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Hamiltonian of a homogeneous two-component plasma

Hanno Esse´n* and A. Nordmark
Department of Mechanics, KTH, 100 44 Stockholm, Sweden

~Received 30 June 2003; published 22 March 2004!

The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin
approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to
statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the
length scale of the magnetic interaction energy. In the past a screening lengthl51/Ar en, with n number
density andr e classical electron radius, has been derived. We address the question whether the corresponding
longer screening range obtained from the classical proton radius is physically relevant and the answer is
affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macro-
scopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle
number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The
nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.

DOI: 10.1103/PhysRevE.69.036404 PACS number~s!: 52.25.Kn, 52.25.Xz, 05.20.Jj, 45.20.Jj
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I. INTRODUCTION

Plasmas are rarely in thermal equilibrium since both na
ral and human made plasmas almost always have large
perature, density, or pressure gradients. Nevertheless,
mas, just as other forms of macroscopic matter, have a st
tendency towards thermal equilibrium. It would therefore
of interest to know what this equilibrium state is like. A
cording to statistical mechanics the phase space probab
distribution is given by the canonical Maxwell-Boltzman
distribution

f ~r,p!5
1

Z
expS 2

H~r,p!

kBT D ~1!

and thus the key to the equilibrium distribution is the Ham
tonian H(r,p)5E, or phase space energy, of the system
conserved energy for a system of charged particles ex
only in the, so called, Darwin approximation. Since radiati
is a higher order process it is probably not a bad approxi
tion to consider an equilibrium plasma as an equilibriu
between a Darwin charged particle gas and a Planck dis
uted, black body, photon gas.

Plasma physics has been approached from the Darwin
proximation point of view by several authors. Simulatio
and numerical studies based on the Darwin Lagrangian h
been quite successful@1–6#. In particular Mehra and De
Luca @7# have shown using simulations based on the Dar
Lagrangian that long range magnetic order may arise.
tempts to use statistical mechanics and the Darwin Ha
tonian have been hampered by the fact that the Dar
Hamiltonian for macroscopic systems is not known exp
itly, but there have been several noteworthy attempts@8–16#.

An important step was taken by Jones and Pytte@17# who
derived an approximate Hamiltonian for a one-compon
homogeneous plasma and found that the magnetic intera
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energy is screened with the characteristic length scall
51/Ar en, wheren is particle number density andr e is clas-
sical electron radius. Jones and Pytte started from quan
mechanics and worked ink space~or momentum space
since p5\k!. Similar results were found by Esse´n @18,19#
who showed that the classical Darwin Lagrangian for a
mogeneous plasma should give rise to a Yukawa scree
magnetic interaction energy in the Hamiltonian. The fact t
the vector potential in the Darwin formalism must be dive
gence free, or transverse~Coulomb gauge! has, however, not
been properly handled before, but here it will be.

II. OVERVIEW OF CONTENTS

We first review the fundamental status of the Darw
Lagrangian. This is needed because several important as
of the Darwin approximation do not appear to be w
known. The even more problematic and unknown status
the Darwin Hamiltonian is then discussed.

Since it is easy to find an energy, expressed in terms of
canonical momenta, but with the vector potential still giv
in terms of velocities, the problem of finding the Ham
tonian is reduced to expressing the vector potential in te
of the momenta. We therefore then discuss how we find
vector potential in terms of the canonical momenta and h
to make it transverse. This is necessary since the Coulo
gauge is essential in the Darwin approximation.

The vector potential in terms of the canonical mome
is found using our main approximation: the real partic
number density, a sum ofd functions, is replaced by a
smooth constant density. We do this first for a on
component plasma~of either electrons or ions!, then for a
two-component plasma consisting of positive ions and ne
tive electrons. Finally we consider the problem of how the
are related. The outcome indicates that the length scale
responding to the ion mass should be of relevance for pla
structures.

