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Homework 3, due 22/2-2008

We are going to solve the equations for an unsteady isentropic flow through a
convergent-divergent nozzle using the MacCormack technique. This problem is
described in detail in Anderson chapter 7.

The governing equations on conservative form are, (see Anderson equations
(7.15), (7.93) and (7.96))

∂U

∂t
+

∂G

∂x
= F

where
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ρA
ρAv
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0

p∂A
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A(x) = 1 + 2.2(x − 1.5)2, x ∈ [0, L]

L = 3 is the length of the nozzle. We also need relations from thermodynamics;
p = ρRT and e = RT/(γ − 1) where R = 288.7J/kg/K is the gas constant and
γ = 1.4.

Initial conditions:

v(0, x) = 0 (1)

p(0, x) = p0 +
x

L
(pe − p0) (2)

T (0, x) = T0 (3)

where p0 = 101000 Pa and T0 = 300 K (the reservoir conditions). pe is the
exit (back) pressure. The size of the pressure ratio p0/pe determines the flow
through the nozzle, so pe has to be chosen differently depending on the flow
case. To compute ρ(0, x) and e(0, x) the given initial conditions can be used
together with the thermodynamical relations given above.

Boundary conditions:

To determine the number of boundary conditions required at each boundary
we use the method of characteristics.

The inflow will always be subsonic, i.e. there are two in-going characteristics
and one outgoing. Therefore, we specify the value of two of the variables, e.g.

ρ(t, 0) = ρ0 =
p0

RT0

(4)

T (t, 0) = T0 ⇒ e(t, 0) =
RT0

γ − 1
(5)

For the third variable, v, we need a numerical boundary condition which is
obtained by linear extrapolation.
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The outflow conditions will depend on the flow case;

For supersonic outflow all characteristics are going out from the domain and
no physical boundary conditions are required. Values of the flow variables at
the boundary are obtained by linear extrapolation.

For subsonic outflow we have one in-going characteristic and we prescribe the
pressure to be equal to the exit pressure

p(t, L) = pe. (6)

The other two boundary conditions are obtained by using conditions that are
compatible with the physical behavior of the flow. For inviscid flow,

p

ργ
= s

is constant along a stream line. We also know that along one of the outgoing
characteristics the quantity

R2 = u +
2c

γ − 1

is transported at velocity u + c where R2 is called a Riemann invariant. These
facts are used to construct numerical boundary conditions. We extrapolate the
values of the entropy and the Riemann invariant at the boundary by using their
values inside the domain as

sm = 2sm−1 − sm−2 (7)

R2m = 2R2m−1 − R2m−2 (8)

where m is the number of grid points. From these relations we can compute ρ,
ρv and ρ(e + v2/2) at the boundary.

ρm =

(

pe

sm

) 1

γ

vm = R2m −
2
√

γpe

ρm

γ − 1

em =
pe

ρm(γ − 1)

It is your job to write a code and to run the three different cases:

1. Supersonic outflow, pe = 0.1278p0

2. Subsonic outflow without shock, pe = 0.98p0

3. Subsonic outflow with a shock, pe = 0.6784p0
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The MacCormack scheme should be used and the code can either be based on
the code handed out for the Shock tube or you can write a code completely on
your own.

For each case you should run the code until you obtain a steady solution and
present the results, see e.g. Figure 1 (b). Be sure to run enough time steps to
reach convergence to steady state (around 5000 to 10000). Check the density
residual, ‖ρn − ρn−1‖/‖ρn‖, where ‖ρn‖ is the norm of the vector containing
ρn

j , j = 1, 2, . . . ,m, (use norm in MATLAB), and make sure it has decreased
at least five orders of magnitude, see Figure 1 (a).

We know from Homework 2 that artificial viscosity is needed to obtain a solution
free from oscillations and that it should be implemented using a conservative
formulation,

U t + G(U)x + (KUx)x = F

Use the same artificial viscosity model as in the Homework 2 but use a pressure
switch instead of the density.

Experiment with the amount of artificial viscosity to obtain the ”best” result.
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(b) Steady state solution, subsonic case

Figure 1: Subsonic case


