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Abstract

A plasma blob is modelled as consisting of two homogeneous spheres of equal radius and equal

but opposite charge densities that can move relative to each other. Relative translational and

rotational motion are considered separately. Magnetic effects from the current density caused by

the relative motion are included. Magnetic interaction is seen to cause an inductive inertia. In the

relative translation case the Coulomb attraction, approximately a linear force for small amplitudes,

causes an oscillation. For a large number of particles the corresponding oscillation frequency will

not be the Langmuir plasma frequency, because of the large inductive inertia. For rotation an

external magnetic field is included and the energy and diamagnetism of the plasma in the model

is calculated. Finally it is noted how the neglect of resistivity is motivated by the results.
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I. INTRODUCTION

In order to study qualitative effects of magnetism in plasma dynamics a very simple

model is introduced. Two overlapping homogeneous spheres of equal radii, and of equal but

oppositely signed charge densities, are assumed to move, relative to each other, with negli-

gible dissipation (resistivity) under the influence of electric and magnetic interaction. The

neglect of dissipation is motivated at the end. We first treat relative translation (oscillation)

and then relative rotation.

Many years ago Tonks and Langmuir [1] carefully derived an equation of motion for a

collective translational motion of the electrons relative to the positive ions. Their derivation

seems to indicate that there should be a universal frequency for this mode,

ωp =

√
ne2

m
, (1)

the plasma frequency, depending only on the electron number density n. If a large number

of electrons move relative to the positive ions one gets a large current and thus it seems

as if magnetic effects should affect the result. Bohm and Pines [2] studied the influence of

magnetic interaction on plasma modes but they did not come up with any explicit correction

to ωp. In the textbook by Goldston and Rutherford [3] the absence of magnetic effects is said

to be due to a displacement current that compensates for the electron current. In this article

the problem is approached from a very fundamental starting point: the relevant Lagrangian

density. The conclusion is that the frequency is lowered by the large inductive inertia [see

Eq. (21)].

We then study the relative rotation of the two charged spheres. If magnetic interaction

is neglected the kinetic energy is simply determined by angular momentum and moment

of inertia. When magnetic interaction is included the kinetic energy for a given angular

momentum is much smaller. The reason for this is again that the effective moment of

inertia will be dominated by inductive inertia. By adding an external magnetic field to the

model we can calculate the response of our model plasma and it turns out to be diamagnetic.
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II. SEPARATION OF OVERALL TRANSLATION AND ROTATION

The kinetic energy of any system of particles

T =
∑

i

1

2
miv

2
i (2)

can be written

T =
1

2
MV 2 +

1

2
ΩJΩ + T ′ (3)

where M is total mass, J is the (instantaneous) inertia tensor, V center of mass velocity,

and Ω is a well defined average angular velocity [4, 5]. V is chosen so that p = MV is

the total momentum of the system and Ω so that L = JΩ is the total (center of mass)

angular momentum. T ′ is the kinetic energy of the particles relative to the system that

moves with the center of mass velocity and rotates with the average angular velocity. We

call this the co-moving system. One can introduce generalized coordinates so that there are

six degrees freedom describing center of mass position and of average angular orientation,

while T ′ depends on the remaining 3N − 6 generalized coordinates.

Now consider a blob of plasma that consists of two spheres of particles, one of positively,

and one of negatively charged particles. For spheres the inertia tensor J can be replaced by

a single moment of inertia J . The total kinetic energy T is the sum of the kinetic energy,

T1, of the positive particles, and of the kinetic energy, T2, of the negative charges.

We first perform the transformation above to the co-moving systems separately for the

positive and the negative particles. This gives,

T =
1

2
M1V

2
1 +

1

2
M2V

2
2 +

1

2
J1Ω

2
1 +

1

2
J2Ω

2
2 + T ′

1 + T ′
2, (4)

for the total kinetic energy, see Fig. 1. In a second step we then introduce the co-moving

system for the total system. We thus introduce,

M = M1 + M2, J = J1 + J2, (5)

µ = M1M2/M, I = J1J2/J, (6)

total mass and reduced mass as well as total moment of inertia and reduced moment of

inertia. In terms of these one finds,

V = (M1V 1 + M2V 2)/M V 1 = V + M2v/M (7)

v = V 1 − V 2 V 2 = V − M1v/M, (8)
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for the total center of mass velocity V , and relative velocity v, of the two spheres. Finally,

