
Kinetic Theory of Gases

Lars H. Söderholm

Fall 2011

1 Elements of Statistical Mechanics.

1.1 6N dimensional phase space

From a mechanical point of law a gas is an assembly of a very large number
N of molecules. To give the precise state of the gas at a moment we introduce
its phase space. It is a space of 6N dimension, a huge space. A point in phase
space is given by the total set of positions and velocities of all the molecules

x = (r1; c1; :::; rN ; cN ): (1)

It is important to realize that the ri and ci are independent variables.
We can write the equations of motion as (V is the total potential energy of

the interactions between the particles and possibly some external force)

dri
dt

= ci;
dci
dt

= � 1
m

@V

@ri
: (2)

If we know the state of the gas at time t, we know a point in phase space.
The equations of motion are �rst order in time, so there is a unique trajectory
passing through the point in phase space.

1.2 Probability distribution in 6N dimensional phase space

But usually we have a very limited knowledge of the microscopic state of the gas.
We can imagine a large number of copies of the gas, which all macroscopically
have the same properties but di¤erent microscopic states. The number of copies
within the volume element

d6Nx = d3r1d
3c1:::d

3rNd
3cN (3)

divided by the total number we write

Fd6Nx = Fd3r1d3c1:::d3rNd3cN : (4)
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F is thus a probability distribution in 6N dimensional phase space. As the total
probability is 1 we must haveZ

Fd6Nx =
Z
Fd3r1d3c1:::d3rNd3cN = 1 (5)

We know that the gas evolves in time. There is a �ow in phase space. Its
velocity is given by (2). We now see that this velocity �eld has a simple property,
it has divergence zero in phase space. We recall that ri and ci are independent
variables in phase space. We have

@

@r1
� c1 �

@

@c1
� 1
m

@V

@r1
+ :::+

@

@rN
� cN �

@

@cN
� 1
m

@V

@rN
= 0:

It has zero divergence. This means that it preserves volume in time,

d6Nx = d3r1d
3c1:::d

3rNd
3cN :

When we follow the motion of a small volume in 6N dimensional phase space,
the probability in that volume

Fd6Nx = Fd3r1d3c1:::d3rNd3cN
is also preserved. This means that the distribution function F is constant when
we follow the motion in phase space.

1.3 Liouville�s equation

Let us write this out explicitly

dF
dt

=
@F
@t

+
dx

dt
� @F
@x

= 0 (6)

or
dF
dt

=
@F
@t

+
NX
i=1

(ci �
@F
@ri

� 1

m

@V

@ri
� @F
@ci

) = 0: (7)

This is the Liouville equation. It is an exact consequence of the Newton equa-
tions of motion.
If we choose a distribution function as a � function, so that at each time t

every particle has well-de�ned position ri(t) and velocity ci(t)

F =
Y
�(ri � ri(t))�(ci � ci(t)); (8)

the distribution function satis�es the Liouville equation if and only if ri(t) and
ci(t) satisfy Newton�s law. (2)
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1.4 One particle distribution function

If we integrate out all variables except those belonging to the �rst particle we
obtain Z

Fd3r2d3c2:::d3rNd3cN :

If we multiply this by d3r1d3c1 we obtain the probability to �nd the �rst particle
in d3r1d3c1 irrespective of where all the other particles are. As the particles are
identical, the expected number of particles in d3r1d3c1 is F1d3r1d3c1 is

F1(r1; c1) = N
Z
Fd3r2d3c2:::d3rNd3cN :

This is called the reduced one-particle distribution function. Note thatZ
F1d3r1d3c1 = N:

1.5 Equilibrium distribution, given energy

In equilibrium the distribution has to be time independent. But we know that
the value of F is not changing as the point in phase space is moving. This means
that for F to be time independent, it has to have the same value in all points it
can reach in its motion. Suppose the system is isolated, so that its total energy
is constant in time. The totalt energy is a macroscopic quantity. We assume
that we know that it lies in a small intervall E;E +4E. The assumption that
the system comes arbitrarily close to any state with the same energy is called
the ergodic hypothesis. If it holds it is clear that F simply has to be a constant.
So the equilibrium distribution function when the energy is given is simply

a constant. But the total probability has to be 1; see (5). In other words, F is
the volume of the energy shell to the power �1.

