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Abstract

The cm-package is a system for calculating tensor objects related

to continuum mechanics and for their manipulations. On construct-

ing the package, emphasis has been on creating a simple and easy to

understand user's interface. The user who is familiar with continuum

mechanics should quickly be able to apply and understand, as well as

further expand and customize the package.
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1 Introduction

In section 1.1 a brief review of how and why the cm-system was developed is

given, while section 1.2 takes up som basic concepts in continuum mechanics

and gives an overview of the rest of this user's guide.

1.1 Background

To formulate continuum mechanics in general, one need two spaces, the

present con�guration (or simply space) and the reference con�guration of

the body. The basic object in continuum mechanics is the mapping between

these two spaces, see [4].

In General Relativity there exists the impressive tool GR-tensor, see

Musgrave et al [1]. GRtensor is a MapleV package for the manipulation and

calculation of tensor �elds in general relativity. For GR-Tensor there is an

application called Elasticity [2], which makes it possible to do calculations

in nonlinear elasticity. Elasticity is a library to GRtensor.

General Relativity, however, has one space-time only. The idea behind

Elasticity is to formally regard the coordinates in the present con�guration

and the coordinates in the reference con�guration as two coordinate systems

for the same space. See, e.g., [4]. The mapping from (the coordinates in)

the reference con�guration to (the coordinates in) the present con�guration

is thus formally regarded as a coordinate transformation. This way it is

possible to calculate many quantities, in particular to set up the equations

of equilibrium in the present con�guration, see [2].

In reality, however, the present con�guration (or simply space) and the

reference con�guration are two di�erent spaces, see [4] [5]. The reason for

this is simply that there are two di�erent distances associated to two neigh-

bouring points (or particles as the nomenclature is in continuum mechanics),

the distance in the present con�guration and the distance in the reference

con�guration. To be concrete, in space there is the ordinary Euclidean dis-

tance but also the distance of the reference con�guration carried over and

expressed by the inverse of the left (referential) Cauchy-Green (metric) ten-

sor. Similarly, in the reference con�guration, there is the ordinary Euclidean

distance, but also the distance of the present con�guration carried over, and

expressed by the right (referential) Cauchy-Green (metric) tensor.

If one considers the mapping between the two con�gurations as coor-

dinate transformation, one has two di�erent metric tensor, and thus two

ways to raise and lower indices. This becomes particularly troublesome for

so-called two-point objects or double tensors, see [6] , living with one foot

in each of the spaces.

To formulate the equations of equilibrium in the reference con�guration

one needs the �rst Piola-Kirchho� stress tensor rather than the ordinary

Cauchy stress tensor. The �rst Piola-Kirchho� stress tensor is an important
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example of a two-point object, a tensor mapping between the con�gurations.

Another object of this kind is the deformation gradient. To be able to han-

dle such tensor �eld, a setting with two di�erent spaces with a mapping

between them is the natural one.

The present package is based on this concept of mapping between two

di�erent spaces. It can handle tensor �eld in the present con�guration and

the reference con�guration as well as two-point objects. Much of it has been

inspired by the GR-Tensor.

indent This is where the cm-system comes in. Being developed with contin-

uum mechanins in mind, the system handles the two di�erent metrics and

allows the user to decide in which con�guration to perform calculations.

furthermore, objects can be placed in either the present or the reference

con�guration, or they can be mixed and thus placed in both.

1.2 Deformations

On studying deformations, the fundamental relation is the mapping

x
k = �

k(XL); (1)

connecting the points with coordinates XL of the body in its reference con-

�guration, with the points with coordinates xk in the so called present con-

�guration [4] [3] [5].

Throughout this user's guide, we will follow an example of a rectangular

block being deformed. The deformation is described by the three equations

r =
p
2AX; (2)

� = BY; (3)

z =
Z

AB
�BCY: (4)

Here r; �; z are cylindrical coordinates in the present con�guration and

X;Y;Z cartesian coordinates in the reference con�guration. This is one of

the universal solutions for incompressible isotropic nonlinearly elastic solids.

See Truesdell [4].

Starting with basics, how to install and start up the system is described

in section 2. In section 3, how to de�ne the environment is described (i.e.

how to choose coordinates and how to de�ne a mapping). In section 4 we

look at how objects are being calculated and displayed, while section 5 de-

scribes how to perform derivation. The following sections deals with how

to expand the system, in section 6 by de�ning new tensor objects, and in

section 8 by explaining how to write your own code in cm. The last section

9 is an overview of all procedures and prede�ned tensor objects that are

given with the cm-system.
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2 Getting started

The cm-package is developed for MapleV. How to install the package is

described in 2.1 and how to start up the system is described in 2.2

2.1 Installing the cm-package

Before installing and starting up the cm-system you need to install MapleV.

That this has been done will now be assumed.

2.1.1 Installing cm on unix under afs

The stepps of installing the cm-system on unix are:

1. Create a directory in which to place cm

> mkdir cm

2. Go down in your new directory and download the compressed �le to

that directory

3. Unpack the compressed �le with the commands

> gzip -d cm.tar.gz

> tar xvf cm.tar

4. Open your .mapleinit-�le and add a MapleV library path, to the di-

rectory containing cm, by including the line

libname := ``/afs/.../cm'' , libname:

where the ... should be replaced by the path to your home directory.

5. When you unpacked the compressed �le, a �le cmmetricpath was cre-

ated. Open that �le and �ll in the missing parts of the path given

there.

The installation is now completed.

2.2 Starting up the cm-package

A new session with the cm-package begins in a MapleV-worksheet with the

command:

> restart;

> readlib(cmlib);
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> cmstartup();

Welcome to the cm-package!

