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Hamiltonian of a homogeneous two-component plasma
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The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin
approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to
statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the
length scale of the magnetic interaction energy. In the past a screening Pen@h/@, with n number
density andr . classical electron radius, has been derived. We address the question whether the corresponding
longer screening range obtained from the classical proton radius is physically relevant and the answer is
affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macro-
scopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle
number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The
nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.
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. INTRODUCTION energy is screened with the characteristic length saale
=1/\rn, wheren is particle number density ang is clas-
Plasmas are rarely in thermal equilibrium since both natusical electron radius. Jones and Pytte started from quantum
ral and human made plasmas almost always have large termechanics and worked ik space(or momentum space,
perature, density, or pressure gradients. Nevertheless, plasince p=#k). Similar results were found by Ess¢18,19
mas, just as other forms of macroscopic matter, have a strongho showed that the classical Darwin Lagrangian for a ho-
tendency towards thermal equilibrium. It would therefore bemogeneous plasma should give rise to a Yukawa screened
of interest to know what this equilibrium state is like. Ac- magnetic interaction energy in the Hamiltonian. The fact that
cording to statistical mechanics the phase space probabilitjie vector potential in the Darwin formalism must be diver-
distribution is given by the canonical Maxwell-Boltzmann gence free, or transver¢€oulomb gaugehas, however, not

distribution been properly handled before, but here it will be.
f - 1 H(r,p) Il. OVERVIEW OF CONTENTS
(r,p)—zex B kgT @) We first review the fundamental status of the Darwin

Lagrangian. This is needed because several important aspects
and thus the key to the equilibrium distribution is the Hamil- of the Darwin approximation do not appear to be well
tonian H(r,p):E, or phase space energy, of the system. AknOWﬂ. The even more problematic and unknown status of
conserved energy for a system of charged particles exisi#§€ Darwin Hamiltonian is then discussed.
only in the, so called, Darwin approximation. Since radiation Since itis easy to find an energy, expressed in terms of the
is a higher order process it is probably not a bad approxima?anomcm momenta, but with the vector potential still given
tion to consider an equilibrium plasma as an equilibrium!N terms of velocities, the problem of finding the Hamil-

between a Darwin charged particle gas and a Planck distrigonian is reduced to expressing the vector potential ir! terms
uted, black body, photon gas of the momenta. We therefore then discuss how we find the

Plasma physics has been approached from the Darwin a ector potential in terms of the canonical momenta and how

proximation point of view by several authors. Simulations 0 makg It transyer_se. This is hecessary since the Coulomb
and numerical studies based on the Darwin Lagrangian ha/@u9€ is essential in the Darwin approximation.
been quite successfill—6]. In particular Mehra and De . The vector potential In terms (.)f th_e canonical momenta
Luca[7] have shown using simulations based on the Darwirf found using our main approximation: the real particle
Lagrangian that long range magnetic order may arise. AtlUmber density, a sum o functions, is replaced by a
tempts to use statistical mechanics and the Darwin HamilSMooth  constant denglty. We do this .f'rSt for a one-
tonian have been hampered by the fact that the Darwif®mPonent plasméof either electrons or ionsthen for a
Hamiltonian for macroscopic systems is not known explic_tyvo-component _plasma consisting of positive ions and nega-
itly, but there have been several noteworthy atterf<l]. tive electrons. Finally we c_onslder the problem of how these
An important step was taken by Jones and Pl who are reIat.ed. The outcome indicates that the length scale cor-
derived an approximate Hamiltonian for a one-componenfeSpond'ng to the ion mass should be of relevance for plasma

homogeneous plasma and found that the magnetic interactiot UCtUres-
Ill. THE DARWIN LAGRANGIAN
*Electronic address: hanno@mech.kth.se The Darwin [20] negligible radiation approximation to
URL: http://www.mech.kth.sé’hanno/ electrodynamics is often presented as an expansian'an
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where terms up toy/c)? are retained21-26. This gives  1/2 in front of the magnetic interaction term in E@®) dis-
correct results but is a bit puzzling since radiation is due taappears in the differentiation since the magnetic interaction
acceleration, not velocity itself. In fact, the exact retardedterm is quadratic in the velocities. Note that the Coulomb
Lienard-Wiechert potentials show that the electromagnetigauge ¥ -A°=0), which is used in the derivation of the
field from moving charges can be split into boufmd veloc-  Darwin Lagrangian, is essential for this result since it is only
ity) fields and radiatiorfor accelerationfields[27,28. The in this gauge that the Coulomb potential is velocity indepen-
latter are normally much smaller than the velocity fields. Adent.
more fundamental way of viewing the approximation is to  Using this one can finfi19,3§ the following expression
see it as neglect of the acceleration dependent part of ther the energy:
fields [19]. Once acceleration is neglected all retardations
2 . N 2

can be calculated and even the relativistic Lagrangian can be p; a; o]
expressed in terms of particle positions and velocities at E= om 2mc AT+ 5 @(r) | (6)