1.6 A dilute gas

Now we consider a not too dense gas. The interaction between the molecules
then only act when the molecules are very close to each other. For hard spheres
the interaction simply means that a small fraction of the volume is forbidden.
When we calculate the total energy we can neglect the interactions. This means
that the total energy is

E =
NX
i=1

mc2i
2

=
m

2
(c21x + c

2
1y + c

2
1z + :::c

2
Nz):

Or

c21x + c
2
1y + c

2
1z + :::c

2
Nz =

2E

m

We can think of c1x; c1y; c1z; c2x; :::cNz as cartesian coordinates in a 3N dimen-
sional space. It is clear that the distance to the origin is R =

p
2E=m.
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We recall that F is simply a constant in the energy shell (and zero outside
of it). But the total probability has to be 1; see (5). In other words, F is the
volume of the energy shell to the power �1.
The volume of a sphere in velocity space with radius R is proportional to

R3N or to E3N=2 . The volume of a shell of thickness 4E is thus proportional to
E3N=2�14E: The integration in space only gives V N . Hence F is proportional
to E�3N=2+1V �N4E.

1.7 The one particle distribution, the Maxwellian

Can we �nd F1? One of the particle has a given velocity c1 and hence a given
kinetic energy. So suppose it is in d3r1d3c1: This means that the other particles
have the energy E0 = E �mc21=2 and 3(N � 1) dimensions to play with. They
will be in a 3(N � 1) dimensional spherical shell with radius R0

R02 = c22x + c
2
2y + c

2
2z + :::c

2
Nz =

2

m
(E � mc

2
1

2
)

and the same thickness4E. Its volume is proportional to V N�1E03(N�1)=2�14E.
We �nd that the probability is proportional to

V �1(E � mc
2
1

2
)
3(N�1)

2 �1E�
3N
2 +1

= V �1(1� mc
2
1

2E
)
3(N�1)

2 �1E:

But

(1� mc
2
1

2E
)
3(N�1)

2 �1 = exp[(
3(N � 1)

2
� 1) ln(1� mc

2
1

2E
)]

and the number of molecules N is very large and also the total energy E is
proportional to the number of molecules, so that E=N is independent of N: We
can expand the logarithm and keep only the �rst non-vanishing term. The next
term will be of order 1=N and can be neglected. The result is proportional to

V �1 exp(�3N
2E

mc21
2
):

So that F1 is proportional to

N

V
exp(�3N

2E

mc21
2
):

As F1 is normalized to N we �nd that

N

V
(
3N

4E
)3=2 exp(�3N

2E

mc21
2
):

is a normalization constant.
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From F1 we can calculate the pressure to obtain

p =
N

V

2E

3N
:

But for a not too dense gas, the gas law holds. This gives this gives us

2E

3N
= kT;

so that (n = N=V )

F1 = n(
m

2�kT
)3=2 exp(�mc

2
1

2kT
):

2 BBGKY Hierarchy

We have already introduced the one-particle distribution function. What hap-
pens if we integrate out all positions and momenta in the Liouville equation,
will that result in an equation for the one particle distribution function? The
potential energy is given by an exterior force and mutual forces.

V =

NX
i=1

V (ri) +
X

1�i<j�N
V12(jrj � rj j)

If we cannot neglect the interaction between the molecules, the resulting equa-
tion also contains the reduced two particle distribution function,

F2 = N(N � 1)
Z
Fd3r3d

3c3:::d
3rNd

3cN :

In fact, we obtain (here, F = �rV )

@F1
@t

+c1 �
@F1
@r1

+
F

m
� @F1
@c1

= �
Z
f(@F2
@c2

� @F2
@c1

) � 1
m

1

r

@V12
@r

(r2�r1)d3r2d3c2 (9)

The left hand side is a free streaming operator, the same as in the Boltzmann
equation. But the right hand side involves the two particle distribution function.