This system was developed by,

Mikael Eriksson

in 1999,

as a Master thesis project.

Supervisor: Lars H. S�oderholm

KTH

Department of Mechanics

The system cm is now ready

3 De�ning the environment

The cm-system can be used strictly as a tensor program, but the main task

for which the system was designed, is to use cm to calculate tensors in con-

tinuum mecanics. This ability to use cm for di�erent tasks, means that

depending on what calculations you want to perform, de�ning the environ-

ment will have di�erent meanings.

If you just want to use the tensor machinery, de�ning the environment

need only mean to specify the metric for to the system to work in, how this

is done is described in section 3.1.2. If instead you want to use cm for calcu-

lations in continuum mechanics, then de�ning the environment requires you

to specify metrics both for the present and the reference con�guration (see

sections 3.1.1 and 3.1.2) and to load a mapping or an inverse mapping (see

section 3.2), thus connecting the points in the present con�guration with

the points in the reference con�guration.

Following standard continuum mechanics notation, metrics and variables

in the reference con�guration begin with an upper case letter, while metrics

and variables in the present con�guration will begin with lower case let-

ters. In particular, a spherical metric in the present con�guration will thus

be labelled as spherical, with independent variables r; �; �, while a cylindri-

cal metric in the reference con�guration will be labelled Cylindrical, with

independent variables R;�; Z.

3.1 Metrics

With the cm-package comes a standard set of prede�ned metric tensors,

which are all easy to access and ready to use. If however you wish to use

a di�erent metric, other than those prede�ned, you can easily de�ne new

metrics with the system. How that is done is decribed in section 6.2. This

section shows how to specify metrics for the system to use.

Specifying the metrics to the system is done with the cmsetmetric pro-
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cedure. The procedure is interactive and does not take any arguments. We

see how this is done both in the present and the reference con�guration.

3.1.1 Setting metric in the reference con�guration

According to our example with the rectangular block being deformed, we

wish to use cartesian coordinates in the reference con�guration and the

commands to give are:

> cmsetmetric();

For which con�guration do you wish to enter a metric?

Enter:

1, For the reference con�guration

2, For the present con�guration

Enter 1 or 2 <- : 1;

Enter metric for the reference con�guration:

To see metrics available enter: avail

metric name <- : Cartesian;

Metric in the reference con�guration is now:

Cartesian

[X;Y;Z]

We have now set metric in the reference con�guration and proceed by en-

tering metric for the present con�guration.

3.1.2 Setting metric in the present con�guration

Our choice for the metric in the present con�guration is cylindrical and we

give the commands:

> cmsetmetric();

For which con�guration do you wish to enter a metric?

Enter:

1, For the reference con�guration

2, For the present con�guration

Enter 1 or 2 <- : 2;

Enter metric for the present con�guration:

To see metrics available enter: avail
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metric name <- : cylindrical;

Metric in the present con�guration is now:

cylindrical

[r; �; z]

If you don`t know what metrics are available to the system, on entering

the command avail instead of a metric name, the available metrics will be

displayed. For instance, if we instead of entering cylindrical, had entered

avail, the response would have been:

metric name <- : avail;

fcylindrical, spherical, polar, cartesiang

indicating that, for the present con�guration, those four metrics are known

to cm. Thus letting you know that by entering cylindrical, the preferred

metric will be set.

3.2 Mappings

To know how the coordinates in the reference con�guration and the present

con�guration are related to each other, the cm-system must be given a

mapping (de�ning coordinates in the present con�guration in terms of the

coordinates in the reference con�guration) or an inverse mapping (going the

other way around). This is done with the cmloadmapping or the cmloadin-

vmapping procedures respectively. Whether you should load a mapping or

an inverse mapping depends on which coordinates you wish to use as your

independent variables. If you want to work in the reference con�guration,

using the reference coordinates as independent variables, then a mapping

should be loaded. If instead you wish to perform your calculations in the

present con�guration, an inverse mapping should be loaded.

3.2.1 Loading a mapping with the cmloadmapping procedure

We wish to enter the mapping described by the equations (2)-(4). The

cmloadmapping procedure takes as argument a list of the mapping to be

de�ned. In our example, the command to give is therefore:

> cmloadmapping([r=sqrt(2*A*X),phi=B*Y,z=Z/(A*B)-B*C*Y]);

You are now working in the reference con�guration

Your independent variables are:

[X;Y;Z]

Note that after performing this command, the cm-system will use X,Y,Z as

independent variables.
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3.2.2 Loading an inverse mapping with the cmloadinvmapping

procedure

If we instead would like to work with the independent variables r; �; z, then

an inverse mapping should be loaded. That means that the equations (2)-(4)

�rst must be expressed in terms of r; �; z. This is done by

X =
r
2

2A
; (5)

Y =
�

B
; (6)

Z = ABz +ABC�: (7)

Like the cmloadmapping procedure, the argument must be a list containing

the inverse mapping to be de�ned and the command to give is therefore:

> cmloadinvmapping([X=r^2/(2*A),Y=phi/B,Z=A*B*z+A*B*C*phi]);

You have allready loaded a mapping. This operation is ignored!

The cm-system recognizes that we have already loaded a mapping, and to

prevent errors from being made, we are not allowed to additionaly load an

inverse mapping, or to load a second mapping for that matter. In order to

load a new mapping we must �rst perform a restart as described in section

2.2.

