Computational Fluid Dynamics SG2212, Mekanik 1

Study questions

1. Define and use the Rankine-Hugoniot jump condition to compute the
shock speed for the following problem

ut+uu, = 0 —oco<xr<oo, t>0

(@, 0) = {1 <0

0 otherwise

2. Define the entropy condition for a scalar conservation law.
u+ f(u)y, =0 —oco<z<oo, t>0
with a convex flux function f(u). The shock is moving with speed s and

the state to the left is given by uz and the state to the right by ug.

Why do we need an entropy condition ?

3. Define a total variation decreasing (TVD) method. Why is this a desirable
property ?

4. Investigate the one-sided difference scheme

ntl _gn aﬁ(un —u? )

U J Ag 7 j—1

for the advection equation
ur +au, =0

Consider the cases @ > 0 and a < 0.

a) Prove that the scheme is consistent and find the order of accuracy.
Assume At/Ax constant.

b) Determine the stability requirement for a > 0 and show that it is
unstable for a < 0.

5. Apply Lax-Friedrichs scheme to the linear wave equation
ur + aug =0

that is,
1 aAt
1
uitt = 5(“?—1 +uii) - E(U?H —uj_y)
a) Write down the modified equation.

b) What type of equations is this?

¢) What kind of behavior can we expect from the solution?
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6. A the three-point centered scheme applied to
uy +au, =0, a>0.

yields the approximation

1 aAt
uf ™ =+ E(“jﬂ — uj-1)

Show that this approximation is not stable even though the CFL condition
is fulfilled.

7. What does Lax’s equivalence theorem state?

8. What is the condition on the n x n real matrix A(u) for the system
u; + Au, =0
to be hyperbolic ?

9. The barotropic gas dynamic equations

pt +pu, =0 (1)

1
Ut+uum+;pm=0

where
p=p(p) =Cp’

i and C' a constant, can be linearized by considering small perturbations
(p',u') around a motionless gas.

a) Let p = po + p and u = ug + v/ where ug = 0. Linearize the system
(1) and show that this yields the following linear system (the primes has
been dropped)

pt+ pouz =0
2

ug + %Pz =0 (2)
where a is the speed of sound. a and py are constants.
b) Is the system given by (2) a hyperbolic system? Motivate your answer.
c¢) Determine the characteristic variables in terms of p and w.

d) Determine the partial differential equations the characteristic variables
fulfill - characteristic formulation.

e) Given initial conditions at t = 0 and let —oo < z < 0o (no boundaries)
p(0,x) = sin(x) u(0,z) =0

determine the analytical solution to (2) for ¢ > 0. Hint: Start from the
characteristic formulation.
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10.

11.

12.

tn+1

h @ ®
i-1 j j+1

The linearized form of (2) is given by

<Z>t *(alm 5) <Z> =0, (3)

A

where a is the speed of sound. a and py are constants.

a) Draw the domain of dependence of the solution to the system (3) in a
point P in the x-t plane.

b) The system is solved numerically on a grid given by z; = jAz,j =
0,1,2...and t, = nAt,n=0,1,2,..... using an explicit three-point scheme,
see the figure below.

Draw the domain of dependence of the numerical solution at P (in the
same figure as a)) of the three-point scheme in the case when

i) the CFL condition is fulfilled
ii) the CFL condition is NOT fulfilled.
Assume that P is a grid point.

To solve Euler equations in 1D

pr + pug + upy =0
1
Ut‘i‘uux‘F;px:O

pe + pctuy + upy = 0

How many boundary conditions must be added at (motivate your answer)
inflow boundary when the flow is

a) Supersonic

b) Subsonic

outflow boundary when the flow is

¢) Supersonic

d) Subsonic

Projection on a divergence-free space

a) Show that a vector field w; can be decomposed into
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Jp

w; = U+ —
) % al‘l

where u is is divergence free and parallel to the boundary.

b) Apply this to the Navier-Stokes equations, show that the pressure term
disappears and recover an equation for the pressure from the gradient
part.

13. From the differential form of the Navier-Stokes equations obtain the Navier-
Stokes equations in integral form used in finite-volume discretizations,

14. Finite volume (FV) discretization

(a) Derive the finite volume (FV) discretization on arbitrary grids of the
continuity equation (Ju;/dx; = 0),

(b) derive the FV discretization for Laplace equation on a Cartesian grid,

(¢) show that both are equivalent to a central difference approximation
for Cartesian grids.

15. State the difficulties associated with the the finite-volume discretizations
of the Navier-Stokes equations on a colocated grid? and show the form
of the spurious solution which exist.

16. Staggered grid
(a) Define an appropriate staggered grid that can be used for the dis-

cretization of the Navier-Stokes equations,

(b) write down the FV discretization of the Navier-Stokes equations on
a staggered cartesian grid,

(c) discuss how to treat noslip and inflow/outflow boundary conditions.

17. Time dependent flows.

(a) Define a simple projection method for the time dependent Navier-
Stokes equations

i) (%" 9) ()= (0)

(b) show in detail the equation for the pressure to be solved at each time
step and discuss the boundary conditions for the pressure.

18. Time step restriction for Navier-Stokes solutions.
(a) Motivate the use of an appropriate form of the advection-diffusion
equation as a model equation for stability analysis,
(b) derive the time step restrictions for the 1D version of that equation,

(c) state the 2D equivalent of that restriction.
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19. Tterative techniques for linear systems.

(a) Define a distributive iteration method for the linear system Ay = b.

(b) Define Gauss-Seidel iterations for the Laplace equation, discuss the
convergence rate and derive an approximation for number of itera-
tions required for error reduction of O(h?).

(c¢) Define the 2-level multigrid method for the Laplace equation,

20. Coordinate transformation

(a) Define the coordinate transformation from a Cartesian one (z,y, z) to
a general one (£,7,(). State the Jacobian matrix of transformation
and describe a practical way of computing it.

(b) Derive the transformation of the 2D Navier-Stokes equations

u e a0 e e
ot  ox 0Oy ot oc  an

from

and give the vectors U, F/ and G’ in terms of U, F and G.

21. Compact finite-difference scheme

Consider the general approximation of type

B(flo+ fio) +alfiyn + fio) + fi=

c b a
6_h(fi+3 — fi—3) + E(fi+2 — fi—2) + %(fi-‘,—l — fiz1),
(a) and derive the equations . ‘ 2
which should be satisfied to [+, centra 200 order
e--e central 4th order
get different order of accu- b oo compect4h order
racy for discretization of first
derivative f/. Eer 1
(b) By Fourier analysis of the dif- 3 [ foea .
ferencing error of the scheme 3| . ™ |

above derive a expression for T e
the modified wavenumber. i ' S

(¢) What do the curves in the fig- 0g : L ‘ 5 ‘ \3
ure tell US? Wavenumber

22. Unstructured Node-Centered finite volume.

(a) Define the dual grid.
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(b) Present a finite-volume approxima-
tion of uy = Uyy +uyy. Examine the
consistency of the scheme and give 1
the order of the accuracy (use the
grid given here).

2
7

e
h

(c) Show that the u, at node ¢ can be approximated by the following
finite-volume approximation and proof that its accuracy is O(h) (first

order),
4

1 Ue + Uj

(V¢ is the volume of the dual grid)

23. Upwind discretization

(a) Consider equation u; + au, = 0, where a is the convective veloc-
ity. Give a first-order accurate upwind discretization of his equation
which is stable independent of the sign of a.

(b) Define a flux spliting scheme for discretization of one-dimensional
Euler equations

U  OE P Py
En + B 0, U pu |, ou