III. THE DARWIN LAGRANGIAN

The Darwin @20# negligible radiation approximation to
electrodynamics is often presented as an expansion inv/c
©2004 The American Physical Society04-1
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where terms up to (v/c)2 are retained@21–26#. This gives
correct results but is a bit puzzling since radiation is due
acceleration, not velocity itself. In fact, the exact retard
Lienard-Wiechert potentials show that the electromagn
field from moving charges can be split into bound~or veloc-
ity! fields and radiation~or acceleration! fields @27,28#. The
latter are normally much smaller than the velocity fields
more fundamental way of viewing the approximation is
see it as neglect of the acceleration dependent part of
fields @19#. Once acceleration is neglected all retardatio
can be calculated and even the relativistic Lagrangian ca
expressed in terms of particle positions and velocities
some given time.

The magnetic interaction energy found by Darwin was
fact derived earlier by Heaviside@29#, for a historical discus-
sion, see Jackson and Okun@30#. The same interaction wa
derived from the Dirac equation by Breit@31,32#. For other
fundamental aspects of this approach see, for exam
Sucher@33# or Mooreet al. @34,35#.

Magnetism is of importance in physics either because
locities are large compared to the speed of light or becau
large, possibly macroscopic, number of particles compen
for the smallness ofv/c ~see Rindler@36#, Sec. 7.7, for a
discussion!. Here we will be interested in the latter case. Th
means that the relativistic correction to the kinetic ene
can be neglected. In small systems this term is inevitably
the same importance as magnetic effects but not in ma
scopic ones~since it is a one-particle quantity it will no
change the qualitative dynamics of the system!. The use of
the Darwin Lagrangian for macroscopic systems has b
discussed, from a fundamental point of view, by Colem
and Van Vleck@37#.

Consider a system ofN charged particles with massesmi ,
chargesqi , positionsr i , and velocitiesv i . When we neglect
the relativistic correction to the kinetic energy the Darw
Lagrangian of the system is

L~r,v !5(
i 51

N S 1

2
miv i

21
qi

2c
v i•Ac~r i !2

qi

2
f~r i ! D , ~2!

where

f~r!5(
j

N
qj

ur2r j u
, ~3!

and, withej[(r2r j )/ur2r j u,

Ac~r!5(
j

N v j1~v j•ej !ej

2c

qj

ur2r j u
. ~4!

In f(r i) andAc(r i) the infinite terms arising fromi 5 j are,
of course, excluded.

The generalized momentumpi5]L/]v i is given by

pi5miv i1
qi

c
Ac~r i !. ~5!

We note that this is the same expression as the one obta
in the familiar case of an external magnetic field. The fac
03640
o
d
ic

he
s
be
t

le,

-
a

te

y
f

o-

n
n

ed
r

1/2 in front of the magnetic interaction term in Eq.~2! dis-
appears in the differentiation since the magnetic interac
term is quadratic in the velocities. Note that the Coulom
gauge (“•Ac50), which is used in the derivation of th
Darwin Lagrangian, is essential for this result since it is on
in this gauge that the Coulomb potential is velocity indepe
dent.

Using this one can find@19,38# the following expression
for the energy:

E5(
i 51

N S pi
2

2mi
2

qi

2mic
pi•Ac~r i !1

qi

2
f~r i ! D . ~6!

Note that this is not yet the Hamiltonian sinceAc(r i) is still
expressed only in terms of velocities through Eq.~4!. Also
note the absence of anA2 term, which is due to the fact tha
we are not dealing with an external field but with the vec
potential from the particles of the system itself.

It is possible to derive an exact expression for the ene
from the Lagrangian~2! in terms of positions and velocitie
only. One finds@38,39,26,40# that the energy is given by

E~r,v !5(
i 51

N
1

2
miv i

21(
i , j

N
qiqj

r i j

1(
i , j

N
qiqj

2c2

@v i•v j1~v i•ei j !~v j•ei j !#

r i j
~7!

~here r i j 5ur i2r j u). This expression, unfortunately, is mis
leading since it seems to predict that parallel currents ra
the energy, in stark contradiction to the well known fact th
parallel currents attract~see Schwingeret al. @26# for a dis-
cussion!. The lesson to be learned from this is that the ene
must be expressed in phase space~positions and canonica
momenta! in order to give physically sensible results. W
therefore now proceed to find the Hamiltonian correspond
to the Darwin Lagrangian of Eq.~2!.