4 Calculating and displaying tensor objects

With the cm-package comes the de�nitions for fundamental tensor objects

in continuum mechanics, such as the deformation gradient F, the right (ref-

erential) Cauch-Green deformation tensor C and the left (present) Cauchy-

Green deformation tensor B among others. The tensors can be displayed in

terms of their components in a coordinate basis. For orthogonal coordinates

they can also be displayed through their physical components. A summary

of all prede�ned objects are found in section 9.4, while how to calculate and

display them is described here.

Displaying the di�erent objects is done with the cmdisplay procedure,

which uses the cmCalc procedure to calculate the objects (i.e. you don`t

need to actually calculate the objects before displaying them, the cm-system

takes care of that for you. How cmCalc works is described in section 8.2.1).
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4.1 cmdisplay

In continuum mechanics, in order to raise/lower indices and perform deriva-

tions correctly, keeping track of in which con�guration an object is placed

is of great importance. The notation in the cm-system is therefore built

to help the user to separate indices in the two con�gurations and prevent

errors from being done. To illustrate how this all works, some examples are

illustrative.

4.1.1 Tensor components in coordinate basis

Indices in the present con�guration are labelled up, meaning a contravariant

index, and dn meaning a covariant index. In the reference con�guration,

contravariant and covariant indices are labelled Up and Dn respectively.

Example Given a mapping as described by equation (1), the deformation

gradient F is de�ned by

F
k
L = x

k
;L: (8)

We see that the �rst index of F is contravariant and placed in the present

con�guration, while the second index is covariant in the reference con�gura-

tion. In section 3.2.1 we loaded a mapping corresponding to the equations

(2)-(4). The command to give to display the components of F corresponding

to that mapping will be:

> cmdisplay(F(up,Dn));

F
r
X =

1

2

p
2A

p
AX

F
�
Y = B

F
z
Y = �BC

F
z
Z =

1

AB

Note that cm only shows the nonvanishing components.
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Example The right (referential) Cauchy-Green deformation tensor C is

de�ned by

CKL = gklF
k
KF

l
L; (9)

where gkl are the components of the metric tensor in the present con�g-

uration. With both indices in the reference con�guration, to display the

contravariant components of C we give the command:

> cmdisplay(C(Up,Up));

C
XX =

1

2

A

X

C
Y Y = 2AXB

2 +B
2
C

2

C
Y Z = �

C

A

C
ZY = �

C

A

C
ZZ =

1

A2B2

Note that though C is de�ned with covariant indices, we could immediately

display it's contravariant components. In fact we can raise and lower indices

as we like; the cm-system will take care of the calculations for us.

Example The left (spatial) Cauchy-Green deformation tensor B is de�ned

by

B
kl = G

KL
F
k
KF

l
L: (10)

By now you should be able to give the command to display the components

of B . Instead let us now see what happens when giving an erroneous

command.

> cmdisplay(B(Up,up));

The object could not be calculated

This is not an existing object since both indices should be in the present

con�guration, and therefore nothing is calculated.
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4.1.2 Physical components of a tensor

Given a general second order tensor in the present con�guration, in an or-

thogonal basis, we de�ne the physical components of the tensor by

A<i><j> =
p
gii
p
gjjA

ij =
p
gii
p
gjjAij (no sum over i, j)

Similary one can de�ne the physical components for tensors in the reference

con�guration. In cm, physical components are labelled ph and Ph for indices

in the present and reference con�guration respectively.

Example Let's look at the physical components of B.

> cmdisplay(B(ph,ph));

B<r><r> =
1

2

A

X

B<�><�> = 2AXB
2

- - - - - -

We have here chosen not to display all components of B.

5 Derivation

Calculating derivatives of tensor objects is quite easy. Both partial and

covariant derivations can be performed in an intuitive way.

5.1 Partial derivation

Partial derivation with respect to the present variables are done with, pdn,

while partial derivation with respect to the reference variables is done with

Pdn.

Example Let's look at the partial derivative of the metric tensor in the

present con�guration g, i.e. let's calculate

gkl;m =
@gkl

@xm
:

> cmdisplay(g(dn,dn,pdn));
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g��;r = 2
p
2 �

p
AX

At �rst this result may seem a bit confusing. Why should the components of

the metric tensor g be expressed in the reference variable X ? When loading

our mapping in 3.2.1, we chose to work in the reference con�guration, i.e.

gkl = gkl(X
K) and what has really been calculated is

gkl;m = gkl;K(F
�1)Km = gkl;K

@X
K

@xm

That this indeed is the case can be veri�ed by displaying the components

of g and of the object F�1, with the commands g(dn,dn) and Finv(Up,dn)

respectively.

5.2 Covariant derivation

When calculating the covariant derivative of a tensor, the aÆnities are

needed. The aÆnities in the present con�guration are de�ned by

�klm =
1

2
(gkl;m + gkm;l � glm;k) (11)

Here gkl is the components of the metric tensor in the present con�guration.

In the reference con�guration, the aÆnities are de�ned by:

e�KLM =
1

2
(GKL;M +GKM;L �GLM;K) (12)

and the metric tensor in the reference con�guration is seen to be labelled

G.

Example Let us, before proceeding with our covariant derivation, take a

look at the aÆnities in both the present and the reference con�guration. The

aÆnities are also denoted Christo�el symbols and in cm they are therefore

labelled chr and Chr for present and reference con�guration respectively.

> cmdisplay(chr(up,dn,dn));

�r�� = �
p
2
p
AX

��r� =
1

2

p
2
p
AX

AX

���r =
1

2

p
2
p
AX

AX

> cmdisplay(Chr(Up,Dn,Dn));
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All components are zero

Here we notice that in the reference con�guration, the aÆnities are denoted

with an initial upper case letter, Chr, while in the present con�guration,

they are just labelled chr. We also notice that the aÆnities in the reference

con�guration are all zero, which shouldn't come as a surprise, since we are

working with cartesian coordinates there.

