimensionalized by trans-
forming space coordinates (x,y, z) — wo(z,y, z) and time ¢t — w2/Dt. This leads
to the equations

00
P2 R [ - (1 - )1 — ) (1)
ou  _, 10¢
where 7 = 79D/wi. In the case of vanishing kinetics we find 75 = axAw3/D

and therefore 7 = ay). In the case of high undercoolings 7, using the relation
wo = Ady/ay, becomes

_ D D1 8D
_ 8 2 g = 22 20
4 wk wgalﬁ o dy (20)

We have used two different numerical schemes in order to solve the phase-field
equations. For low undercoolings A < 0.5 we have used a parallel adaptive finite
element (paFEM) code [39]. In this approach, mesh repartitioning is performed
after every grid update in order to balance the load on every processor. The finite
element discretization was performed automatically by the symbolic computational
tool femLego [40]. For higher undercoolings and therefore sufficiently well devel-
oped morphologies we implemented a parallel finite difference (paFD) code. We
have found that for A < 0.5 the paFEM code is more efficient in terms of com-
puting time, where as for higher undercoolings the paFD code turned out to be
faster. In both methods a second order accurate space discretization was imple-
mented, and a first-order Euler scheme was used to discretize the time derivatives.
To discretize the anisotropic Laplacian in the paFD code, we applied the standard
central differences:

2 (1vornm ) = O (w1 (G - ) 22

_ 9 99
— o (Fen 0005 @

where x; corresponds to x,y, z. Therefore

9 [ 06 1
o <f 8LL‘Z‘> ‘z‘,j,k = SA.2 [(fivr gk + figr) (Piv1k — Pijir)

(figk + ficrk) (Pik — Gi1jk)]

(22)
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and the first derivatives were approximated by

by = itk — Pi1,jk (23)
T 2Ax
For the discretization we have used equal grid steps in all directions Az = Ay = Az.
The smallest grid resolution of the adaptive grids was chosen to be equal to the
grid size of the uniform meshes. In the parallel FD implementation the mesh was
equally split between processors, so that every processor received the same load.
During calculations, the data exchange between the processors was performed by
the MPI protocol. Typically the 3D simulations were performed on 32 processors.
Visualization of the three dimensional results represented a problem when
the computational domain exceeded 300° points. Before visualizing the data by
OpenDX we had to preprocess the results. This was done by extracting the iso-
surface of the data where the phase field variable is a constant value - usually the
average between solid and liquid state (for the Wheeler model we have used 0.5
and for the Karma model 0) . On this spatial information of the interface the
temperature field was extracted. Subsequently we have plotted the information
T| g=const (¢, Y, 2). In order to extract the isosurface we interpolated the surface be-
tween the grid positions using tetrahedral decompositions, so that no ambiguities
can arise.

4. Experiments

In our experiments we are able to observe a growing crystal in three dimensional
free growth. We use the rare gas xenon as a model substance for metals because (i)
it forms a ’simple liquid’, (ii) it has a low melting entropy and (iii) it crystallizes
in fee structure (4-fold symmetry). Xenon is transparent in solid and liquid state,
therefore it is possible to observe the growth process in situ. Undercoolings that are
experimentally accessible with xenon are in the range of 50mK < AT < 220mK
(corresponding to 1072 < A < 1072 in dimensionless units). The melting temper-
ature of xenon is 7,,, = 161.389K.

The experimental setup consists of a high precision cryostat with which the
temperature can be stabilized better than £107%K as long as necessary. The cooling
substance for the cryostat is liquid nitrogen. We use isopentane as a thermostating
liquid. An adjustable helium gas atmosphere between the liquid nitrogen and the
isopentane allows to control the heat flux. The temperature is measured by means
of temperature sensitive resistors (Pt-100). The electrical heating is regulated by
a commercial Proportional-Integral-Differential-Controller (PID). A stirrer in the
thermostating liquid produces a laminar flow in order to ensure a homogeneous
temperature distribution in the heat bath. The actual growth vessel is immersed
in the heat bath. In order to initiate the growth of the crystal we use the capillary
injection technique proposed by Glicksman and Schaefer [28]: A capillary reaches
into the growth vessel which is completely filled with undercooled xenon. A small
crystallization seed is produced in the upper part of the capillary. The crystal starts
growing and moves along the capillary until it reaches the end and enters the state
of free three dimensional growth. Our experimental apparatus allows us to turn the
capillary along its axis so that the crystal can be oriented to its maximal projection
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Description Value