: i m; 2mc 2
some given time.

The magnetic interaction energy found by Darwin was iNNote that this is not yet the Hamiltonian sinsé&(r;) is still
fact derived earlier by Heavisid@9], for a historical discus-  expressed only in terms of velocities through E4). Also
sion, see Jackson and Ok[B0]. The same interaction was note the absence of &? term, which is due to the fact that
derived from the Dirac equation by Bréi81,32. For other e are not dealing with an external field but with the vector
fundamental aspects of this approach see, for examplgygtential from the particles of the system itself.

Sucher{33] or Mooreet al. [34,35. o It is possible to derive an exact expression for the energy

Magnetism is of importance in physics either because Vefom the Lagrangiar(2) in terms of positions and velocities

locities are large compared to the speed of light or because gy, one findg38,39,26,4)that the energy is given by
large, possibly macroscopic, number of particles compensate

for the smallness of/c (see Rindlef36], Sec. 7.7, for a Noq N aig.
discussioh Here we will be interested in the latter case. This E(ro)=> ~muv?+>, —
means that the relativistic correction to the kinetic energy =12 <1 hj
can be neglected. In small systems this term is inevitably of N
the same importance as magnetic effects but not in macro- +> 99 [vi-vj+(vi-&)(v;-&;)]
scopic oneg(since it is a one-particle quantity it will not <) 2¢? Fij
change the qualitative dynamics of the syskefhe use of
the Darwin Lagrangian for macroscopic systems has beefherer;;=|ri—r;|). This expression, unfortunately, is mis-
discussed, from a fundamental point of view, by Colemari€ading since it seems to predict that parallel currents raise
and Van Vleck37]. the energy, in stark contradiction to the well known fact that
Consider a system & charged particles with masses, parallel currents attradsee Schwingeet al. [26] for a dis-
chargesy;, positionsr;, and velocitiew; . When we neglect cussion. The lesson to be learned from this is that the energy

the relativistic correction to the kinetic energy the Darwin Must be expressed in phase spgesitions and canonical
Lagrangian of the system is momenta in order to give physically sensible results. We
therefore now proceed to find the Hamiltonian corresponding
to the Darwin Lagrangian of Eq2).

()

N

1 Qi Qi

L(ro)=2 | Smpf+ v Ar) =5 é(r) |, (2
i=1 C 2

IV. THE DARWIN HAMILTONIAN

where If we assume that there aM particles in the system and
N q introduce generalized coordinat®$,a=1, ... ,3, accord-
UEDY m (3) ing to Q'=x,=r;-g, ...,Q°N=2,, and corresponding
: ] generalized velocities, Q2, given by Ql'=v,,=v;
and, withe=(r—r;)/|r—rj|, e, ...,QN=v,y, we can write the Darwin Lagrangian,
N given by Egs(2)—(4), as follows:
vit(vi-e)e i
wn=3 0 L |rf'r,|- 4 N -
j J LQRQ=5 2 Ga(QQQ-V(Q. @
In ¢(r;) andA°(r;) the infinite terms arising from=|j are,
of course, excluded. Here the diagonal elements of the met@g,(Q) are given
The generalized momentum=JL/dv; is given by by
i G11=Go=G33=my, Gy=my, ...,
pi=muo;+ %AC(ri)_ (5) 11 22 33 1 44 2
Gan-1,3n-1= Ganan=My, 9

We note that this is the same expression as the one obtained
in the familiar case of an external magnetic field. The factorand the off diagonal by
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G1,=G,=0, G;3=G3=0, (10 getting around this by assuming that for a homogeneous
plasma a continuum approach is valid. The algebraic prob-

910 1 (X1—%,)? lem is thereby replaced by an analytic one. This was first
G14Q)=G4(Q)= 5 — T | (11 done by Jones and Pytt&7] and their result has been con-
2c2 \[r=ral * |ry =1y firmed by Esse [18,19.