IV. THE DARWIN HAMILTONIAN

If we assume that there areN particles in the system an
introduce generalized coordinatesQa,a51, . . . ,3N, accord-
ing to Q15x15r1•ex , . . . ,Q3N5zN , and corresponding
generalized velocities, Q̇a, given by Q̇15vx15v1

•ex , . . . ,Q̇3N5vzN , we can write the Darwin Lagrangian
given by Eqs.~2!–~4!, as follows:

L~Q,Q̇!5
1

2 (
a,b51

3N

Gab~Q!Q̇aQ̇b2V~Q!. ~8!

Here the diagonal elements of the metricGab(Q) are given
by

G115G225G335m1 , G445m2 , . . . ,

G3N21,3N215G3N,3N5mN , ~9!

and the off diagonal by
4-2
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G125G2150, G135G3150, ~10!

G14~Q!5G41~Q!5
q1q2

2c2 S 1

ur12r2u
1

~x12x2!2

ur12r2u3
D , ~11!

G15~Q!5G51~Q!5
q1q2

2c2 S 1

ur12r2u
1

~x12x2!~y12y2!

ur12r2u3
D ,

~12!

G16~Q!5G61~Q!

5
q1q2

2c2 S 1

ur12r2u
1

~x12x2!~z12z2!

ur12r2u3
D , . . .

~13!

where ur12r2u5A(Q12Q4)21(Q22Q5)21(Q32Q6)2,
etc., and whereV(Q) is simply the Coulomb potential en
ergy. The corresponding Hamiltonian is by definition giv
by

H~Q,P!5 (
a51

3N

Q̇aPa2L, ~14!

the Legendre transform ofL. Here the generalized momen
Pa5]L/]Q̇a. According to well known general results on
then finds that the Hamiltonian is

H~Q,P!5
1

2 (
a,b51

3N

Gab~Q!PaPb1V~Q!, ~15!

whereGab(Q) is the matrix inverse ofGab(Q). The problem
of finding the Darwin Hamiltonian is thus the problem
inverting the matrix given by Eqs.~9!–~13!. A formula for
the exact general inverse is easily seen to be very com
cated and is unlikely to yield physically useful insight. Ess´n
@38# approached the inversion problem through series exp
sion. The first term is the inverse of the diagonal mass m
trix. Keeping also the next two terms gives

H5(
i 51

N S F pi
2

2mi
1

qi

2
f~r i !G2

qi

2mic
pi•A1~r i !

1
qi

2

2mic
2
A1

2~r i !D , ~16!

where

A1~r i !5 (
j (Þ i )

N
qj@pj1~pj•ei j !ei j #

2mjcur i2r j u
. ~17!

Keeping only the first of these two terms gives the traditio
Darwin Hamiltonian as found in many textbooks@22,24–26#
and applications@39,41#.

Unfortunately one can easily see that in macrosco
systems such an expansion will not necessarily conve
~Trubnikov and Kosachev@8#!. Below we will find a way of
03640
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getting around this by assuming that for a homogene
plasma a continuum approach is valid. The algebraic pr
lem is thereby replaced by an analytic one. This was fi
done by Jones and Pytte@17# and their result has been con
firmed by Esse´n @18,19#.

These attempts to find more exact Darwin Hamiltonia
for macroscopic systems have met with criticism~see, for
example, Krizan@42#, Alastuey and Appel@43#!. One of the
arguments used is that a more exact Hamiltonian con
terms of higher order inv/c than those neglected in th
Lagrangian. This is not correct; all higher terms are of t
order of p2/(mc)2, where p is a typical momentum. The
speed of light, however, appears to be of higher order in
dimensionless combinationNe2/(mc2R)5Nre/R, whereN
is the number of particles andR is a typical size of the
system. Clearly the approximation of the Hamiltonian is o
completely different nature from that used to get the L
grangian. The Darwin Lagrangian defines a dynamical s
tem and the exact Legendre transform of this gives the c
responding system is phase space. Approximating
Legendre transform of the Lagrangian to the Hamilton
has nothing to do with radiation.