Range of undercooling AT 50mK < AT < 220mK
Anisotropy v (MD simulations) 1.55%
Capillary length d 4.9E-8 cm
Specific heat C, s: 36.0 1:44.6 J/mol K
Interfacial free energy o 9.95mJ/m?
Latent heat L 2299J /mol
Diffusivity & s:4.96E-3 1:7.29E-3
Conductivity s:4.76E-3, 1:0.734E-3 W/cm K
Melting temperature 7;, 161.3897K
Melting entropy AS,, 24.24J /mol
Molar weight M, 131g/mol

TABLE 1. Relevant material properties of xenon.

area. It is also possible to shift the capillary up and down (vertical translation)
in order to follow the crystal during its growth. A self built periscope allows
the in situ observation of the crystal. The tested optical resolution is 1.22um.
We use a spatially homogeneous cold light source to illuminate the crystal. As
solid and liquid state are both transparent the crystal can only be seen due to
differences in the index of refraction (njquia = 1.3918, ngoia = 1.4507 for wave
length Ajign, = 546nm) [29, 30]. A more detailed description of the experimental
setup and a sketch of the apparatus is given in [32, 33, 14, 15]. A high resolution
digital CCD-camera (1280x1024 pixels) records the images on a computer. The
relevant data for xenon are given in table 1. A more complete list can be found in
(33].

5. Results and discussion

5.1. Experimental results. Before presenting our results for the phase field
simulations and experimental results we would like to define how we classified the
found structures. Although it was stated in [8] that the doublons are actually
building blocks for seaweed structures we believe that the doublon-case should be
treated as a separate morphology. We define the different morphologies in the
following way:

Dendrite: The dendritic morphology shows a 4-fold symmetry (fcc) per-
pendicular to the main axis of growth. On the four fins in 3D respectively
two fins in 2D side branches appear after a certain parameter dependent
distance behind the tip. Although no coupling between the individual fins
exists the sidebranch frequency on each fin is in average the same. Despite
of the ongoing discussion about the exact shape of the tip [21, 35, 36, 37|
it can at least be stated that it has a convex spear-like appearance. In a
moving frame of reference the tip remains unchanged and the side branches
move upwards, grow longer and compete with their direct neighbours.

Seaweed: The seaweed does not show any apparent symmetry nor is a dis-
tinct main tip observable. The main property of this morphology is its
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FI1GUrRE 1. Examples of typical morphologies obtained in our three
dimensional free growth experiments: seaweed growth (top), doublon
growth (middle), dendritic growth (bottom).
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continuous splitting of any prominent tip in the temporal evolution. One
of the new formed tips is immediately outgrowing the other one and starts
increasing its tip radius again whereas the other decelerates and eventually
stops growing.

Doublon: The doublon morphology shows one distinct axis of symmetry.
The main feature of this morphology is that two main tips grow simul-
taneously and parallel influencing and stabilizing each other. Unlike the
seaweed morphology the two tips evolve with the same velocity and hinder
each other to outgrow the other tip unless a perturbation or experimental
asymmetric noise is perturbing the system. While doublons in 2D possess
a protected channel where heat is not able to flow out this is obviously not
true in 3 dimensions. The structure is topologically different from its cor-
responding 2D pendant. It should also be mentioned that doublons have
an orientational order and should therefore be classified as a “dendrite”
within Brener’s classification system.

Experimentally the different morphologies are produced in two different ways:
i) spontaneously and ii) induced. Spontaneous transitions are usually observed
only for very low undercoolings AT < 90mK (A = 107?). We have observed
spontaneous morphology changes from seaweed to doublons and back. For higher
undercoolings we observe a stabilization of the structure to dendritic morphologies.
However it is still possible to induce a morphology change by perturbing the crys-
tal: By shifting the capillary downwards and thus washing away the steady state
isothermal lines, the crystal suddenly “feels” a much colder environment which
leads to a drastic increase of the growth velocity and so eventually to a morphol-
ogy change. As new isolines are formed around the crystal the interface is more
and more shielded against the virtual high undercooling and after a certain time
(typically 150-300s) the crystal relaxes back to the departing dendritic morphology.

Typical examples of the experimental morphologies are given in figure 1.

5.2. Numerical results. We have performed all our simulations for the Wheeler-
model on a 2000x2000 square lattice with the following parameters: o = 400,
m = 0.05, ¢ = 0.005, Az = 0.01, At = 2-107°. The undercoolings were chosen
A =0.1,0.2,...,0.9 and the anisotropies v = 6.5-10"3,1.3-1072,...,6.5- 1072, so
that e = 6.5%. Additionally we have refined the choice of the anisotropy for
given undercoolings in order to minimize the uncertainty regime of the morphology
border. We have always used a spherical seed with a radius of 7- Az placed at the
left bottom corner of the domain as initial conditions for the simulated growth.