These attempts to find more exact Darwin Hamiltonians
d19> 1 (X1=X2)(Y1—Y2) for macroscopic systems have met with criticigsee, for
202 | [ri—ry) ' example, Krizar{42], Alastuey and Appef43]). One of the
(12) arguments used is that a more exact Hamiltonian contain

terms of higher order irv/c than those neglected in the

G15(Q)=G5y(Q) =

[ri—rsf?

G16(Q)=Ge1(Q) Lagrangian. This is not correct; all higher terms are of the
order of p?/(mc)?, wherep is a typical momentum. The
0192 1 (X1 —=X2)(21—25) speed of light, however, appears to be of higher order in the
=52 | -1y PREPNE , dimensionless combinatioNe?/(mc®R) =Nr./R, whereN

is the number of particles ang is a typical size of the
(13 system. Clearly the approximation of the Hamiltonian is of a
completely different nature from that used to get the La-
where  |ri—1,[=V(Q*-Q%)*+(Q°-Q*)?+(Q°- Q%%  grangian. The Darwin Lagrangian defines a dynamical sys-
etc., and where&/(Q) is simply the Coulomb potential en- tem and the exact Legendre transform of this gives the cor-
ergy. The corresponding Hamiltonian is by definition giveNnresponding system is phase space. Approximating the

by Legendre transform of the Lagrangian to the Hamiltonian
3N has nothing to do with radiation.
_ : Alastuey and Appe[43] have claimed that there are no
H(Q,P)= ap_—L 14 :
(Q.P) ;::1 QPa-L, (14 long range effects of magnetism and that all such conclu-

sions drawn from the Darwin Hamiltonian are wrong. Essen-

the Legendre transform a&f. Here the generalized momenta tially they start from Coulomb matter and radiation and then

P,=dL/3aQ?. According to well known general results one claim that this approximation must be exact for long range
then finds that the Hamiltonian is purposes. They then seem to forget that relativistic effects,
no matter how small, grow, and even diverge, with the num-
ber of particles and become important precisely when long
H(Q,P)=5 b2—1 G**(Q)P.P,+V(Q), (19  ranges are considered. There is nothing fundamental about

o the split into Coulomb field plus radiation. As discussed

whereG3%(Q) is the matrix inverse o6,,(Q). The problem abo_vg the fundamgnta_l split is k_)etwe_en velocity fi_elds and
of finding the Darwin Hamiltonian is thus the problem of radiation (acceleration fields. The|r cla|m§ are _also in con-
inverting the matrix given by Eqg9)—(13). A formula for trast to, for example, the _d|rect numerical S|mu!at|ons by
the exact general inverse is easily seen to be very complf¥e€hra and De Lucg7] who find long range magnetic effects
cated and is unlikely to yield physically useful insight. Bsse [Tom the Darwin Lagrangian. Consequently, if they vanish in
[38] approached the inversion problem through series exparil® corresponding Hamiltonian formalism, this must be due
sion. The first term is the inverse of the diagonal mass mal0 some error. Careful mathematical investigations by Kunze
trix. Keeping also the next two terms gives and Spohri44] have also proven the correctness of the Dar-
win approximation for theN-body problem.
N A relativistic derivation of the Darwin Hamiltonian has
H= ( pi-Aq(r) recently been published by Crater and Lusafdl. They
i=1 get around some of the algebraic complexity of the matrix
@

2miC2Al(r|)

3N

LS

2m

_ 9
2m;c

Qi
+§¢(ri)}

inversion by assuming that electric charge is an anticommut-
(16) ing Grassmann variable. The empirical basis for this in es-

+ ) . .
sentially classical plasma problems is not clear, however.

where
N V. FINDING THE DIVERGENCE FREE
q-[p-+(p- . el.)el.] VECTOR POTENTIAL
A1<ri>=j2 AT (17)