Alastuey and Appel@43# have claimed that there are n
long range effects of magnetism and that all such conc
sions drawn from the Darwin Hamiltonian are wrong. Esse
tially they start from Coulomb matter and radiation and th
claim that this approximation must be exact for long ran
purposes. They then seem to forget that relativistic effe
no matter how small, grow, and even diverge, with the nu
ber of particles and become important precisely when lo
ranges are considered. There is nothing fundamental a
the split into Coulomb field plus radiation. As discuss
above the fundamental split is between velocity fields a
radiation~acceleration! fields. Their claims are also in con
trast to, for example, the direct numerical simulations
Mehra and De Luca@7# who find long range magnetic effect
from the Darwin Lagrangian. Consequently, if they vanish
the corresponding Hamiltonian formalism, this must be d
to some error. Careful mathematical investigations by Kun
and Spohn@44# have also proven the correctness of the D
win approximation for theN-body problem.

A relativistic derivation of the Darwin Hamiltonian ha
recently been published by Crater and Lusanna@45#. They
get around some of the algebraic complexity of the ma
inversion by assuming that electric charge is an anticomm
ing Grassmann variable. The empirical basis for this in
sentially classical plasma problems is not clear, however

V. FINDING THE DIVERGENCE FREE
VECTOR POTENTIAL

The vector potential~4! can be obtained as the solution

¹2Ac52
4p

c
j' , ~18!

where
4-3
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j'5 j1
1

4p
¹

]f

]t
~19!

is the transverse~divergence free! current density. Here the
charge and current densities are assumed to be

%~r!5(
j 51

N

qjd~r2r j !, ~20!

j~r!5(
j 51

N

qjv jd~r2r j !. ~21!

The reason for using the transverse current as source ter
the right-hand side is the use of the Coulomb gauge wh
requires the vector potential to be divergence free (“•Ac

50). If we take the divergence on both sides of Eq.~18! we
see that if the source is not divergence free then neither is
solution. Use of the transverse current as source give
result ~4!. There is, however, a simpler method for findin
the divergence free vector potential, which we present be
since it will be needed later.

Start with the solution to the equation

¹2A52
4p

c
j ~22!

with the ordinary current Eq.~21! as source. This solution i

A~r!5(
j

N
qjv j

cur2r j u
. ~23!

We now wish to make this divergence free by adding a s
able gradient

Ac5A2¹F ~24!

such that

“•Ac5“•~A2¹F!50, ~25!

while the curl ofAc remains the same as the curl ofA.
Consider one of the terms in the sum of Eq.~23!. Choose

the origin atr i and thez axis alongv i . The term is then

Ai5
qiv i

c

ez

r
. ~26!

We thus need to make vector fields of type

An5r nez ~27!

divergence free~transverse!. Here n521 but the genera
result will be useful below. Introduce spherical coordinat
r ,u,w, so thatez5cosu er2sinu eu , andez•er5cosu. Using
these one finds that“•An5“•(r nez)5nrn21cosu. If we
now choose

Fn5
r n11cosu

n13
~28!
03640
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we find that the Laplacian is¹2Fn5nrn21cosu. Therefore
An

c5An2¹Fn has zero divergence. Explicitly we find

An
c5

r n

n13
@~n12!ez2n~ez•er !er #. ~29!

For our case,n521, the relevant divergence free vect
field, corresponding toAi5(qiv i /c)r 21ez , is

Ai
c5

qiv i

c

1

2r
@ez1~ez•er !er #. ~30!

If one now moves the origin back tor i , so thatr 5ur2r i u,
and usev i5v iez we see that we end up with one of the term
in Eq. ~4!. The choice ofF21 is not the only possible if we
only demand zero divergence, but if we also demand reas
able behavior at the origin and at infinity it becomes uniq

In summary, instead of solving Eq.~18! with divergence
free source~19! we can simply solve Eq.~23! and impose
zero divergence afterwards by adding a suitable gradien
generalization of this will be useful below.