Ω = (J1Ω1 + J2Ω2)/J Ω1 = Ω + J1ω/J (9)

ω = Ω1 − Ω2 Ω2 = Ω − J2ω/J, (10)

gives the total average angular velocity Ω, and the relative angular velocity ω, of the two

oppositely charged spheres. In terms of these quantities we get the expression,

T =
1

2
MV 2 +

1

2
µv2 +

1

2
JΩ2 +

1

2
Iω2 + T ′, (11)

for the total kinetic energy of our two-sphere system. The degrees of freedom in T ′ are

assumed to be random and not to produce any net charge or current density. They will be

ignored henceforth.

III. LAGRANGIAN INCLUDING MAGNETIC INTERACTIONS

Maxwell’s equations and the equations of motion for the charged particles with the

Lorentz force, can all be derived from a single Lagrangian via the variational principle [6].

The Lagrangian has three parts, particle, interaction, and field contributions. If radiation

is neglected the field does not have independent degrees of freedom, but is determined by

particle positions and velocities. Using the non-relativistic form for the kinetic energy one

then gets,

L =
∑

i

(
1

2
miv

2
i +

qi

2c
vi · A(ri) − qi

2
φ(ri)

)
, (12)

where,

φ(r, t) =
∑

i

qi

|r − ri| , (13)

and

A(r, t) =
∑

i

qi[vi + (vi · ei)ei]

2c|r − ri| . (14)

Here the position and velocity vectors of the particles are ri and vi respectively, mi and qi

their masses and charges, and ei = (r−ri)/|r−ri| (Darwin [7], Jackson [8], Schwinger et al.

[9], Essén [10, 11]). The vector potential here is in the Coulomb gauge, and this essentially

means that all velocity dependence of the interaction appears in the magnetic part, leaving

the Coulomb interaction energy in its static form.
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When the expressions (13) and (14) are inserted into equation (12) one finds infinite

contributions from self-interactions. When these are discarded, so that each particle only

interacts with the field from the others, one obtains

L =
∑

i

1

2
miv

2
i +

∑
i<j

qiqj

rij

[vi · vj + (vi · eij)(vj · eij)]

2c2
−∑

i<j

qiqj

rij

, (15)

where now rij is the distance between particles i and j and eij is the unit vector pointing

from i to j. This is the so called Darwin Lagrangian [7] for the system. We can write it,

L = T + Lmag − Φ, (16)

where, T , is kinetic energy and, Φ, the Coulomb electric interaction energy. The magnetic

part can also be written

Lmag =
∑

i

qi

2c
vi · A(ri) =

1

2c

∫
j(r) · A(r) dV. (17)

Here it is important the the vector potential is divergence free (∇·A = 0, Coulomb gauge).

The Darwin Lagrangian thus includes both electric and magnetic interactions between the

particles and is valid in when radiation can be neglected.

IV. RELATIVE TRANSLATIONAL MOTION

The Coulomb interaction, Φ, between two overlapping charged spheres is calculated in

Appendix A. The magnetic interaction between two charged spheres in relative translational

motion is calculated in Appendix B for the case of small displacement of centers of the spheres

(r � R). Keeping only the quadratic term, one finds,

Lrel =
1

2
µv2 +

4Q2

10Rc2
v2 − 1

2

Q2

R3
r2. (18)

Here r is the vector to center of the positive sphere from the center of the negative, so that

ṙ = v. The center of mass motion decouples, and we assume that the random motions

decouple. This is then the relevant Lagrangian for the relative collective translation. It can

be written,

Lrel =
1

2
Mv2 − 1

2
Kr2, (19)

where,

M = µ +
4Q2

5c2R
≈ Nm

(
1 +

4

5

Nre

R

)
, (20)
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and K = Q2/R3. If we assume a proton-electron plasma we get M1 = Nmp, M2 = Nm,

µ = Nmpm/(mp + m) ≈ Nm, and Q2 = N2e2. On the right hand side we have introduced,

re ≡ e2

mc2
, the classical electron radius. Note that when Nre/R � 1 the effective mass M is

entirely due to inductive inertia.

