Mekanik II M2, 5C1140

Hand in assignment 1, HT 2004

A three-particle system consists of particles with masses $m_{1}=3 m, m_{2}=m$, and $m_{3}=5 m$. Their position vectors have Cartesian components $\boldsymbol{r}_{1}(t)=a\left[t / \tau,-2,3(t / \tau)^{2}\right]$, $\boldsymbol{r}_{2}(t)=a\left[(t / \tau)-1,(t / \tau)^{3}, 5\right]$, and $\boldsymbol{r}_{3}(t)=a\left[2-(t / \tau)^{2}, t / \tau,(t / \tau)^{3}\right]$ respectively. Here a is constant of dimension length and τ is a constant of dimension time.

Calculate

a) the center of mass of the system at time $t=0$
b) the center of mass of the system at time $t=\tau$
c) the total momentum of the system at time $t=0$
d) the total force $\boldsymbol{F}(t)$ acting on the system, as function of time
e) the total angular momentum with respect to the origin at time $t=0$
f) the total moment (of force) with respect to the origin as function of time.

The solutions, which must have explanative text in English, are intended to start from general laws and definitions. All essential steps in the calculations must be included.

Mark the solutions with your name and number as well as my name (Hanno Essén). They must be tidy and easy to read, as well as correct.

The last day for handing in this assignment is Friday, September 10.