Example In section 4.1 we calculated the components of C, and we can

now look at its covariant derivatives. The command to give is:

> cmdisplay(C(Dn,Dn,Cdn))

CXX;X = �
1

2

A

X2

CY Y ;X = 2AB2

On a closer look at this result, we recognize this as just being the partial

derivative of C, as it should be, since all the aÆnities in the reference con-

�guration are zero, thus making no contribution to the covariant derivation

of C.

Example If we now look at the covariant derivative of B, the aÆnities in

the present con�guration will make contributions.

> cmdisplay(B(up,up,cdn))

B
rr
;r = �

1

2

p
2
p
AX

X2

B
r�
;� = �AXB

2 +
1

8

p
2
q

1
AX

X

- - - - - -

and we have once again chosen not to display all components.

Example Covariant di�erentiation can also be performed on mixed ob-

jects, e.g. F.

> cmdisplay(F(up,Up,Cdn))

F
rX

;X = �
1

4

p
2A2

(AX)3=2

F
rY

;Y = �
p
2
p
AXB

2

- - - - - -
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6 Expanding the cm-system

We will now leave our example of deformation of the rectangular block

and, through a number of examples, show how the cm-system easily can

be expanded by adding new tensor objects as well as new metrics. New

tensors can be de�ned in terms of previously existing tensors as well as by

entering the components of the tensor to be de�ned. More about how this

is done is described in section 6.1. In section 6.2, how to de�ne and add new

metrics to the cm-system is decribed.

6.1 De�ning new tensors with the cmde�ne procedure

De�ning new tensor objects can be done in two ways, both by entering the

components of the object to be de�ned, but also by expressing new tensors

in terms of previously existing tensors.

6.1.1 De�ning new tensors by entering their components

As an example, let us de�ne a vector �eld u in space, the contravariant

components of which are given by

u
r = r

2 � sinh�; (13)

u
� = cos�: (14)

We could for example be interested in calculating its covariant derivatives,

and wish to leave the calculations to cm. First we must set metric in the

present con�guration to be polar. The commands to give were described in

section 3.1, and we will now assume that this has been done. To de�ne a

vector �eld u through it contravariant components, the command to give is:

> cmdefine(`u(^k)`);

Enter the components of the tensor

u

The components should be entered as a list

list of components <- : [r^2*sinh(phi),cos(phi)];

The object:

u(up)

has now been de�ned!

On de�ning an object, the argument to cmde�ne must be of the type Maple-

string, thus the: `s surrounding the object. Further, we see that a ^ in front

of a lower case k is interpreted as a contravariant index in the present con-

�guration. The tensor u, is now de�ned and can be handled as all prede�ned

objects, the system makes no di�erence between them.
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6.1.2 De�ning new tensors in terms of existing tensors

The cm-system allows you to de�ne new objects in terms of previously exist-

ing objects by using a simple tensor notation. This is demonstrated through

a number of examples.

Example We would like to de�ne a tensor A as the square of B. The

command to give is then.

> cmdefine(`A(k l):=B(k ^m)*B(m l)`);

The object:

A(dn, dn)

has now been de�ned!

Allowed indices to use for the present con�guration are the letters: (k, l, m,

n, o, p, q, r, s, t, u, v) and a ^ in front of an index means that that is a

contravariant index. Once the object A(dn,dn) is de�ned, it is treated like all

prede�ned objects, and you display its components and perform derivations

on it, exactly as has been demonstrated in sections 4 and 5.

Example Two equal indices means contraction over those indices. We

demonstrate this by creating our own de�nition for the divergence of B.

> cmdefine(`divB(^k):=B(^k ^m;m`);

The object:

divB(up)

has now been de�ned!

The semicolon means covariant derivation and since the second and third

indices are both labelled m, after performing the derivation on B, a contrac-

tion over the second and third indices is done.

Example Let us as a last example de�ne B on our own. As the object

name B is already taken, we call this object Bnew. The de�nition is given

by equation (10). The command to give is.

cmdefine(`Bnew(^k ^l):=G(^L ^K)*F(^k K)*F(^l L)`);

The object:

Bnew(up,up)

has now been de�ned!

The result pretty much talks for itself.
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6.2 De�ning new metrics with the cmmakemetric procedure

De�ning new metrics in the cm-system is done with the cmmakemetric pro-

cedure. The procedure is interactive and takes no argument. On using it

you will see that there are two di�erent ways to go about. If you already

know the components of your new metric, you de�ne it by just entering those

components. The other way is by entering a transformation to or from the

variables of an already known metric.

6.2.1 De�ning new metrics by entering their components

We wish to de�ne a twodimensional cartesian metric, but with variables

labelled X1;X2, instead of X;Y . This is done with the commands.

> cmmakemetric();

Do you wish to de�ne the new metric by:

1, Entering the covariant components of the metric tensor, or

2, By entering a transformation to/from a known metric?

Enter 1 or 2 <- : 1;

Enter the name of the metric to be de�ned:

metric name <- : CartesianX1X2;

Enter con�guration (i.e ref / pres):

configuration <- : ref;

Enter a list of the variables (e.g [x,y,z]):

variables <- : [X1,X2];

Enter the components of the metric tensor G:

Enter component:

G[X1] [X1]

component <- : 1;

Enter component: G[X1] [X2]

component <- : 0;

Enter component: G[X2] [X2]

component <- : 1;
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Do you wish to save the metric:

CartesianX1X2

and make it a prede�ned metric (yes/no):

save metric ? <- : no;

For the reference con�guration:

The metric

CartesianX1X2

has now been de�ned

Since the metric tensor is symetric, we don`t need to enter all components.

