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Many approaches with the objective to actively delay the laminar-turbulent transition are 
currently under investigation.  Using the tools of Direct Numerical Simulation (DNS) and Linear 
Stability Theory (LST) we are studying active concepts to control even nonlinear stages of 
transition.  In contrast to approaches based on optimal control theory which yield optimal results 
for a specific case, we follow a path which can be more or less directly implemented into 
application using the direct feedback of instantaneous signals from the flow field.  Depending on 
the amplitude of the involved disturbances, an appropriate control method has to be chosen.  In 
the case of weak disturbances in the regime where the Linear Stability Theory is valid, for 
instance, linear concepts using the wave superposition principle can be used [1].  However, in 
later stages of the transition process where strong nonlinearity takes place, the feedback of 
instantaneous signals seems to be the better choice [2].  Our approach, better suited for nonlinear 
disturbances is the “ωz -control”.  In this case the spanwise vorticity at the wall (ωz,w) is 
multiplied by a gain A and prescribed as a wall-normal velocity (v-) boundary-condition on the 
wall (i.e. blowing/suction or wall displacement) with a certain phase shift Θ (Fig. 1). 

 
Figure 1: Control principle of “ωz –control ” 

 
The concept has been implemented in linear stability theory (LST) and Direct Numerical 

Simulation (DNS) [3], and an analysis of the disturbance-energy equation has yielded additional 
insight [4].  In the first case the boundary conditions at the wall for the Orr-Sommerfeld equation 
(and the Squire equation) had to be changed (index ‘w’ for wall properties) to 

wzw Av ,ω⋅=  

with    Θ= ieAA || , 

; 

where |A| is the amplitude factor and Θ  is the phase difference between vw and ωz,w.  Due to the 
ability to express ωz in terms of u and v the eigenvalue problem remains homogeneous and the 



method of solution is not altered.  The resulting eigenvalues and eigenfunctions show very good 
agreement to the results obtained using DNS (Fig. 2). 
 

   
Figure 2:  Comparison of eigenfunctions (left) and amplification rates (right) of LST (dotted lines, resp. 
symbols) with DNS.  Linear case with  |A| = 0.0001 and Θ = π/2 at x = 3.46.  The red curve is for ωz –
control between x ≈ 2.5 and x ≈ 4.5.  All quantities are normalized with U∞ = 30 m/s and L = 0.05 m. 

 
Fig. 3 indicates the influence of active control on the unstable region of the Blasius 

boundary layer flow.  Small amplitudes already are sufficient for a strong damping effect.  If the 
amplitude factor |A| is larger than approximately 5⋅10-5 for a phase angle of Θ = 0, the boundary 
layer is stable for all considered frequencies and downstream positions.  Detailed investigations 
of the dependence of the eigenvalues on the phase angle (Fig. 4) show that best attenuation can 
be reached adjusting the phase shift Θ  to approximately 90o. 
 

 
Figure 3:  Curves of zero amplification for the Blasius boundary layer flow with different gains A and 

phase angles Θ = 0, except where marked.  The small circle marks the position in the x/β-diagram 
(βr = dimensionless frequency) of the calculations shown in Fig. 4. 



To investigate the behaviour of nonlinear waves in the Blasius boundary layer and to 
verify the LST results in the linear case, a number of DNS calculations have been performed in a 
rectangular integration domain with the spatial DNS-code [3] already used for other 
investigations of laminar-turbulent transition.  The flow is split into a steady 2D-part (Blasius 
base flow) and an unsteady 3D-part.  The x-(streamwise) and y-(wall-normal) directions are 
discretised with finite differences of fourth-order accuracy and in the spanwise direction z  a 
spectral Fourier representation is applied.  Time integration is performed by a classical fourth-
order Runge-Kutta scheme.  The ωz-control is implemented as a time delay in the numerical 
simulations. 
 

 
Figure 4:  Variation of the eigenvalues with respect to the phase angle Θ  between ωz,w  and vw for 

|A| = 10-4 at the position marked in Fig. 3.  In the hatched areas Tollmien-Schlichting waves are damped.  
The horizontal lines (solid and dashed) show the uncontrolled values of αr and αi.  Non-dimensional 

frequency is β = 10. 
 

As a test case for the effect of the ωz-control on disturbances with large amplitude, a 
typical K-breakdown scenario (Fig. 5) is investigated where a fundamental 2D mode (1,0) with 
large amplitude and a steady disturbance (0,1) (the first index denotes multiples of the 
disturbance frequency β, the second multiples of the basic spanwise wave number γ = 20) are 
excited initially.  Because of nonlinear interactions the 3D-mode (1,1) is generated and falls in 
resonance with the fundamental 2D-mode.  The other 3D modes arise due to nonlinear 
combinations.  When the strongly amplified 3D-waves have reached the amplitude level of the 
fundamental mode, saturation sets in and transition to turbulence takes place downstream of 
x = 4.3 (dotted lines). 

Applying ωz -control to the K-breakdown scenario in a very late, nonlinear stage (Fig. 5) 
two main control effects can be distinguished: first, the direct damping of nonlinear disturbances 
and secondly, the disruption of the resonant behaviour.  The first effect is comparable to a linear 
ωz -control case where it is possible to directly damp TS-disturbances, the second effect results 
from the altered wave speed of the resonant modes which are ‘detuned’ under the influence of 
control.  Unsteady modes are damped very efficiently but steady disturbances ((0,1), (0,2)) are 
hardly influenced by the control.  From Fig. 6 it can be seen that after approximately ten 
disturbance cycles of control the unsteady parts of the disturbances have already vanished, 
whereas the remaining streak-like structures are convected downstream very slowly.  In the 
uncontrolled case the formation of Λ-vortices is followed by a rapid collapse which is absent in 
the controlled case.  The remaining structures resemble longitudinal vortices or streaks according 



to the fact that the ωz –control is only affecting unsteady disturbances deviating from the 
undisturbed base flow vorticity.  Former investigations using the wave superposition principle at 
a comparable stage of transition [3] showed a negligible damping effect due to nonlinear 
interactions between the occurring modes which could not be affected by a linear method. 
 

 
Figure 5:  K-breakdown, umax-amplitudes vs. x.  Modes (h,0) and (h,1) controlled (|A| = 2.5⋅10-4, Θ ≈ π/2).  

Dotted lines: uncontrolled case.  Only the most important modes are shown here.  Small picture: Spatial 
distribution of the control gain |A| with a sine-like ramp function on both sides. 
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Figure 6:  Contours of spanwise vorticity at the wall for the K-breakdown scenario with and without ωz -

control  at different time steps. 
 