&  2mlri—n| The vector potential4) can be obtained as the solution of

Keeping only the first of these two terms gives the traditional
Darwin Hamiltonian as found in many textbodi&2,24-26 Ao
icati V2AS= — — | (18)
and application$39,41]. c Lo
Unfortunately one can easily see that in macroscopic
systems such an expansion will not necessarily converge
(Trubnikov and Kosachep8]). Below we will find a way of  where
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o a we find that the Laplacian i§2®,=nr""cosé. Therefore
L=+ V— (19  A®=A,—V®, has zero divergence. Explicitly we find
4 ot n
n
is the transversédivergence freecurrent density. Here the AC— n+2 n 29
charge and current densities are assumed to be " n+3[( )& N(e; &)&]. 29
N For our casen=—1, the relevant divergence free vector
e(r) =Z jo(r— (200 field, corresponding té\=(qiv;/c)r ‘e, is
qv; 1
S A= o let (e gel (30
J(r)=;1 qjv;(r—r;). (21)

If one now moves the origin back 19, so thatr=|r—r],
The reason for using the transverse current as source term amd usev; =v;e, we see that we end up with one of the terms
the right-hand side is the use of the Coulomb gauge whiclin Eq. (4). The choice ofP _, is not the only possible if we
requires the vector potential to be divergence fr¥ A°  only demand zero divergence, but if we also demand reason-
=0). If we take the divergence on both sides of Eif) we  able behavior at the origin and at infinity it becomes unique.
see that if the source is not divergence free then neither is the In summary, instead of solving EL8) with divergence
solution. Use of the transverse current as source give thigee source(19) we can simply solve Eq(23) and impose
result (4). There is, however, a simpler method for finding zero divergence afterwards by adding a suitable gradient. A
the divergence free vector potential, which we present belowgeneralization of this will be useful below.
since it will be needed later.
Start with the solution to the equation VI. VECTOR POTENTIAL IN TERMS
OF CANONICAL MOMENTA

28 — i . . .
VAA=-— c J (22) In this section we first treat the homogeneous one-
component plasma. This more elementary background must

with the ordinary current Eq21) as source. This solution is be thoroughly understood before attempting the two-
component plasma.

N q;v; If we assume that there is only one kind of particle, with
A(UZ? cr—r (23 massm and chargey, the energy of Eq(6) becomes
J

N 2

We now wish to make this divergence free by adding a suit- EZE L AT+ = ¢(r) (31)

able gradient =1\2m 2mc

A°=A-V®d (24)  where,A° from Eq. (4),

such that N vt (vi-e)e

AC(r)=ziC > |£_’r_|‘) L (32
V-A°=V.-(A-V®)=0, (25 ! !

is divergence free according to E®0). In order to find the
corresponding relevant expression in terms of canonical mo-
menta, as given by Ed5),

while the curl of A° remains the same as the curl &f
Consider one of the terms in the sum of E2@3). Choose
the origin atr; and thez axis alongv;. The term is then

q
Ui . — . _— c :
Ai:%%- (26) pi mv|+CA(r|), (33
we now first replace the transveragby the nontransversi

We thus need to make vector fields of type of Eq. (23),

An=r1"g, (27)

divergence fregtransversg Here n=—1 but the general
result will be useful below. Introduce spherical coordinates,
r,0,¢, sothate,=cosfe —sinfe,, ande,- e =cosf. Using  We will recover a divergence free result later by adding a
these one finds thaV-A,=V-(r"e)=nr""'cosé. If we  suitable gradient.

now choose Now put

N
_ 4 Y
A(r)_C; = (34)

P, = " “eosg 28 h_9 4 35
i (28 Vis o Tme (ry) (35
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into Eq. (34) and get

N
_ a4 P exp=[r=rlin)
Ap(n) = mc; T : (45)

dw [ P qA(r))
AN==2 ( - ) (36)
¢ T \mlr=r| mdr—r There now remains to find the divergence free version of this

SinceV2(1/r) = — 48(r) the Laplacian of both sides of this VECtOr field:

equation gives
VIl. DIVERGENCE FREE YUKAWA VECTOR POTENTIAL

N
V2A(r)= _47T9 > (ﬁé(r—rj)— Mg(r_rj))_ Cor)s_ider one of the terms in the sum of E45). C.hoose
cT \m mc the origin atr; and letp,=p;e,. We now need to find out
(37 how to remove the divergence of a vector field
Denote the number density of the particles exp(—r/\)
y Ar)= . e. (46)
n(r)zg,l S(r—rj). (39

Considerations similar to those in Eq&3)—(27) above

. . . show that a good scalar function is given b
The second sum on the right-hand side can then be written as g g 4