Clearly the Lagrangian (19) corresponds to an oscillating system with angular frequency

ω0 =
√
K/M. For this frequency we get explicitly,

ω2
0 =

Ne2

R3m

1 + 4
5

Nre

R

. (21)

If we introduce the dimensionless number,

ν ≡ Nre/R, (22)

we see that for ν � 1, one obtains, essentially, the Langmuir plasma frequency, ω2
p ∝ ne2/m,

see Eq. (1). If we reexpress the plasma frequency in terms of the classical electron radius

[12], Eq. (21) can be written in the form,

ω2
0 =

ν

1 + 4
5
ν

c2

R2
. (23)

Thus, when the number of particles is large enough so that ν � 1, this gives,

ω2
0 =

5c2

4R2
. (24)

For this case the frequency turns out to depend on the size (radius) of the sphere, but not

on the density.

V. RELATIVE ROTATIONAL MOTION

We now study pure rotational motion of the two charged spheres, about their coinciding

centers of mass, but we include interaction,

Le =
1

c

∫
j(r) · Ae(r) dV, (25)

with a constant external magnetic field B = ∇ × Ae. Here Ae = 1
2
B × r is the vector

potential of the external field. Starting from (11) and (16) we find that,

Lrot =
1

2
Iω2 + Lmag + Le, (26)
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is the relevant Lagrangian for collective relative rotation.

The explicit calculations are sketched in Appendix C. One finds that Lmag ∼ ω2 and

that this term therefore contributes to the effective moment of inertia, just as it contributed

to the effective mass, M, in the translational case. The result can be written,

Lrot =
1

2
Iω2 +

QR2

10c
ω · B, (27)

where,

I = I +
2

35

Q2R

c2
=

2

5
NmR2

(
1 +

1

7

Nre

R

)
. (28)

We see that when ν = Nre/R � 1 we can neglect the contribution from mass to the effective

moment of inertia I. In this limit therefore,

I ≈ 2

35

Q2R

c2
, (29)

and there is essentially only inductive moment of inertia. We assume this below.

VI. PLASMA ENERGY AND DIAMAGNETISM

In order to investigate the equation of motion we put ω = ϕ̇ez and B = B(sin θex +

cos θez). The Lagrangian then becomes

Lrot =
1

2
Iϕ̇2 +

QR2

10c
ϕ̇ B cos θ. (30)

In general when, ∂L/∂ϕ = 0, one finds that, ṗϕ = (d/dt)(∂L/∂ϕ̇) = 0. In our case this

gives,

pϕ =
∂Lrot

∂ϕ̇
= Iϕ̇ +

QR2

10c
B cos θ = const. (31)

If we assume that ϕ̇(t = 0) = 0 when B(t = 0) = 0 we find that the constant is zero: pϕ = 0.

At all times we then find the relation,

ϕ̇(t) =
7Rc

4Q
B(t) cos θ, (32)

between angular velocity and the magnetic field.

To get the energy from L(ϕ, ϕ̇) one calculates the Hamiltonian H = pϕϕ̇ − L. For the

Lrot of Eq. (30) one finds,

H =
1

2I
(
pϕ − QR2

10c
B cos θ

)2

. (33)
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Let us consider two special cases of this phase space energy of the plasma.

We first assume that the external field is zero (B = 0). The energy is then given by

E = H = p2
ϕ/2I. Here pϕ is the angular momentum of relative rotation. For a given value

of this angular momentum the energy is thus much smaller when ν � 1 than otherwise. This

reflects the fact, repeatedly stressed by the author [10, 11, 13, 14], that for given momenta

the phase space energy of a plasma is lower when there is net current than in the absence

of net current.

Now consider instead the case pϕ = 0. For simplicity we also assume θ = 0. One then

finds that

H(pϕ = 0) =
1

2I
(

QR2

10c
B

)2

(34)

or, equivalently, using (29), that the energy as function of B is given by,

E(B) =
7

80
R3B2 =

21

40

(
4πR3

3

)
B2

8π
. (35)

Note that here, B2/8π, is the energy density of the field B in our (gaussian) units. The energy

is thus seen to grow quadratically with the applied magnetic field and our plasma spheres

are strongly diamagnetic. Based on more detailed studies Cole [15] has also concluded that

plasmas are diamagnetic. In our model plasma diamagnetism is seen to be closely related to

the diamagnetism of superconductors, as discussed by Essén [16]: the external field induces

a current that screens the external field and reduces it inside. In the absence of resistance

this screening current persists.