The results for the Wheeler model are given in figure 3. The anisotropy axis
goes from 0 to 6.5% as it has been shown in [42] that the for higher anisotropies
the crystal changes from rough to facetted growth. The blue zone corresponds to
the uncertainty regime, where we have found seaweed morphologies (“sw”) on the
left side and dendritic morphologies (“den”) on the right side. When comparing
the diagram with the one of Brener et al. in figure 2 we found a qualitative cor-
respondence. However when comparing it quantitatively we state that the border
between the seaweed morphology and the dendritic morphology is much steeper
than predicted. Additionally it can be seen that the morphology boundary is not
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Supercooling a

Anisotropy ¢

FIGURE 2. Morphology diagram in 2D based on analytical calcula-
tions by Brener et al. [6, 7, 8]. A distinction between dendritic (D)
and seaweed(S) growth. Both domains are subdivided into compact
(C) growth with average constant density and fractal (F) growth
with fluctuating density.

globally concave as predicted but shows rather a sigmoid behaviour: for small un-
dercoolings we find a convex shape of the border. The point where it changes
to a concave behaviour is approximately A = 0.3 and v = 0.9%. In our mor-
phology diagram we find a region of parameters, where doublon structures evolve
with the same initial conditions as in all other simulations. This domains is red
and marked with “db”. The doublon domain mainly develops on high undercool-
ings with sufficiently strong anisotropy. The higher the undercooling is, the less
the strength of the anisotropy has to be in order to overcome the continuous tip
splitting, stabilizing to two parallel evolving tips.

The initial coarse parameter scan of 100 simulations for the whole domain was
refined by a binary search between two different anisotropies leading to different
morphologies for the same undercooling. We have tied up the border (at least for
higher undercoolings) to Ay < 2-1072%. For lower undercoolings the simulation
time takes increasingly longer therefore the variance is bigger. In order to refine the
border from the right hand side we have applied following intuitive principle: for
a given undercooling a certain anisotropy is necessary to stabilize the morphology
to a dendrite. If the undercooling is increased - leading to a higher growth velocity
the strength of the anisotropy must increase as well. Mathematically we therefore
applied the principle of monotony for v5(As) > ~v1(Ay) for Ay > A;. Therefore
knowing the morphology boundary for higher undercoolings, we could also reduce
the variance for lower undercoolings.

We have considered only the main growth directions to determine the mor-
phology of a structure. Despite of the fact that for very high undercoolings and
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Ficure 3. Morphology diagram in 2 dimensions of the Wheeler
model and the Karma model . The blue and green zones correspond
to the uncertainty regimes given by the Wheeler and the Karma
models, respectively. The dendritic domain is denoted as “den”,
seaweed as “sw” and doublon (red region) as “db”.

sufficiently low anisotropies spherulite structures are observed (the envelope is
spherical) only the two directions < +1,0 > and < 0,4+1 > contributed to the
determination of the morphology. If these directions formed one single tip then
the morphology would be a dendrite. Showing two stable tips (regardless of what
other directions would show) the morphology was determined as a doublon. When
the directions showed a continuous tip splitting and erratic growth directions the
structure was classified as a seaweed.

Equations (18) and (19) of Karma’s model were solved in two dimensions on a
2000x2000 mesh with Az = 0.8 and At = 0.1. The initial spherical seed was chosen
to have a radius of 5+ Az. We shall emphasize that the big difference in the non-
dimensional parameters Az and At for the two models is due to different values
of the reference length wy used for non-dimensionalization. The 2D morphology
diagram given by the Karma model is presented (superimposed to the morphology
diagram for the Wheeler model) in Fig. 3. As we have used the same physical
parameters for both models in the 2D simulations it is not surprising that for
uncritical values like the morphology far away from the morphology border the
results are identical. We however state that there is one significant difference: the
border given by the Karma model is shifted to the left. The choice of the parameter
A has a crucial impact not only on the size of features of the crystal, but also on
its morphology. We observed, that for A and 7 close to the morphology border, an
increase of \ leads to a transition from a dendritic to a seaweed structure, i.e. large
values of A give a false morphology. This impact of A becomes more noticeable at
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Fi1GURE 4. Morphology diagram in 3 dimensions of the Karma model
superimposed with the values of the 2D case .The blue region rep-
resents the uncertainty regime, where seaweed morphologies (“sw”)
are found on the left side and dendritic morphologies (“den”) on the
right side.

higher undercoolings [38]. We have chosen A to vary from 20 to 3 for undercoolings
0.1 to 0.8, respectively.