> N 2 N B [exp(r/N)—(1+r/N)]exp(—r/N)
477[:—CZ ) A(rj)c‘i(r—r;)=4wr:—c2 > A1) (39 o= NG cosd. (47)
5 N The resulting zero divergence vector field can be written as
q
ST A2 ) A%() = A1)~ V(1)
92 _exp(—r/)\) exp(r/N)—(1+r/N)
:477-@ A(r)n(r). (40) - r (I’/)\)Z

We now introduce the electric momentum current density x[3(e,-8)e—e]+[e—(e-e)e] (48)

N
.. q
(0= 1-21 Py o(r=ry). 4D This field has also the property that, forgoing to infinity it
goes to a field like that in Eq27),
Using this, Eq(37) can be written as

1
A lim A%(r)=5-[e+ (e e)el. (49
AN =—=—"Ip(n. (42) Mo

q2
(V2_4WEH(I’)

In order to write the expressidd8) in a more compact way
This equation determines the vector potential in terms of thgve introduce the definitions
canonical momenta.

In order to solve this we must now makeceucial ap- exp(x)— (1+X)

proximation. We assume that we can use an averaged, gx)=1—-——-—"—
smooth, densityi(r) instead of thes function sum. If this is X
allowed we can find an explicit solution for the case of a
constant densityn(r) =n=const. We introduce the notation and,

2 1

q2 1 q2 _ exp(x)—(1+x)_
rozﬁ’ F:En:ron' (43) h(X)—B—X2 1. (50)

for the classical particle length, and the Yukawa damping They have the property that
length\, respectively. This allows us to write E¢i2) as

47
-5
and this is the relevant limit for large valuesf i.e., small
The physically interesting solution, which we denétg, is  damping. Using these we find that the expres$##) can be
given by written as

1
dnr )I(iir:)g(x)=)l(i210 h(x)= 5 (51)
A(r)=— TJp(r)- (44)
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FIG. 1. Plot of the functions exp(X)g(x) (lower curve and
exp(—x)h(x) (upper curveé These are defined in EE0). The dis-
tance dependence of the magnetic interactions<anen(—x)g(x)/x
and e exp(—x)h(X)/x.

exp(—r/\)
AS(r)= [g(r/N)e+h(r/N)(e-e)e].

(52

The qualitative distance dependencies are plotted in Fig.

Finally we can now write

qa % exp(—|r—r;|/\)

c —
A= e ] Ir—r|

[a(lr=r;l/M)p;

+h([r=r;|/\)(p;-g)g] (53

for the divergence free, transverse, vector potential in terms

of canonical momenta.

VIll. HAMILTONIAN OF HOMOGENEOUS
ONE-COMPONENT PLASMA

PHYSICAL REVIEW E 69, 036404 (2004

The nature of this interaction is such that the energy gets a
negative contribution for parallel momentum components,
pi-p;>0, as long as the functiog(x) is positive, and this is
the case for 8x<<1.793282133. The energy also gets a
negative contribution when the projections of the momenta
along the interparticle vectors, = (ri—r;)/r;; , are parallel,
(Pi-&)(p;-&;)>0, for all distances. The nature of the dis-
tance dependence of the interaction is shown in Fig. 1.

The interaction energy is clearly damped with the length
scale\. How large is\ compared to the average interparticle
distance;;? From Eq.(43) we find that\ = 1/\ron. Since
n~1/(r_ij)3 we find that\ ~T;; \rj; /ro>Tj; . This is consis-
tent with the use of the continuum approximation in the deri-
vation of our results. A large number of particles must par-
ticipate to get the screening. This screening is, however,
important for the thermodynamics of this Hamiltonian to
make sense. Without screening the energy diverges to minus
infinity as currents correlate over larger and larger distances.
This phenomenon, which Welk@46] termed “magnetische
katastrophe,” is thus prevented by the damping of the phase
space magnetic interaction.