VI. VECTOR POTENTIAL IN TERMS
OF CANONICAL MOMENTA

In this section we first treat the homogeneous o
component plasma. This more elementary background m
be thoroughly understood before attempting the tw
component plasma.

If we assume that there is only one kind of particle, w
massm and chargeq, the energy of Eq.~6! becomes

E5(
i 51

N S pi
2

2m
2

q

2mc
pi•Ac~r i !1

q

2
f~r i ! D , ~31!

where,Ac from Eq. ~4!,

Ac~r!5
q

2c (
j

N v j1~v j•ej !ej

ur2r j u
, ~32!

is divergence free according to Eq.~30!. In order to find the
corresponding relevant expression in terms of canonical
menta, as given by Eq.~5!,

pi5mv i1
q

c
Ac~r i !, ~33!

we now first replace the transverseAc by the nontransverseA
of Eq. ~23!,

A~r!5
q

c (
j

N v j

ur2r j u
. ~34!

We will recover a divergence free result later by adding
suitable gradient.

Now put

v i5
pi

m
2

q

mc
A~r i ! ~35!
4-4
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into Eq. ~34! and get

A~r!5
q

c (
j

N S pj

mur2r j u
2

qA~r j !

mcur2r j u
D . ~36!

Since¹2(1/r )524pd(r) the Laplacian of both sides of thi
equation gives

¹2A~r!524p
q

c (
j

N S pj

m
d~r2r j !2

qA~r j !

mc
d~r2r j ! D .

~37!

Denote the number density of the particles

n~r!5(
j 51

N

d~r2r j !. ~38!

The second sum on the right-hand side can then be writte

4p
q2

mc2 (
j

N

A~r j !d~r2r j !54p
q2

mc2 (
j

N

A~r!d~r2r j ! ~39!

54p
q2

mc2
A~r!(

j

N

d~r2r j !

54p
q2

mc2
A~r!n~r!. ~40!

We now introduce the electric momentum current density

jp~r![
q

m (
j 51

N

pjd~r2r j !. ~41!

Using this, Eq.~37! can be written as

S ¹224p
q2

mc2
n~r!D A~r!52

4p

c
jp~r!. ~42!

This equation determines the vector potential in terms of
canonical momenta.

In order to solve this we must now make acrucial ap-
proximation. We assume that we can use an averag
smooth, densityn(r) instead of thed function sum. If this is
allowed we can find an explicit solution for the case of
constant density:n(r)5n5const. We introduce the notatio

r 05
q2

mc2
,

1

l2
5

q2

mc2
n5r 0n, ~43!

for the classical particle lengthr 0 and the Yukawa damping
lengthl, respectively. This allows us to write Eq.~42! as

S ¹22
4p

l2 D A~r!52
4p

c
jp~r!. ~44!

The physically interesting solution, which we denoteAp , is
given by
03640
as

e

d,

Ap~r!5
q

mc (
j

N
pj exp~2ur2r j u/l!

ur2r j u
. ~45!

There now remains to find the divergence free version of
vector field.

VII. DIVERGENCE FREE YUKAWA VECTOR POTENTIAL

Consider one of the terms in the sum of Eq.~45!. Choose
the origin atr i and letpi5piez . We now need to find out
how to remove the divergence of a vector field

A~r!5
exp~2r /l!

r
ez . ~46!

Considerations similar to those in Eqs.~23!–~27! above
show that a good scalar function is given by

F~r!5
@exp~r /l!2~11r /l!#exp~2r /l!

~r /l!2
cosu. ~47!

The resulting zero divergence vector field can be written

Ac~r!5A~r!2¹F~r!

5
exp~2r /l!

r H exp~r /l!2~11r /l!

~r /l!2

3@3~ez•er !er2ez#1@ez2~ez•er !er #J . ~48!

This field has also the property that, forl going to infinity it
goes to a field like that in Eq.~27!,

lim
l→`

Ac~r!5
1

2r
@ez1~ez•er !er #. ~49!

In order to write the expression~48! in a more compact way
we introduce the definitions

g~x![12
exp~x!2~11x!

x2
,

and,

h~x![3
exp~x!2~11x!

x2
21. ~50!