The system will tell you what components to enter, so be sure to enter the

component actually requested. Since we did not choose to save this metric,

once we terminate our session in cm, by performing a MapleV restart, the

system will have forgotten all about it.

If you now wish to use this metric in your current session you need to

set it as the present metric with the cmsetmetrics procedure as described in

section 3.1

In the next section we will demonstrate how to load and add a metric

to the library of metrics in cm, and what that means.

6.2.2 De�ning new metrics by entering a transformation

We are given an elliptical transformation and want to calculate the com-

ponents of the elliptical metric. The transformation is described by the

equations

x = cosh� cos�; (15)

y = sinh� sin�: (16)

The transformation is thus given from our new variables � and �, to the

cartesian variables x and y. The commands to give are:

> cmmakemetric();

Do you wish to de�ne the new metric by:

1, Entering the covariant components of the metric tensor, or

2, By entering a transformation to/from a known metric?

Enter 1 or 2 <- : 2;

Enter the name of the metric to be de�ned:

19



metric name <- : elliptical2D;

Enter con�guration (i.e ref / pres):

configuration <- : pres;

From/To which metric do you wish to de�ne the transformation:

metric name <- : cartesian2D;

Enter the independent variables in your new metric

variables <- : [mu,phi];

Enter the transformation as a list

transformation <- : [x=cosh(mu)*cos(phi),y=sinh(mu)*sin(phi)];

Do you wish to save the metric:

elliptical2D

and make it a prede�ned metric (yes/no):

save metric ? <- : yes;

For the present con�guration:

The metric

elliptical2D

has now been de�ned

and saved for future use

The metric elliptical2D has now been de�ned and saved. That means that

the library directory containing the �les of the metrics, has been added an

extra �le containing the de�nitions for the elliptical2D metric. Exiting cm

and MapleV will not alter this de�nition and the next time you start the

system, the elliptical2D metric is ready to use.

7 Special cm-procedures and operators

7.1 cmalter

Maple provides several simpli�cation and alteration routines. The most

frequently used routines have been integrated in the cm-system, thus making

it simple for the user to apply those routines to the various cm-objects.

The cmalter procedure takes as argument a list of the object names you

wish to perform alteration routines on. As an example let us look at the

twodimensional elliptical metric, that was de�ned in section 6.2. We give

the following command:
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> restart;

> cmsetmetric();

For which con�guration do you wish to enter a metric?

Enter:

1, For the reference con�guration

2, For the present con�guration

Enter 1 or 2 <- : 2;

Enter metric for the present con�guration:

To see metrics available enter: avail

metric name <- : elliptical2D;

Metric in the present con�guration is now:

elliptical2D

[�; �]

> cmdisplay(g(dn,dn));

g�� = sinh2 � cos2 � + cosh2 � sin2 �

g�� = sinh2 � cos2 � + cosh2 � sin2 �

We immediately sense that there should be a way of expressing these com-

ponents in a more compact way. What we need to do is to apply some

trigometric rules to these expression. We go about it by calling the cmalter

procedure, giving a list containing g as its argument:

> cmalter([g]);

Enter a list of numbers corresponding to your pre�ered

alteration routines

To see which routines are available, Enter: avail

> routines <- : avail;

The following routines are available

1, For simplify

2, For expand

3, For factor

4, For simplify[trig]

5, For simplify[power]

6, For simplify[sqrt]

7, For combine[radical; symbolic]
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> routines <- : [4];

alteration done in the following order:

[simplify[trig]]

Let us look at the metric to see if it made any di�erence:

> cmdisplay(g(dn,dn));

g�� = � cos2 � + cosh2 �

g�� = � cos2 � + cosh2 �

Indeed, much nicer.

7.2 cmsubstitute

Substitutions of constants, variables or expressions are done with the cm-

substitute procedure. As argument it takes two lists. The �rst list should

contain the names of the objects to perform substitutions on, and the second

list should contain the expressions de�ning the substitutions.

Example In section 4.1 we looked at the components of C. We could be

interested in �nding out what e�ect setting the constant C to zero would

have. To see how this works, you should once again de�ne the environment

as we did in section 3, i.e. to enter the mapping as de�ned by the equations

(2)-(4). Afterwards we give the command:

> cmsubstitute([C],[C=0]);

and we see what happened:

> cmdisplay(C(Dn,Dn));

CXX =
1

2

A

X

CY Y = 2AXB
2

CZZ =
1

A2B2

Indeed, the constant C was set to zero.
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7.3 cmgetcomponent

Extracting information out of the cm-system is done with the procedure

cmgetcomponent. The procedure takes two arguments. Firstly, the object

from which to extract the component. Secondly a list containing the indices

specifying what component of the object you want to get.

Example We want to get the component C X
X and assign it to the variable

CXX. The command to give is:

> CXX := cmgetcomponent(C(Dn,Up),[X,X]);

CXX :=
1

2

A

X

The value of C X
X has now been stored in the variable CXX.

7.4 Operators

How to call an operator in cm is described in section 9.1. Here we give some

examples:

7.4.1 Invariants

The invariants of a tensor A are de�ned by

det(A� �1) = ��3 + IA�
2 � IIA�+ IIIA (17)

In cm, the �rst tensor invariant I, is calulated with the operator I1. Let's

continue to explore C by calculating its �rst tensor invariant. We give the

command:

> cmdisplay(I1[C]);

IC =
1

2

A

X
+ 2AXB

2 +
B

4
C

2
A

2 + 1

A2B2

and similary the tensor invariants II and III are calculated using the op-

erators I2 and I3 respectively.
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7.4.2 Divergence

The divergence of a tensor is calculated with the operators div and Div.