What is the physical significance of the resi{id)—(56)?
Statistical mechanics indicates that the phase space distribu-
tion of the particles in thermal equilibrium should be given

y Eqg. (1) and thus that the most probable configurations are
hose with the lowest energy. From this one concludes that
the magnetic interaction should result in a correlation of par-
ticle momenta over length scales givenoy 1/@, where
ro=09%(mc?. The question now is whether the length
scales corresponding to nuclear massewsill be of impor-
tance or if the electrons with correspondingly much smaller
\ determine a maximum correlation distance in real plasmas.
The idea of a one-component plasma comes mainly from
solid state physics where the conduction electrons may con-
stitute a plasma of negative particles that move in a fixed
background of smeared out positive chatgejellium” ). In
a real plasma of light electrons and heavy positive ions one
can expect than the length and time scales of the electron

We have now found the Hamiltonian of a homogeneouglynamics are smaller that the corresponding scales for the

one-component plasma. It is given by

N 2
SR e+ T
HLP) =2 | 5~ Fmc PrART +5 ¢(r) | (59
and the vector potential is given by E¢3) so that
N
q exp(—rij/N)
AS(r)=— —
o) mCJ(E#i) rij
X[g(ri; /N p+h(ri; IN)(pj-ej)e;]. (55

The magnetic two-particle interaction energy is thus
g® exp(—rj;/\)
m?c? rij
X[g(ri; /N)pi-py+h(ri IN)(pi- &) (p;- &) ]
(56)

mag_ _

positive ions. The electrons also dissipate momentum much
faster due to their small mass and larger Thomson cross sec-
tion (the thermal, random isotropic, velocity of the electrons
is of course given by the temperature, what is possibly dis-
sipated is the net drift momentum responsible for any non-
zero current densijy It is therefore not unreasonable to as-
sume that there is an approximate separation of the dynamics
of the plasma so that one may consider the ions to move in
background of smeared out negative charge. This positive
ion one-component plasma should be characterized \mj-

ues determined by nuclear mass scales.

IX. HAMILTONIAN OF HOMOGENEOUS
TWO-COMPONENT PLASMA

Assume now that there are two kinds of particles, elec-
trons(—) and protong+), say. What happens to the screen-
ing length\ found in the one-component case? We will now
investigate this question mathematically using the same for-
malism as for one-component plasmas.

As above we start from Eq22) and worry about finding
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the transverse vector field later. Since this equation is linear 5 A, A Jp+ jp—
the two types of particles independently produce vector po- \Y (ﬁ— N ): - T(r n _W)' (65
; +1+ - + -
tentials,
4 If we introduce
VZA—=—TJ—, (57)
. A=A.+A_ and A,=A.———A , (66
- _
V2A+:_Tj+a (58

we thus find that they are solutions of the equations
whereA=A_+A, andj=j_+j, . We now express the cur-

rent densities Eq(21) in terms of canonical momenta using V2 4_77 A—_ 4_77 . 6
Eq. (35). This gives 2| T e (67)
JU%Eq—"ﬂ—M)wﬂ) 4
- . s VA== (69)
q2
:Jp,(r)—m A(r)n_(r), (59  where
0 g IN2=1N2 + 12 =(1/c?)(n g2 /my +n_g/m.)
+
(1= ES q+( “mG )au—wo (69
) is the screening length &%, and where
. a+
=lp+ (D=5 ADNL(D). (60) i
Ja=lp+— r n_ Jp- (70)

Here we have introduced the electric momentum current den-

sities, is the source of the unscreendd .
N- If we assume that we are dealing with, for example, a
Jp(N=jp_(N+jp(N= a- E  S(r—Ty) hydrogen or deuterium plasma, W_here the positive and nega-
m- k=1 tive charges are equal and opposge,= —q_=e, and thus
q N+ n,=n_=n (charge neutrality we find that
n
+ — o(r—ry), 61
o 2 A=), (61 L oell 1 e
—2=n—2<—+—)zn—zzr#n, (72)
of positive and negative particles, respectively, and also the A co\my  m- pmC

number densities of negative. and positiven, particles
according to Eq(38). These obeyn=n_+n. . Use of this Whereu is the reduced mass. This also makes it clear that

and of A=A_+A, gives us the coupled equations

m_ e (N«
Jr=lps— — p- (E p|5(r—r|)+2 pké(r—rk))

4
(VZ—dar_n_)A_=——j,_+4mr_n_A,, (62 m,
¢ (72)
A i i i i
(V2 4ar .0, )A, = — - ps+Amr AL, (63 simply is an electric momentum current density
e
which determine the vector potentials in terms of canonical j”:m_ > pjo(r—ry)= p— a(r) (73
+j=1 +

momenta. Here _=q%/(m_c?) is the classical particle ra-
dius for the negative particles and similarly for the positive

particles. We first form the sum of the two equations to getcorrespondmg to the total momentum density). Note that

in the center of mass frame where the total momentum
4 )
[VZ=4m(r_n_+r,n,)J(A_+A)=— T(]p—+lp+)-

64) Prot= f m(r)dv (74)

To getA_ and A, individually we need another equation. is zero @,;=0), the unscreened . field will not have a
Divide Eq.(62) byr_n_ and Eq.(63) by r,n, and subtract monopole source.
the first from the second. This gives The explicit solutions of Eqg67) and (68) are
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N, 2
e piexp —|r—r|/\) ) .

