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Homework 2, due 18/2-2008

1.) Apply the MacCormack scheme

u∗

j = un
j − λ(f(un

j+1) − f(un
j )) Predictor step

un+1

j =
1

2
(un

j + u∗

j ) −
λ

2
(f(u∗

j ) − f(u∗

j−1)) Corrector step

to

ut + f(u)x = 0 f(u) =
u2

2
x ∈ [−1, 1] (1)

u(0, x) = − sin(πx). (2)

Here, λ = ∆t/∆x. Use periodic boundary conditions, i.e. u(1, t) = u(−1, t).

Run the problem until at least t=0.4 s in order to obtain a shock. Look at
the numerical solution and study the resolution of the shock and explain the
overshoots (oscillations) close to the shock. Hand in a plot of the numerical
solution.

In order to damp the overshoots we add artificial viscosity. Apply the MacCor-
mack method to the modified problem

ut + f(u)x = ǫuxx (3)

or written on conservative form

ut + [f(u) − ǫux]
︸ ︷︷ ︸

f̃

x = 0 (4)

where ǫ is a small constant of order ∆x and f̃ is a modified flux function.

The artificial viscosity term should be implemented in conservative form, as in
equation (4). The ux term in the modified flux function has to be evaluated
numerically. When u∗ is computed by the predictor step, ux should be approx-
imated by a backward difference and when un+1 is computed by the corrector
step, ux should be approximated by a forward difference. This will lead to a
correct implementation of the artificial viscosity term.

Run the problem again with artificial viscosity and comment on the resolution
of the shock and the overshoots.

The total variation,

TV (un) =

∞∑

j=−∞

|∆+un
j |, ∆+un

j = un
j+1 − un

j

is a quantity that is used as a measure for oscillations.

A difference method is called total variation decreasing, (TVD), if it produces a
solution satisfying TV (un+1) ≤ TV (un), ∀n. If the solution is TVD it will not
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have any oscillations close to the shock. Examine numerically if the MacCor-
mack scheme produces a solution where the total variation is non-increasing.

Hint: plot the total variation as function of time.

Also, try to determine how large ǫ you need in order to obtain a solution where
the total variation is decreasing for all times.

2.) Run a shock-tube problem for the 1D barotropic gas dynamics equations,
i.e the Euler equations and the assumption that the pressure is only a function
of the density:

ρt + (ρu)x = 0 (5)

(ρu)t + (ρu2 + p)x = 0, p = Kργ

where K is a constant determined by the initial conditions and γ = 1.4.

A shock-tube is a tube, closed at both ends, with a diaphragm separating a
region with high pressure gas and a region with low pressure gas.
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Figure 1: Initial conditions

Initial condition for the density, see figure 1, is

ρ(x, 0) =

{

ρ0 if x ≤ L/2

ρ1 if x > L/2
(6)

and the velocity is u(x, 0) = 0. L = 3 is the length of the tube.

As boundary conditions we use the fact the tube is closed, so u(0, t) = u(0, L) =
0 and the value of ρ at the boundaries is extrapolated from the value of the
density inside the tube.

Your job is to complete a MATLAB code to solve the 1D barotropic gas dy-
namics equations, (5), numerically using the MacCormack scheme.

(The files can be downloaded from the course home page)

The following files need to be completed

The file flux function.m defines the flux function. Here the flux function for
the system of equations (5) must be coded.
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boundary cond.m sets the boundary conditions, i.e. (ρ)1, (ρ)n, (ρu)1 and (ρu)n,
(n is the number of grid points). In this case the velocity is equal to zero, hence

(ρu)1 = (ρu)n = 0

and the density is extrapolated yielding

ρ1 = ρ2 ρn−1 = ρn

Artificial viscosity

See also Anderson, chapter 6.6.

To damp oscillations in the solution artificial viscosity has to be added. Instead
of (5), we solve

U t + F (U )x + (KUx)x = 0

where U = (ρ, ρu) and F (U ) = (ρu, ρu2 +p). The term (KUx)x is the artificial
viscosity model. Here we use a density switch model where the density is used
to localize the shock.

K = −∆xVscal(C2sw(ρ) + C0)

where ∆xVscal is a velocity scaling in order to obtain the right size of the viscous
term. ∆x is given by the mesh size and the parameter Vscal is related to the
convective speed (characteristic speed) of the problem and is chosen as

Vscal = max(abs(u + c), abs(u − c))

where c is the speed of sound.

The density switch, sw(ρ) is computed in the following way

sw(ρ) = |
∂2ρ

∂x2
|/ρ̄

The second order derivative of ρ is approximated by a second order central
difference and ρ̄ is a mean value of ρ computed in grid point j as ρ̄j = ρj+1 +
2ρj + ρj−1.

When there are large gradients in ρ, sw(ρ) will be of order 1, and when ρ is
smooth sw(ρ) will be approximately zero. C2 is a parameter and should be
chosen to obtain sufficiently much viscosity to damp the oscillations. C0 is a
“background” diffusion parameter and should also be chosen. Both C0 and
C2 should be of order 1 or less. The optimal values of C0 and C2 is usually
determined after some experimentation with different values, see iii) below.

The artificial viscosity model is implemented in the file artificial visc.m.

i) The CFL stability condition is guaranteed by taking ∆t = CN∆x/umax with
CN (the Courant number) < 1. Here, umax is the maximal absolute value of
the characteristic speeds. From the quasi-linear form of the equations,

(
ρ
u

)

t
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Kγργ−2 u
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ρ
u

)

x

= 0 (7)
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show that the characteristic speeds are u ± c with c2 = Kγργ−1 = γp/ρ where
c is the speed of sound. Use this to set the time step in the main program
shocktube.m.

ii) Run the problem as set up. The initial jump breaks up into a rarefaction wave
moving left and a shock moving right. Measure the shock speed. Check that
it is correct by computing the shock speed s from the jump relation (Rankine-
Hugoniot condition)

s(ρl − ρr) = ρlul − ρrur

Here, ρl and ul are the computed left hand states. The right hand ones, ρr and
ur are given by the initial conditions.

iii) Run the code with different Courant numbers and different values of the
artificial viscosity parameters C2 and C0 and comment on the solution. Try
to find the optimal (no oscillations and a good resolution of the shock) choice.
(Note that C0 should be smaller than C2.)