In general, we found that an increase of A would shift the morphology boundary
to the right, i.e. closer to the one obtained with the Wheeler model. Since the
interface thickness used in Wheeler’s model is approximately 20 times greater than
the capillary length of Ni, this can explain the discrepancy of the results given by
the two models. Similar to the Wheeler model, a 2D doublon region was found for
the Karma model at high undercoolings and moderate values of anisotropy.

The discrepancy is more pronounced at low undercoolings. This could come
from the fact that the Wheeler model does not consider the effect of vanishing
interface kinetics for A — 0. Therefore, as the computational costs for 3D simula-
tions even in the parallelized version of our codes are considerable, we have decided
to perform 3D calculations only for the Karma-model.

Figure 5 shows the results of all the simulations which were performed in three
dimensions as a table of anisotropy and undercooling. For every simulation the
value of A and the final time (in non-dimensional time units) is provided to give
an impression on how fast the crystals grow dependent on A. Most of the three
dimensional simulations were performed in a domain of size 400®. An initial seed
was always placed in one of the domain’s corners, i.e. we calculated only 1/8 of
the crystal. The morphologies presented in Fig. 5 are then obtained by mirroring
with respect to the main symmetry axis.

The morphology diagram for 3 dimensional structures superimposed to the one
of 2D structures is given in figure 4. Comparing the shape of the morphology
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FIGURE 5. A table with the simulated three dimensional mor-
phologies. Every structure is supplied by the parameter A\ and the
non-dimensional final time of the simulation. Columns and rows cor-
respond to different values of v and A, respectively.
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boundary with the one in 2 dimensions we find that they look qualitatively the
same: both show the same sigmoidal behavior. Quantitatively however, the two
boundaries differ: the 3D boundary is shifted by an amount of 0.32 along the
anisotropy axis. This shift might be explained by the topological differences of 2D
and 3D objects: a 3D object must have a higher anisotropy in order to stabilize
its growth to dendritic morphology as an additional spatial direction is available
to transport heat away.

It is interesting to note that no 3D doublons as produced in our experiments
(Fig. 1) could be found. A doublon domain such as we find in the 2D morphology
diagram does not seem to exist in 3D. Having noticed this, we have simulated 3D
doublon structures with special initial conditions: two spherical seeds placed at a
distance of 40Ax. We obtained structures which look like two dendrites growing in
parallel, where each one was missing one fin, forming a gap between the two tips.
We attached the seeds in the middle of one of the walls, thus the morphology given
in Figure 6 is presented as simulated, i.e. without mirroring. In order to observe
finer details of the two tips growing in parallel, we applied the following procedure.
At a certain stage of the simulation, when the two tips are sufficiently developed,
we shift the computational box upwards, so that two tips have the possibility to
grow further into the undercooled melt. Thus, we “chop” the doublon and consider
only the tips. The same structure as in Figure 6 with superimposed temperature
field in the cross section passing through the tips of both fins is given in Figure
7. With the present numerical implementation, these two tips would remain in a
stable growth mode forever. In order for one of them to outgrow the other, we
need to model asymmetric disturbances as found in our experiments, e.g. applying
noise only to one of the tips.

6. Conclusions

We have performed two dimensional phase field simulations for the Wheeler
model and the Karma model and found qualitative agreement between the models
and theoretical predictions by Brener et al. [6]. Quantitatively however differences
are found: the Karma model is strongly dependent on the use of the parameter \.
By increasing A it is possible to shift the found morphology boundary to the right
in direction of the one found for the wheeler model for constant interface thickness
for all simulations. Both models show a much steeper boundary than predicted by
the theory. Additionally for low undercoolings we have found a convex behaviour
which is opposed to the theoretical predictions. We have found for both models well
defined doublon regions for high undercoolings and moderate strength of anisotropy.
Furthermore we have performed 3D simulations for the Karma model with the same
A as in 2D and have found that the morphology boundary is qualitatively identical
to the one in 2D however it is shifted by an amount of 0.32 in direction of higher
anisotropies. We state that in all the 3D simulations no doublons have been found.
However by using special initial conditions it was possible to produce stable doublon
growth, very similar to the morphology found in our experiments. Comparing
the found results with our experiments we find very nice qualitative agreement
with the doublon and dendritic morphology. For the seaweed morphology however
we state that our experimental structures still show four fins in which the side
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FIGURE 6. Two tips of a doublon computed for v = 4.5%, A = 0.5
and A = 5. The large values of v and A were chosen to speed up the
calculations.

FIGURE 7. Temperature distribution in the cross section passing
trough the doublon tips (Fig.6). The superimposed black line shows
position of the solid-liquid interface .

branches and the main tip grow completely irregular (and eventually split) whereas
for the simulations the four-fold symmetry is not maintained and a rather spherical
envelope is observed.
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