= _=——A.n_=cr_n_A., 80

Ap(r) ch e - = o A+ . (80)

N_

e peexp(—|r—ry|/N)
>

(75) so that we can replacg,_ in Egs. (64) and (65 by

m_C "k Ir=rd cr_n_A, . Both of these then give
and
e & p V2 4W)A am, (81)
- i Tz [T T e
Ad= s 2 o (76) N
respectively. We also see that for A.=A,, and we see that the positive ion screening
m |\ -1 length\ , of the one-component model returns. This is con-
A =|1+—]| (A—A,), sistent with Eq.(77) which implies that, ifA_=0, thenA,
m. =A,. According to Eqs(75) and(76) this means that the
and assumption of_ =0 makes the short range screened field
(75 and the unscreened fiel@6) both equal to the long
m_\ "1 m_ range screened field that is the solution of E&fl).
A= ( 1+ o A+ o Ap) , (77) It is not obvious what these results mean. It would be very
+ +

strange and unphysical, however, if the length sealeap-

and we have thus expressed the two vector potentials of theeared suddenly when. becomes exactly zero. This indi-
negative and positive particles, respectively, in terms of th&ates that it must be present somehow in the interplay be-
momenta. As for the one-component plasma above the onfjveéen our unscreenedl; and our short range screened field
approximation made is the replacement of the particle numéy - A detailed investigation of this must probably go beyond
ber densities Witf‘(smooth constant densities. the smoothed constant denSity apprOXimation used here.

From the preceding sections we also know how to makdVevertheless, we find in both our one- and our two-
these transverse. Fdx, we can use the recipe in E¢3) component approaches, the noncontradictory results that
and for A Eq. (32) can be used. The full problem of the nuclear length scales=1/\r,n, wherer, is the classical
Darwin Hamiltonian of a homogeneous two-componentProton radius,r,=e?/(m,c?), should be present in a real
plasma is therefore now solved. plasma.

X. RELATING THE ONE- AND TWO-COMPONENT

APPROXIMATIONS XI. CONCLUSION

Superficially the results above are a bit puzzling from thethelrl]D;hrlv?/ir?r:CIer&?mg?i\éi Eﬁw(Iaa\_,;(ra‘r(]jatt]heeESS:nBO:nthzrﬁisI:rf
point of view of the one-component results. If it really is . bp P y P

correct to consider the positive ions as moving in an averaggsﬁseo'tﬂgtlﬁzrlng Slzﬁhl)srffril mlgcs;rr]na;IEZ'STIT)?/v?raSnreerSUIt\:\?htgr?t
negative(electroni¢ charge density at rest we should have ypP q P 9y

recovered an effective field with long range screening, Cur_rents are paralle{lporrelate@l, and the length scales over
: which these correlations are important have been considered
=1/\Jr,n,, corresponding to the nuclear mass scale. Let u

thus consider what happens in the two-component equatio rom a theoretical point of view. Our results, while not en-
't happ o P q rfﬁely unambiguous, strongly indicate that length scales de-
when the electronic current density is small.

Ifwe assume thel =0, Then Eq(59) gives that 20 BY nuclear mass can be important and present a
92 Indeed, the observed longevity and stability of currents
jp—(N=——A(rn_(r) (780  and magnetic fields in astrophysical plasmas would be hard
m_c to understand if they were in conflict with an approach to
equilibrium. The Darwin Hamiltonian does predict that the
thermal equilibrium of plasmas can support currents and
V2A =0 (799  magnetic fields. The observed size of the relevant structures
are much larger than that predicted by the electronic length
and therefore we must talée_ in terms of momenta, as well scale. This empirical fact originally prompted the above in-
as in terms of velocities, as the zero vectAr < 0). Return-  vestigation of the theoretical length scales of more realistic
ing to Eq.(78) we then see that two-component plasmas.

and this inserted into E462) gives, usingA=A_+A, , that
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