2.1 Boltzmann equation as limit for a dilute gas

The parameter � = n�1=3 de�nes an average distance between molecules. d is a
diameter of a molecule. As we have already seen d=� is an important parameter.
In a dilute gas this parameter is small compared to 1.


 = d3n = (d=�)3

is a measure of the relative volume taken up by the molecules.
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If the particles are uncorrelated, we would have

F2(r1; c1; r2; c2) = F1(r1; c1)F1(r2; c2):

But there is also a correlation, so that

F2(r1; c1; r2; c2) = F1(r1; c1)F1(r2; c2) + G2(r1; c1; r2; c2):

However, one can show that G2 is a term 
2 whereas F1 is of order 
. It is
possible to relate G2 to F1: This makes it possible to calculate the right hand
side of (9) to lowest non-trivial order in 
. The result is that it isZ

(F1(c�)F1(c�1)�F1(c)F1(c1))d�(n)creld3c1:

Here,

c� = c� nn � (c� c1); (10)

c�1 = c1 + nn � (c� c1):

In other words, the Boltzmann equation has been arrived as a the �rst non-
trivial approximation for small d3n. - In the sequel we shall simply write F for
the one particle distribution function F1.

3 Boundary conditions

The boundary of the gas is usually a solid wall. The gas molecules will then
collide with the molecules of the wall. This is a more complicated process than
collisions between the gas molecules.

Di¤use re�exion and half Maxwellian There are two simpli�ed models

which are often used. The most important one is that of di¤use re�exion.
The wall is assumed to be in thermal equilibrium. The relaxation towards
equilibrium in a solid body is usually very much faster than in a gas. The gas
molecules are asssumed to come into thermal equilibrium with the wall and to
be reemitted as a Maxwellian.
Let us call the normal pointing into the gas n. After collision with the wall

the molecules are given by

Fout=nw�3w��3=2 exp(��2wc2); c � n > 0: (11)

Here, Tw, is the temperature of the wall and �
2
w = m=2kTw. The parameter nw

is determined from the condition that the number of gas molecules is conserved.
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To calculate the outgoing �ux of molecules, we choose a y-axis in the direc-
tion of n. ThenZ

c�n>0
Foutcyd3c (12)

= nw�
�1
w ��3=2

Z
exp(��2)�yd3�

= nw�
�1
w ��3=2(

Z 1

�1
exp(��2x)d�x)2(

Z 1

0

exp(��2y)�yd�y)

= nw�
�1
w ��3=2(�1=2)2

1

2
= nw

r
kTw
2�m

:

The factor
p
kTw=2�m is of the order of the thermal speed of gas molecules

with the temperature Tw. When we know the incoming �ux of gas molecules
this gives the value of nw.

Specular re�exion Another simpli�ed model of collisions with the wall is
that of specular re�exion. The molecules simply collide elastically with the
wall. This means that

Fout(c) = Fin(c�2n(n � c)); c � n > 0: (13)

The molecules exchange momentum in the normal direction with the wall. They
exert pressure on the wall. But no momentum in the tangential direction is
exchanged. Hence, no shear stress on the wall. Further, there is no energy
exhange with the wall. This means that there will be no heat exchange either.
Hence a purely specularly re�ecting wall is a very unrealistic model. But

often it is a good model to assumes that most of the re�exion is di¤use but a
small portion of the molecules are re�ected specularly. In the sequel we will
however assume that the molecules re�ect di¤usely with the wall.

3.1 Heat conduction for Kn >> 1:Free molecular �ow

Now we consider two parallel plates with temperatures T1 and T2. The space
between them is �lled with gas of density n. Stationary condition has been
established. We consider the case where the Knudsen number is very large.
Either because the gas is considerably rare�ed or the distance between the
plates is very small. In this case we can simply neglect the collisions between
the gas molecules. They collide with the walls only.