The initial d and D here indicates the variables with respect to which the

derivation will be performed, the present variables or the reference variables

respectively. The divergence of C will be calculated using the operator Div

and the command to give is:

> cmdisplay(Div[C](Up));

(Div C)X = �
1

2

A

X2

We notice that on calling the operator, we attached, (Up), after the sequence

Div[C], this since the divergence of a second order tensor gives a �rst order

tensor. Similary for B we have:

> cmdisplay(div[B](dn));

(div B)r = �
1

2

p
2
p
AX

X2

8 Programming in cm

The cm-system gives you the ability to de�ne your own objects by construct-

ing MapleV procedures. The procedures should be placed in a special �le,

which is to be read into the system with the cmreadlib procedure, how this

is done is described in section 8.1. How to construct a procedure in cm is

described in 8.2.

8.1 Including your de�nitions in the cm-system

Your code should be placed in a �le that is to be read with the cmreadlib

procedure. Such a �le must contain two things. First it must contain the ac-

tual procedures with the de�nitions for how to calculate the objects. Second

it must contain a MapleV-table labelled cm_NewObjDef, with the de�nitions

for the objects themselves, their names, the procedure being de�ned, among

other things.

This may seem a bit complicated, but it really is quite easy. We want

to construct the de�nitions for two objects and their names are to be Obj1

and Obj2. Obj1 is a second order tensor in the present con�guration de-

�ned through its covariant indices, while Obj2 is a �rst order tensor in the

reference con�guration de�ned through its contravariant indices. We place

the code in a �le named newobjects, and the structure of the �le should be:
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cm_NewObjDef := table([

Obj1(up,up) = table([

cm_OD_objtable = cm_Obj1upup_,

cm_OD_calcfunc = cmCalcObj1,

cm_OD_objsymbol = Lambda,

cm_OD_positionlist = [up,up],

cm_OD_config = pres,

cm_OD_objvariants = [Obj1(dn,up),Obj1(up,dn),Obj1(up,up)]

]),

Obj2(Dn) = table([

cm_OD_objtable = cm_Obj2Dn_,

cm_OD_calcfunc = cmCalcObj2,

cm_OD_objsymbol = Q,

cm_OD_positionlist = [Dn],

cm_OD_config = ref,

cm_OD_objvariants = [Obj2(Up)]

])

]);

cmCalcObj1 := proc()

***

end;

cmCalcObj2 := proc()

***

end;

Once the �le newobjects has been created, and the procedures cmCalcObj1

and cmCalcObj2 have been coded, updating the cm-system with those def-

initions is done with the command:

> cmreadlib(newobjects);

8.2 Writing your own procedures in cm

When making your own code in cm, there are some important cm-procedures

and cm-variables you need to use and be able to handle. How they are

treated in actual cm-code can be seen in section B. Their functions and

how to use them are described in this section:

8.2.1 cmCalc

When working with cm in a MapleV worksheet, you don't need to think

about calculating the di�erent objects before displaying them, the system

will take care of that for you, but when programming in cm, you must

make sure that an object has been calculated before attempting to access

its components. This is done with the cmCalc procedure. As an example,
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in the code for calculating B (se section B.2), we need the components of

F, but before accessing them, they must �rst be calculated. That is why we

include the line:

--

cmCalc(F(up,Dn));

--

in our code before getting the components.

8.2.2 cmGetObjTable

In cm, all information is stored as MapleV-tables. To access the table con-

taining the components we want, we use the procedure cmGetObjTable. In

our code for B, we access the table containing the components of F with

the line

--

Ftable := cmGetObjTable(F(up,Dn));

--

and we choose to store the table in the local variable Ftable.

8.2.3 cmGetPresVar and cmGetRefVar

The variables used in the present and reference con�guration are accessed

with the procedures cmGetPresVar and cmGetRefVar respectively. The

procedures will return a list containing the variables. When we in our code

for F (se section B.1) need the variables in the reference con�guration, we

access them with the line:

--

Diffvar := cmGetRefVar();

--

and we assign them to the local variable Di�var, indicating that they will

be used for di�erentiation with respect to.

8.2.4 cmGetMetricDim

The dimension of the metrics being used is accessed with the procedure

cmGetMetricDim. The procedure takes no argument and will return a pos-

itive integer.
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8.2.5 cmSetObjTable

Storing information in the system is done with the cmSetObjTable proce-

dure. The procedure takes two arguments. The �rst is the object and the

second is a table containing the components of the object. In our code for

B (se section B.2), the line on which information is stored looks like:

--

cmSetObjTable(B(up,up),Btable);

--

It is of great importance that the variable being stored is of the type MapleV-

table. More about such objects can be found in the MapleV Help library.

8.2.6 cmCheckIfNomapping

Until a mapping or an inverse mapping has been loaded, calling the proce-

dure cmCheckIfNomapping will return true. Ater a mapping or an inverse

mapping has been loaded, the procedure will return false.

8.2.7 cmCheckIfMapping and cmCheckIfInvmapping

After a mapping has been loaded with the cmloadmapping procedure, call-

ing the procedure cmCheckIfMapping will return true. After an inverse

mapping has been loaded with the cmloadinvmapping procedure, calling the

procedure cmCheckIfInvmapping will return true. If no mapping or inverse

mapping has been loaded, the procedures will return false.

Examples of how these procedures can be used are found in the code for

F and B in sections B.1 and B.2.