They have the property that

lim
x→0

g~x!5 lim
x→0

h~x!5
1

2
, ~51!

and this is the relevant limit for large values ofl, i.e., small
damping. Using these we find that the expression~48! can be
written as
4-5
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Ac~r!5
exp~2r /l!

r
@g~r /l!ez1h~r /l!~ez•er !er #.

~52!

The qualitative distance dependencies are plotted in Fig
Finally we can now write

Ap
c~r!5

q

mc (
j

N
exp~2ur2r j u/l!

ur2r j u
@g~ ur2r j u/l!pj

1h~ ur2r j u/l!~pj•ej !ej # ~53!

for the divergence free, transverse, vector potential in te
of canonical momenta.

VIII. HAMILTONIAN OF HOMOGENEOUS
ONE-COMPONENT PLASMA

We have now found the Hamiltonian of a homogeneo
one-component plasma. It is given by

H~r,p!5(
i 51

N S pi
2

2m
2

q

2mc
pi•Ap

c~r i !1
q

2
f~r i ! D . ~54!

and the vector potential is given by Eq.~53! so that

Ap
c~r i !5

q

mc (
j (Þ i )

N
exp~2r i j /l!

r i j

3@g~r i j /l!pj1h~r i j /l!~pj•ei j !ei j #. ~55!

The magnetic two-particle interaction energy is thus

Ei j
mag52

q2

m2c2

exp~2r i j /l!

r i j

3@g~r i j /l!pi•pj1h~r i j /l!~pi•ei j !~pj•ei j !#.

~56!

FIG. 1. Plot of the functions exp(2x)g(x) ~lower curve! and
exp(2x)h(x) ~upper curve!. These are defined in Eq.~50!. The dis-
tance dependence of the magnetic interactions are}exp(2x)g(x)/x
and}exp(2x)h(x)/x.
03640
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The nature of this interaction is such that the energy ge
negative contribution for parallel momentum componen
pi•pj.0, as long as the functiong(x) is positive, and this is
the case for 0,x,1.793 282 133. The energy also gets
negative contribution when the projections of the mome
along the interparticle vectors,ei j 5(r i2r j )/r i j , are parallel,
(pi•ei j )(pj•ei j ).0, for all distances. The nature of the di
tance dependence of the interaction is shown in Fig. 1.

The interaction energy is clearly damped with the leng
scalel. How large isl compared to the average interpartic
distance,r̄ i j ? From Eq.~43! we find thatl51/Ar 0n. Since
n;1/(r̄ i j )

3 we find thatl; r̄ i j Ar̄ i j /r 0@ r̄ i j . This is consis-
tent with the use of the continuum approximation in the de
vation of our results. A large number of particles must p
ticipate to get the screening. This screening is, howe
important for the thermodynamics of this Hamiltonian
make sense. Without screening the energy diverges to m
infinity as currents correlate over larger and larger distanc
This phenomenon, which Welker@46# termed ‘‘magnetische
katastrophe,’’ is thus prevented by the damping of the ph
space magnetic interaction.

What is the physical significance of the results~54!–~56!?
Statistical mechanics indicates that the phase space dist
tion of the particles in thermal equilibrium should be give
by Eq.~1! and thus that the most probable configurations
those with the lowest energy. From this one concludes
the magnetic interaction should result in a correlation of p
ticle momenta over length scales given byl51/Ar 0n, where
r 05q2/(mc2). The question now is whether the leng
scales corresponding to nuclear massesm will be of impor-
tance or if the electrons with correspondingly much sma
l determine a maximum correlation distance in real plasm

The idea of a one-component plasma comes mainly fr
solid state physics where the conduction electrons may c
stitute a plasma of negative particles that move in a fix
background of smeared out positive charge~a ‘‘jellium’’ !. In
a real plasma of light electrons and heavy positive ions
can expect than the length and time scales of the elec
dynamics are smaller that the corresponding scales for
positive ions. The electrons also dissipate momentum m
faster due to their small mass and larger Thomson cross
tion ~the thermal, random isotropic, velocity of the electro
is of course given by the temperature, what is possibly d
sipated is the net drift momentum responsible for any n
zero current density!. It is therefore not unreasonable to a
sume that there is an approximate separation of the dyna
of the plasma so that one may consider the ions to mov
background of smeared out negative charge. This posi
ion one-component plasma should be characterized byl val-
ues determined by nuclear mass scales.

