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The two-dimensional incompressible boundary-layer flow along a smooth-edged cavity is consid-
ered. The main effect of the cavity is the generation of a recirculation zone with an associated
shear layer, as shown in figure 0.1. For the considered aspect ratio of the cavity, unstable global
modes appear above a critical inflow Reynolds number based on the boundary layer thickness
Reδ∗

0
≈ 300. This instability is dominated by self-sustained oscillations associated to the familiar

Rossiter mechanism Rossiter (1964); small disturbances are amplified by the shear layer through
the Kelvin-Helmholtz instability mechanism and generate a pressure wave when impacting on the
downstream cavity edge.
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Figure 0.1. Streamlines of steady state base flow used for stability analysis.
The thick line represents the zero level contour.

We aim at stabilizing the flow in this highly nonparallel configuration using feedback control.
When discretizing such a system very large system matrices directly appear. This challenges
the construction of the optimal feedback controller, and hence a reduced order model for the
flow system is preferable. Usually the reduction is performed by projection on a set of vectors
that spans a smaller subspace, the most widely known basis being the set of vectors obtained by
balanced truncation (see eg. Skogestad & Postlethwaite (2005)). As an alternative we are using
the so called global eigenvectors of the linearized Navier-Stokes as our basis. In some special cases,
as for the boundary layer, where one or more of the spatial directions are either homogeneous or
slowly varying, different approaches are possible. Expanding in Fourier space leads to a decoupled
problem, where optimal gains based on the eigenmodes of Orr-Sommerfeld-Squire equations are
computed for each wavenumber(Högberg & Henningson (2002)). In configurations as the present,
where the streamwise length scales of the disturbances are comparable to those of the base
flow, one needs to consider modes that “live” in the whole domain, the so called Global modes.
These modes are computed linearizing the Navier-Stokes system at the steady state U(x, y) =
(U(x, y), V (x, y)). The disturbance flow field u(x, y, t) = û(x, y) e−iωt and pressure p(x, y, t) =
p̂(x, y) e−iωt is solution of the partial differential system

−iωû = −(U · ∇)û − (û · ∇)U −∇p̂ +
1

Re
∇

2û,

0 = ∇ · û. (0.1)

which after discretization is written as

−iωlBql = Aql with adjoint iω∗

l Bq+

l
= A+q+

l
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where the adjoint is defined with the respect to the finite-dimensional inner product. The base flow
is interpolated to a Chebyshev-Chebyshev grid. The resulting generalized eigenvalue problem (of
size n > 50000) is far too large to be solved by standard QZ-algorithms, however Krylov subspace
projections together with the Arnoldi algorithm proved to recover the part of the spectrum
relevant for our analysis.

The controller is designed for the reduced system, ie. the flow system obtained by projection on
the basis of the eigenmodes. The design process involves placements and penalties on actuators
and sensors. Sensors measure the shear stress at the downstream lip of the cavity, where the
unstable modes are most energetic, and actuators apply upstream, where sensitivity is highest
Chomaz (2005). The optimal control loop, in the form of control and estimation feedback gains,
is computed through the solution of two Riccati equations.

The controller is updated online, in parallel to the DNS, with a Crank-Nicholson time integration
procedure. At each timestep it is forced by measurements from the flow, and outputs a control
signal that is fed back to the actuator in the DNS.

Flow stabilization of the evolution due to the worst case initial condition is demonstrated using
a reduced model based on projection on a system of only 4 modes.
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