9 Overview of the cm-system

This section is an overview of all the procedures, objects and operators that

come with the cm-package.

9.1 Syntax:

In the cm-system, distinctions are made between tensor objects, their names

and tensor operators.

Tensor objects and their names. Tensors are represented by cm-objects,

and a cm-object is the components of a tensor of zeroth or higher order. For

example, the deformation gradient F is de�ned through the object F(up,Dn),

but all possible variants with indices up and down are also cm-objects, refer-

ring to the same tensor, i.e. F(dn,Dn), F(dn,Up), F(up,Up) and F(ph,Ph )
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are all cm-objects. The name of the object is often equivalent to its symbol,

thus making F the cm-object name of the deformation gradient. To a zeroth

order tensor, there is no di�erence between the object and its name.

Syntax of a zeroth order tensor object:

Object = Objectname

Syntax of a higher order tensor object:

Object = Objectname(Indices)

Syntax of indices Indices should be entered with commas between

them:

Indices = Index1; Index2; :::

Indices in the present con�guration known to cm are:

dn; up; ph; pdn; pup; cdn; cup; pph; cph

Indices in the reference con�guration known to cm are:

Dn;Up; Ph; Pdn; Pup;Cdn;Cup; Pph;Cph

All tensors, their names and through which object they are de�ned are found

in table 9.4.

Tensor operators. With the cm-system comes the ability to calculate

the invariants and divergence of tensors. This is done with the operators

that are listed in 9.3. The cm-operators takes as argument within square

brackets the name of the object to act on. A typical command will thus

have the form, Op[Name], which is evaluated as a cm-object name.

Syntax of operational call:

Op[Name]! Objectname

More about operators can be found in section 7.4

Further notations. In the following tables, an upper case O refers to a

cm-object, an upper case N refers to a cm-objectname, a lower case e refers

to an equation on the form variable=expression.
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9.2 Procedures

Procedure Calling sequence Described in

cmCalc cmCalc(O) 8.2.1

cmdisplay cmdisplay(O) 4.1

cmloadmapping cmlodmapping([Mapping]) 3.2.1

cmloadinvmapping cmlodinvmapping([Invmapping]) 3.2.2

cmsetmetric cmsetmetric() 3.1

cmmakemetric cmmakemetric() 6.2

cmalter cmalter([N1,N2,..]) 7.1

cmsubstitute cmsubstitute([N1,N2,..],[e1,e2,..]) 7.2

cmgetcomponent cmgetcomponent(O,[variables]) 7.3

9.3 Operators

Operator Operator name Calling sequence

First tensor invariant I1 I1[N]

Second tensor invariant I2 I2[N]

Third tensor invariant I3 I3[N]

Divergence Div Div[N]

Divergence div div[N]
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9.4 Prede�ned tensor objects

Tensor Object name De�ned by object

Mapping chi chi(up)

Inversemapping chiinv chiinv(Up)

Deformation gradient F F(up,Dn)

Inverse deformation gradient Finv Finv(Up,dn)

Right (referential) Cauchy-Green C C(Dn,Dn)

deformation tensor

Inverse right Cauchy-Green Cinv Cinv(Up,Up)

deformation tensor

Left (spatial) Cauchy-Green B B(up,up)

deformation tensor

Inverse left Cauchy-Green Binv Binv(dn,dn)

deformation tensor

Metric in present con�guration g g(dn,dn)

Metric in reference con�guration G G(Dn,Dn)

AÆnities in present con�guration chr chr(dn,dn,dn)

AÆnities in reference con�guration Chr Chr(Dn,Dn,Dn)

Kronecker delta in present id id(up,dn)

con�guraton id(dn,up)

Kronecker delta in reference Id Id(Up,Dn)

con�guraton Id(Dn,Up)

Permutation symbol in present prm prm(dn,dn,dn)

con�guraton prm(up,up,up)

Permutation symbol in reference Prm Prm(Dn,Dn,Dn)

con�guration Prm(Up,Up,Up)

Permutation tensor in present eta eta(dn,dn,dn)

con�guration eta(up,up,up)

Permutation tensor in reference Eta Eta(Dn,Dn,Dn)

con�guration Eta(Up,Up,Up)

10 Conclusion

The cm-package was created in order to provide an easy to use MapleV-

program for calculating objects in continuum mechanics. The design of the

user`s interface has been inpired by that of GRtensor and some subroutines

uses the MapleV-tensor package for calculations. The main tasks, to be able

to handle mixed objects and to perform calcuations in both the present and

the reference con�guration, have been reached. This is where cm, to the

best of my knowledge, provides something new.
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A Basic concepts in continuum mechanics

A.1 Curvilinear coordinates

Points in space are written x, and are considered functions of the general

curvilinear coordinates xi

x = x(xi): (18)

Coordinate basis Given a set of curvilinear coordinates xi we de�ne the

basis vectors

ei =
@x

@xi
: (19)

These basis vectors will in general not be orthogonal or normalized and they

are referred to as a coordinate basis.

Covariant and contravariant components A vector can be caracter-

ized either by its covariant or its contravariant components. The covariant

components of a vector v, denoted vi, are de�ned by the scalar product

between the vector and a basis vector

vi = ei � v: (20)

The contravariant components vi of that vector, are de�ned by the relations

v = v
iei: (21)

Similary one de�nes co- and contravariant components for higher order ten-

sors. In general, the co- and contravariant components will not be the same.