VII. PLASMA RESISTIVITY

Resistivity is completely neglected in the present model. It has been pointed out by

Kulsrud [17], in his book on astrophysical plasmas, that the negligible resistivity of such

plasmas is in fact closely connected with magnetic induction. In the present treatment

magnetic induction appears in the form of an inductive inertia that appears naturally as the

main physical parameter in the present model. As early as 1933 Frenkel [18] suggested that

superconductivity is due to inductive inertia. Frenkel also conjectured that inductive inertia

can lower the energy and cause a phase transition. He did not, however, make his ideas

quantitative. The present model system gives Frenkel’s ideas some quantitative backing.
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We note that for a collective momentum p involving N particles the kinetic energy will be

T = p2/(2mN), when magnetic interaction is neglected, see Eqs. (19 -20). When the effect

of magnetic interaction is included this becomes T + Emag = p2/(2Nm[1 + 4ν/5]) and we

find that T + Emag � T when ν � 1, assuming that p remains constant. Collective modes

are thus much more favorable thermodynamically when there is net current.

Plasma resistivity is normally treated by studying the scattering of individual charged

particles. Even with this type of treatment fast electrons become, so called, runaway elec-

trons and experience no resistance [19]. The present model indicates that resistivity can

not be treated as resulting from the scattering of individual particles, since the collective

motion of many charges leads to a large inductive non-local effect. All this points in the

same direction, namely that plasmas need not be resistive, in agreement with our model

treatment.

If resistivity had to be included the translational oscillation would become a damped

oscillation and any circulating current would eventually cease, thereby making the diamag-

netic response temporary. A more immediate limitation of our model is probably the fact

that a current would cause pinching and this would lead to instabilities that deform of the

spherical shape. Lynden-Bell [22] has studied the relativistically spinning charged sphere

and finds that charge concentrates near the equator (as a result of pinching).

VIII. CONCLUSIONS

The model treated in this article is not particularly realistic. Instead it can be motivated

as the simplest possible model within which one can study plasma phenomena associated

with current, induction, and magnetic interaction energy, in a meaningful way. Hopefully it

also has some novelty. In the literature one can find a fair amount of work on the radially

oscillating plasma sphere (see e.g. Barnes and Nebel [20], Park et al. [21]), but not the

modes treated here. A numerical study of a rotating convective plasma sphere, modelling a

star, by Dobler et al. [23] shows how complicated more realistic models necessarily become.

The two-sphere model studied here is therefore valuable as a device for gaining insight

into some very basic plasma phenomena. As we have seen the most basic of these is the

dominance of inductive inertia in the effective mass M of Eq. (20), and the effective moment

of inertia I of Eq. (28), when the number N of participating charged particles is large enough.
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One notes that ν = Nre/R ≈ 118 for a typical laboratory plasma of density n = 1020 m−3

and of radius R = 1 cm, assuming that all particles contribute to the collective mode. Finally

the model also indicates how this large inductive inertia influences the energy of the plasma

and how a plasma responds diamagnetically to an external magnetic field.
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Appendices

APPENDIX A: ELECTROSTATIC INTERACTION OF TWO OVERLAPPING

CHARGED SPHERES

The electrostatic potential from a spherically symmetric charge density, �(r), is given by,

φ(r) = 4π
(

1

r

∫ r

0
�(r′)r′ 2 dr′ +

∫ ∞

r
�(r′)r′ dr′

)
. (A1)

For a homogeneous charged sphere of total charge Q and radius R with � = Q/4πR3

3
, for

r ≤ R and zero for r > R, this gives,

φ(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3Q
2R

− Qr2

2R3 for r < R

Q
r

for r ≥ R ,

(A2)

and there is a pure Coulomb potential outside the sphere.

Now consider a second, homogeneously charged, sphere of the same radius and of total

charge q. If the distance r between the centers of the two spheres is greater than 2R the

interaction energy is clearly given given by,

Φ(r) =
qQ

r
, for r > 2R. (A3)

We will now investigate what this interaction energy is when the distance is smaller so that

the two spheres intersect.

The interaction energy can be written

Φ(r) =
∫

�qφ dV (A4)

where the volume integration is over the space occupied by the second sphere, where its

charge density, �q = q/4πR3

3
, is different from zero.

