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Flow systems of engineering interest are often exposed to disturbances that are erratic,
unpredictable, and thus conveniently described by their statistics. When aiming at controlling
these flow systems, as for example to prevent transition to turbulence, it is natural to adopt a
framework in which one seek to affect the statistics of the flow itself. In this talk we describe
an optimal feedback control framework based on stochastic optimization.

Modeling: A feedback controller uses instantaneous information about the flow field to
decide the best action. The information is measured using sensors, as for instance wall skin
friction measurement, and act on the flow using actuators, as for instance blowing and suction
at the wall. The feedback law is the relation between sensors and actuator. In this talk we will
consider linear controllers, for which we assume that the dynamics of small fluctuations about
a base flow profile is linear.

Stochastic disturbances: The external disturbances can be described by their statistics,
assuming that they are Gaussian distributed with zero mean, we represent them by their covari-
ance in the flow domain. The covariance matrix of a spatial random process has on its diagonal
the variance of the process along the spatial directions, and the off-diagonal terms represent the
covariance of the process at two spatial locations (two-point correlation).

The state (velocity, pressure) of a linear system excited by a random process is itself a
random process that can be described by its statistics. Consider for instance the dynamic
system with state ¢, and stochastic input w

q: AQ+B1w7

where A is the dynamic operator, and B; represent how the disturbances enter the system. The
Lyapunov equation describes the covariance of the state of a linear system excited by random
inputs

AP + PA" + ByWB{ =0,

where W is the covariance of the external disturbances w, and P is the covariance of the state.
For instance, A could denote the Orr-Sommerfeld/Squire operator, with the state being (v, 7)
the Fourier transforms of the wall normal velocity/wall normal vorticity in the context of the
Poiseuille flow.

Optimisation of the statistics: Introducing actuators and sensors in the flow system,
we build the two dynamic systems

i=Aj—v
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where u and y are the actuator and sensor signals and v is the estimator forcing. The stochastic
inputs are the external disturbances w with covariance W, and the sensor noise g with covariance
G. For full information control, we assume that the flow state ¢ is known. In a real situation,
this information is not available, so we need to estimate the flow state using an estimator, with
state q.

From this representation, we define two design problems: find a state feedback control gain
u = Kgq, and an estimation gain v = L(y — g) such that the controlled flow and the estimation
error ¢ = ¢ — ¢ have low kinetic energy. Introducing K and L in (1) we obtain the dynamics for
the controlled flow and for the estimation error

¢=(A+ ByK)q+ Biw, ¢=(A+LC)j+ Biw— Lg. (2)

From these equations, we see that we should find K such that A + BsK is stable and that the
resulting dynamics is not sensitive to the stochastic disturbances Bjw, and that we should find
L such that A+ LC is stable and is not sensitive to the stochastic disturbances Bjw — Lg.

From (2) we obtain two Lyapunov equations for the covariance P of the controlled flow state
and the covariance P of the estimation error

Control: (A+ BoK)P + P(A+ BoK)® + BywB =0,
Estimation: (A + LC)P + P(A+ LC)! + BywBH — LGaL" =o.

Defining two objective functions based on P and P, we can express the optimization as the
minimisation of a Lagrangian built from these two Lyapunov equations. The optimal gains are
finally obtained as solutions of two Riccati equations.

Example: As an illustrative example, we perform estimation of a localised initial condition
in Poiseuille flow. See below for a simple covariance model of a disturbance forcing on the
u,v,w) velocity components, for the estimation convolution kernels obtained after backward
Fourier transform of L to physical space. And for the time evolution of the estimation of a
localised initial condition.
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