IX. HAMILTONIAN OF HOMOGENEOUS
TWO-COMPONENT PLASMA

Assume now that there are two kinds of particles, el
trons~2! and protons~1!, say. What happens to the scree
ing lengthl found in the one-component case? We will no
investigate this question mathematically using the same
malism as for one-component plasmas.

As above we start from Eq.~22! and worry about finding
4-6
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the transverse vector field later. Since this equation is lin
the two types of particles independently produce vector
tentials,

¹2A252
4p

c
j2 , ~57!

¹2A152
4p

c
j1 , ~58!

whereA5A21A1 and j5 j21 j1 . We now express the cur
rent densities Eq.~21! in terms of canonical momenta usin
Eq. ~35!. This gives

j2~r!5 (
k51

N2

q2S pk

m2
2

q2

m2c
A~rk! D d~r2rk!

5 jp2~r!2
q2

2

m2c
A~r!n2~r!, ~59!

j1~r!5(
l 51

N1

q1S pl

m1
2

q1

m1c
A~r l ! D d~r2r l !

5 jp1~r!2
q1

2

m1c
A~r!n1~r!. ~60!

Here we have introduced the electric momentum current d
sities,

jp~r!5 jp2~r!1 jp1~r!5
q2

m2
(
k51

N2

pkd~r2rk!

1
q1

m1
(
l 51

N1

pld~r2r l !, ~61!

of positive and negative particles, respectively, and also
number densities of negativen2 and positiven1 particles
according to Eq.~38!. These obeyn5n21n1 . Use of this
and ofA5A21A1 gives us the coupled equations

~¹224pr 2n2!A252
4p

c
jp214pr 2n2A1 , ~62!

~¹224pr 1n1!A152
4p

c
jp114pr 1n1A2 , ~63!

which determine the vector potentials in terms of canon
momenta. Herer 25q2

2 /(m2c2) is the classical particle ra
dius for the negative particles and similarly for the positi
particles. We first form the sum of the two equations to g

@¹224p~r 2n21r 1n1!#~A21A1!52
4p

c
~ jp21 jp1!.

~64!

To get A2 and A1 individually we need another equation
Divide Eq.~62! by r 2n2 and Eq.~63! by r 1n1 and subtract
the first from the second. This gives
03640
ar
-

n-

e

l

t

¹2S A1

r 1n1
2

A2

r 2n2
D52

4p

c S jp1

r 1n1
2

jp2

r 2n2
D . ~65!

If we introduce

Ap[A11A2 and Ap[A12
r 1n1

r 2n2
A2 , ~66!

we thus find that they are solutions of the equations

S ¹22
4p

l2 D Ap52
4p

c
jp , ~67!

¹2Ap52
4p

c
jp , ~68!

where

1/l251/l1
2 11/l2

2 5~1/c2!~n1q1
2 /m11n2q2

2 /m2!
~69!

is the screening length ofAp and where

jp[ jp12
r 1n1

r 2n2
jp2 ~70!

is the source of the unscreenedAp .
If we assume that we are dealing with, for example

hydrogen or deuterium plasma, where the positive and ne
tive charges are equal and opposite,q152q25e, and thus
n15n25n ~charge neutrality!, we find that

1

l2
5n

e2

c2 S 1

m1
1

1

m2
D[n

e2

mc2
[r mn, ~71!

wherem is the reduced mass. This also makes it clear th

jp5 jp12
m2

m1
jp25

e

m1
S (

l 51

N1

pld~r2r l !1 (
k51

N2

pkd~r2rk!D
~72!

simply is an electric momentum current density

jp5
e

m1
(
j 51

N

pjd~r2r j ![
e

m1
p~r! ~73!

corresponding to the total momentum densityp~r!. Note that
in the center of mass frame where the total momentum

ptot5E p~r!dV ~74!

is zero (ptot50), the unscreenedAp field will not have a
monopole source.