The metric tensor We de�ne the covariant components of the metric

tensor by

gij = ei � ej: (22)

The contravariant components of the metric tensor are de�ned by

g
ik
gkj = Æ

i
j : (23)

We raice covariant indices with

v
i = g

ij
vj : (24)

We lower contravariant indices with

vi = gijv
j
: (25)
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A.2 Deformations

Coordinates in the reference con�guration are writtenXL, while coordinates

in the present con�guration are written x
k. We de�ne the mapping as

x
k = �

k(XL): (26)

A.2.1 The deformation gradient

The deformation gradient F maps a small position vector dXK in the refer-

ence con�guration, onto a positionvector dxk in the present con�guration.

We de�ne its components by

F
i
K =

@x
i

@XK
= x

i
;K : (27)

A.2.2 The Cauchy-Green deformation tensors

We are interested in how a length in the reference con�guration has been

stretched into a length in the present con�guration. To that we need to

divide F into one part containing the rotation of the mapping and one part

containing the deformation of the mapping. Using the polar decomposition

theorem [5] we write F as

F = RU = VR; (28)

where R is orthogonal and U and V are symmetric and positive-de�nite.

Using this decomposition we de�ne two tensors

C = U2 = FTF; (29)

B = V2 = FFT : (30)

C is called the right (referential) Cauchy-Green deformation tensor and B

is called the left (spatial) Cauchy-Green deformation tensor. Their compo-

nents in a coordinate basis are

CKL = gklF
k
KF

l
L; (31)

B
kl = G

KL
F
k
KF

l
L: (32)

A.3 Covariant derivative

When di�erentiating vector and tensor �elds, we must consider that, on

moving between points in space, the basis vectors will in general change.

This will cause additional terms in the di�erential, other than the partial

derivatives, to contribute.
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The gradient of a vector The components of the gradient of a vector

�eld v in space are

v
i
;j = v

i
;j + �ikjv

k
: (33)

The coeÆcients �ikj are called the aÆnities in the present con�guration and

are de�ned through

�klm = g
ki�ilm = g

ki 1

2
(gil;m + gim;l � glm;i): (34)

Similary we de�ne the aÆnities in the reference con�guration by

e�KLM =
1

2
(GKL;M +GKM;L �GLM;K): (35)

The gradient of a tensor For a second order mixed tensor we get the

components of the gradient,

A
i
K;L = A

i
K;L + �imlx

l
;LA

m
K � e�MKLA

i
M (36)

A
i
K;l = A

i
K;l + �imlA

m
K � e�MKLA

i
MX

L
;l (37)

A.4 Special tensors

The permutation symbol �ijk is de�ned as

�ijk = �
ijk = 0 when any two indices are equal;

= +1 when i; j; k are an evan permutation

of the numbers 1; 2; 3;

= �1 when i; j; k are an odd permutation

of the numbers 1; 2; 3.

The permutation tensor is de�ned as

�ijk =
p
g�ijk �

ijk =
1
p
g
�
ijk (38)

The permutation tensor is de�ned as

�ijk =
p
g�ijk �

ijk =
1
p
g
�
ijk (39)
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B Examples of cm-code

B.1 The code for implementing F

cm_Calc_FupDn := proc()

local mapp,invmapp,mapptable,ndim,i,K,Diffvar,

Finvtable,Finvmatrix,Ftable,Fmatrix;

ndim := cmGetMetricDim();

if cmCheckIfMapping() then

mapptable := cmGetObjTable(chi(up));

Diffvar := cmGetRefVar();

for i to ndim do

for K to ndim do

Ftable[i,K]:=diff(mapptable[i],Diffvar[K]);

od;

od;

cmSetObjTable(F(up,Dn),Ftable);

elif cmCheckIfInvmapping() then

cmCalc(Finv(Up,dn));

Finvtable := cmGetObjTable(Finv(Up,dn));

Finvmatrix := linalg[matrix](ndim, ndim);

for K to ndim do

for i to ndim do

Finvmatrix[K,i] := Finvtable[K,i];

od;

od;

Fmatrix := linalg[inverse](Finvmatrix);

for K to ndim do

for i to ndim do

Ftable[K,i] := Fmatrix[K,i];

od;

od;

cmSetObjTable(F(up,Dn),Ftable);

else

print(`You need to load a mapping,`);

print(`or an inverse mapping,`);

print(`before calculating this object`);

fi;

end;
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B.2 The code for implementing B

cm_Calc_Bupup := proc()

local Gtable,Ftable,Btable,Bmatrix,ndim,

i,j,K,L,Binvtable,Binvmatrix;

ndim := cmGetMetricDim();

if cmCheckIfMapping() then

cmCalc(F(up,Dn));

Ftable := cmGetObjTable(F(up,Dn));

cmCalc(G(Up,Up));

Gtable := cmGetObjTable(G(Up,Up));

for i to ndim do

for j to ndim do

objtable[i,j] := 0;

for K to ndim do

for L to ndim do

Btable[i,j]:=Btable[i,j]+Gtable[K,L]*Ftable[i,K]*Ftable[j,L];

od;

od;

od;

od;

elif cmCheckIfInvmapping() then

cmCalc(Binv(dn,dn));

Binvtable := cmGetObjTable(Binv(dn,dn));

Binvmatrix := linalg[matrix](ndim, ndim);

for i to ndim do

for j to ndim do

Binvmatrix[i,j] := Binvtable[i,j];

od;

od;

Bmatrix := linalg[inverse](Binvmatrix);

for i to ndim do

for j to ndim do

Btable[i,j] := Bmatrix[i,j];

od;

od;

else

print(`You need to load a mapping,`);

print(`or an inverse mapping,`);

print(`before calculating this object`);

fi;

cmSetObjTable(B(up,up),Btable);

end;
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