We do the integration using the slicing by concentric spheres depicted in Fig. 2. The

volume element is then given by

dV = π
ρ

r
[R2 − (r − ρ)2]dρ. (A5)
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When this is integrated between the limits ρ = r − R and ρ = r + R one should get the

volume of the sphere and indeed and one easily checks that

∫ ρ=r+R

ρ=r−R
dV (ρ) =

4πR3

3
. (A6)

To do the integral (A4) we have to split the integration range at ρ = R since the function

φ of (A2) since it changes character at that radius. This gives

Φ(r) = �q

[∫ ρ=R

ρ=r−R

(
3Q

2R
− Qρ2

2R3

)
dV +

∫ ρ=r+R

ρ=R

Q

ρ
dV

]
. (A7)

The integrals are elementary and the final result, for r < 2R, is,

Φ(r) =
qQ

160R6

(
192R5 − 80R3r2 + 30R2r3 − r5

)
. (A8)

If we assume small displacements, r � R, and put q = −Q, we find that,

Φ(r) ≈ −6Q2

5R
+

Q2r2

2R3
, (A9)

so the potential is quadratic and there is there is a linear restoring radial force, F = −kr,

with force constant, k = Q2/R3.

APPENDIX B: MAGNETIC INTERACTION OF TWO CHARGED SPHERES

WITH RELATIVE TRANSLATION

Here we calculate Lmag, the middle term of Eq. (15), for the two charged spheres with

velocities V 1 and V 2 of Eqs. (7 – 8). This Darwin term in the Lagrangian gives explicitly,

Lmag =
q2
1

4c2

∑
i

∑
j

V 2
1 + (V 1 · eij)

2

|ri − rj| + (B1)

q1q2

4c2

∑
i

∑
k

V 1 · V 2 + (V 1 · eik)(V 2 · eik)

|ri − rk| + (B2)

q2q1

4c2

∑
k

∑
i

V 2 · V 1 + (V 2 · eki)(V 1 · eki)

|rk − ri| + (B3)

q2
2

4c2

∑
k

∑
l

V 2
2 + (V 2 · ekl)

2

|rk − rl| , (B4)

for the magnetic interaction. Here the indices i, j refer to the positive sphere and k, l to the

negative. The two terms (B2) and (B3) representing interactions between the two oppositely
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charged spheres are clearly equal. If we denote the angle in (B1) between V 1 and ri − rj

by θij, and similarly for (B4), we thus get

Lmag =
q2
1V

2
1

4c2

∑
i

∑
j

1 + cos2 θij

|ri − rj| +
q2
2V

2
2

4c2

∑
k

∑
l

1 + cos2 θkl

|rk − rl| (B5)

+
q1q2

2c2

∑
i

∑
k

V 1 · V 2 + (V 1 · eik)(V 2 · eik)

|ri − rk| . (B6)

According to our assumptions the two double sums in (B5) both represent the internal

interaction between particles uniformly distributed within a sphere of radius R. They must

thus be equal, and if we split the Darwin Lagrangian into

Lmag = Lself + Lint, (B7)

where Lself stands for (B5) and Lint for (B6), we find

Lself =

(
q2
1V

2
1

4c2
+

q2
2V

2
2

4c2

)∑
i

∑
j

1 + cos2 θij

|ri − rj| . (B8)

Without the squared cosines the double sum would simply be the Coulomb self interaction

of a charged sphere, which can be taken from (A8) with r = 0. Since the directions of

ri − rj vary over the sphere it seems reasonable to estimate the effect of the squared cosine

by replacing it with its spherical average

cos2 θ ≡ 1

4π

∫
Ω

cos2 θ dΩ =
1

3
, (B9)

where dΩ = sin θ dθ dφ. Also using,

N∑
i=1

N∑
j=1

1

|ri − rj| =
6N2

5R
, (B10)

we get

Lself =

(
q2
1V

2
1

4c2
+

q2
2V

2
2

4c2

)
4

3

6

5

N2

R
=

2Q2

5Rc2
(V 2

1 + V 2
2 ), (B11)

where, Nq1 = Q, Nq2 = −Q. We now introduce the transformation (7)–(8). If we put

M2/M ≡ α and M1/M ≡ β we can write it

V 1 = V + αv, and V 2 = V − βv, (B12)

where α + β = 1. This finally gives

Lself =
2

5

Q2

Rc2
[2V 2 + 2(α − β)V · v + (α2 + β2)v2], (B13)
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for the magnetic self interactions of the spheres.