The explicit solutions of Eqs.~67! and ~68! are
4-7
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Ap~r!5
e

m1c (
l

N1 plexp~2ur2r l u/l!

ur2r l u

2
e

m2c (
k

N2 pkexp~2ur2rku/l!

ur2rku
~75!

and

Ap~r!5
e

m1c (
j

N
pj

ur2r j u
, ~76!

respectively. We also see that

A25S 11
m2

m1
D 21

~Ap2Ap!,

and

A15S 11
m2

m1
D 21S Ap1

m2

m1
ApD , ~77!

and we have thus expressed the two vector potentials o
negative and positive particles, respectively, in terms of
momenta. As for the one-component plasma above the
approximation made is the replacement of the particle nu
ber densities with~smooth! constant densities.

From the preceding sections we also know how to m
these transverse. ForAp we can use the recipe in Eq.~53!
and for Ap Eq. ~32! can be used. The full problem of th
Darwin Hamiltonian of a homogeneous two-compone
plasma is therefore now solved.

X. RELATING THE ONE- AND TWO-COMPONENT
APPROXIMATIONS

Superficially the results above are a bit puzzling from
point of view of the one-component results. If it really
correct to consider the positive ions as moving in an aver
negative~electronic! charge density at rest we should ha
recovered an effective field with long range screening,l1

51/Ar 1n1, corresponding to the nuclear mass scale. Le
thus consider what happens in the two-component equat
when the electronic current density is small.

If we assume thatj250. Then Eq.~59! gives that

jp2~r!5
q2

2

m2c
A~r!n2~r! ~78!

and this inserted into Eq.~62! gives, usingA5A21A1 , that

¹2A250 ~79!

and therefore we must takeA2 in terms of momenta, as we
as in terms of velocities, as the zero vector (A250). Return-
ing to Eq.~78! we then see that
03640
he
e
ly
-

e

t

e

e

s
ns

jp25
q2

2

m2c
A1n25cr2n2A1 , ~80!

so that we can replacejp2 in Eqs. ~64! and ~65! by
cr2n2A1 . Both of these then give

S ¹22
4p

l1
2 D Ap52

4p

c
jp1 , ~81!

for A15Ap , and we see that the positive ion screeni
lengthl1 of the one-component model returns. This is co
sistent with Eq.~77! which implies that, ifA250, thenAp
5Ap . According to Eqs.~75! and ~76! this means that the
assumption ofj250 makes the short range screened fie
~75! and the unscreened field~76! both equal to the long
range screened field that is the solution of Eq.~81!.

It is not obvious what these results mean. It would be v
strange and unphysical, however, if the length scalel1 ap-
peared suddenly whenj2 becomes exactly zero. This ind
cates that it must be present somehow in the interplay
tween our unscreenedAp and our short range screened fie
Ap . A detailed investigation of this must probably go beyo
the smoothed constant density approximation used h
Nevertheless, we find in both our one- and our tw
component approaches, the noncontradictory results
nuclear length scalesl51/Ar pn, where r p is the classical
proton radius,r p5e2/(mpc

2), should be present in a rea
plasma.

XI. CONCLUSION

In this article we have reviewed the basis for the use
the Darwin approximation in plasma theory and in particu
its use in plasma statistical mechanics. The main result is
a hypothetical equilibrium plasma has lower energy wh
currents are parallel~correlated!, and the length scales ove
which these correlations are important have been consid
from a theoretical point of view. Our results, while not e
tirely unambiguous, strongly indicate that length scales
termined by nuclear mass can be important and presen
ready in thermal equilibrium.

Indeed, the observed longevity and stability of curre
and magnetic fields in astrophysical plasmas would be h
to understand if they were in conflict with an approach
equilibrium. The Darwin Hamiltonian does predict that th
thermal equilibrium of plasmas can support currents a
magnetic fields. The observed size of the relevant structu
are much larger than that predicted by the electronic len
scale. This empirical fact originally prompted the above
vestigation of the theoretical length scales of more reali
two-component plasmas.
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