For the interaction part we put (B12) into (B6) and get,

Lint =
q1q2

2c2

⎡
⎣V 2

∑
i,k

1 + cos2 θik

|ri − rk| − αβv2
∑
i,k

1 + cos2 θ′ik
|ri − rk| + (B14)

+(α − β)
∑
i,k

V · v + (V · eik)(v · eik)

|ri − rk|

⎤
⎦ . (B15)

We now split the vector v into a part parallel to V and a part perpendicular to V , to get

v = vV + v⊥. The double sum in (B15) is then

∑
i,k

V · v + (V · eik)(v · eik)

|ri − rk| = V vV

∑
i,k

1 + cos2 θik

|ri − rk| + V v⊥
∑
i,k

cos θik cos θ′′ik
|ri − rk| . (B16)

In the above expressions, θik, θ′ik, and θ′′ik, are the angles between ri − rk and V , v, and v⊥,

respectively. The double sums are now over points distributed in displaced spheres. If we

assume that the displacement r is small compared to the radius R we can again approximate

the effect of the cosines by spherical averaging (B9). We then find that

1 + cos2 θ =
4

3
, and, cos θ cos θ′ = 0, (B17)

where θ and θ′ represent angles with perpendicular directions.

According to our assumptions we can now use Eq. (A9) and put

∑
i,k

1

|ri − rk| ≈
6N2

5R
− N2r2

2R3
. (B18)

Finally then we get (note that V vV = V · v)

Lint = − Q2

Rc2

(
2

5
− 1

6

r2

R2

)
[2V 2 + 2(α − β)V · v − 2αβv2], (B19)

for the magnetic interaction of the two spheres.

If we now add the self interaction, Eq. (B13) to the result (B19) we end up with,

Lmag =
4

10

Q2

R

v2

c2
+

1

3

Q2

R

r2

R2

V 2 + (α − β)V · v − αβv2

c2
, (B20)

for the total magnetic interaction part of the Lagrangian. Here we have used, α + β = 1.

Note also that we have assumed that r � R and that certain angular dependencies have been

treated approximately. If we also assume that v2 � c2 the second term here is negligible

compared to the first.
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APPENDIX C: MAGNETIC INTERACTION OF TWO CHARGED SPHERES

WITH RELATIVE ROTATION

If we put �1 = Q/4πR3

3
and �2 = −�1, for r < R, and zero outside, the two spheres have

current densities,

ji(r) = �iΩi × r, i = 1, 2. (C1)

Divergence free vector potentials, that match smoothly with dipole field vector potentials

outside the spheres, are then given by [24],

Ai(r) =
2π

5c

(
5

3
R2 − r2

)
ji(r). (C2)

Using this, it is elementary to show that,

Lmag =
1

2c

∫
j(r) · A(r) dV =

1

2c

∫
(j1 · A1 + j2 · A2 + 2j1 · A2) dV, (C3)

is given by,

Lmag =
2

35

Q2R

c2
ω2, (C4)

where, ω = Ω1 − Ω2, is the relative angular velocity.

The response to a constant external field B with vector potential Ae = 1
2
B × r, is given

by,

Le =
1

c

∫
j(r) · Ae(r) dV =

1

c

∫
(j1 · Ae + j2 · Ae) dV. (C5)

One finds,

Le =
QR2

10c
B · ω, (C6)

from straightforward calculations.
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Figure captions

FIG. 1: Some notation for the two-sphere plasma model treated in this article. Note the separation

of the spheres is exaggerated for clarity. It is assumed small in the relative translation case and

zero in the relative rotation case.

FIG. 2: Integration over the upper sphere, centered on q, is performed by means of volume elements

dV = Sdρ that consist of the space between two concentric sphere segments centered on Q with

radii ρ and ρ + dρ. The area S of such a segment is given by S = 2πρh where h = ρ(1 − cos α).

The cosine theorem applied to the triangle QqP gives R2 = r2 + ρ2 − 2rρ cos α. This gives cos α

and insertion into dV gives dV = (πρ/r)[R2 − (r − ρ)2]dρ.
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