Wall densitities This means that the distribution function satis�es the colli-
sionless equation, the one particle Liouville equation. The value of F is carried
with the motion of the molecule. Hence the gas molecules are distributed ac-
cording to two half Maxwellians.

F = n1�
3
1�

�3=2 exp(��21c2); cy>0
n2�

3
1�

�3=2 exp(��22c2); cy<0
(14)
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So far, n1 and n2 are unknown. Let us �rst see how they are related to the
density n of the gas. We need to calculate for the molecules coming from plate
1 (we introduce � =�1c)Z

cy>0

Fd3c = ��3=2n1

Z
�y>0

exp(��2)d3�

=
1

2
��3=2n1

Z
exp(��2)d3� = n1

2
:

For the molecules coming from plate 2 we obtain n2=2. Hence

n =
1

2
(n1 + n2):

But there is also the condition that the number of molecules is conserved.
This means that the particle current has to vanish, nvy = 0. We can then for a
half Maxwellian use (12). As a result we obtain

nvy =

Z
cyFd3c = (2�)�1=2[n1��11 � n2��12 ]:

This has to vanish. This gives us

n2
n1
=
�2
�1
=

r
T1
T2
:

Or

n1 = n
2
p
T2p

T1 +
p
T2
; (15)

n2 = n
2
p
T1p

T1 +
p
T2
:

Temperature What temperature will the gas have under stationary condi-
tions? It is given by

m

2
c02 =

3kT

2
:

As the �ow velocity vanishes here, we can skip the prime.

nc02 =

Z
c2Fd3c = ��3=2[n1��21

Z
�y>0

�2 exp(��2)d3�

+n2�
�2
2

Z
�y<0

�2 exp(��2)d3�]

= ��3=2
1

2
(n1�

�2
1 + n2�

�2
2 )

Z
�2 exp(��2)d3�:
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Introducing polar coordinates and then by partial integration we haveZ
�2 exp(��2)d3�

= 4�

Z 1

0

�4 exp(��2)d�

= 4�
3

2

Z 1

0

�2 exp(��2)d�

= 4�
3

4

Z 1

0

exp(��2)d�

= 3�
1

2

Z 1

�1
exp(��2)d� = 3�3=2

2
:

Hence,

nc02 =
3

4
(n1�

�2
1 + n2�

�2
2 )

=
3k

m

T1
p
T2 + T2

p
T1p

T1 +
p
T2

:

m

2
c02 =

3k

2

T1
p
T2 + T2

p
T1p

T1 +
p
T2

=
3

2
kT:

This gives us

T =
T1
p
T2 + T2

p
T1p

T1 +
p
T2

=
p
T1T2: (16)

Heat current Let us �nally calculate the most interesting quantity, the heat
current.

qy = n
mc02

2
c0y

=
m

2

Z
c2cyFd3c

=
m

2
��3=2[n1�

�3
1

Z
�y>0

�2�y exp(��2)d3�

+n2�
�3
2

Z
�y<0

�2�y exp(��2)d3�]

To calculate the integrals here, we introduce polar coordinates with polar axis
along the y-axis Z

�y>0

�2�y exp(��2)d3�

= 2�

Z �=2

0

d�

Z 1

0

�5d� cos � exp(��2) sin �:
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Here, Z �=2

0

cos � sin �d� =
1

2

and Z 1

0

�5d� exp(��2) = 4

2

2

2

Z 1

0

�d� exp(��2) = 1:

The term with �y < 0 gives the same result with a minus sign. As a result we
obtain

qy =
1

2
m��1=2[n1�

�3
1 � n2��32 ] =

nmp
�

1

�1 + �2
(��21 � ��22 )

= nk

r
2k

�m

p
T1T2p

T1 +
p
T2
(T1 � T2): (17)

4 Small Knudsen number

4.1 A simple relaxation model

Now we consider the case where the mean free path ` is much smaller than a
characteristic length of the con�guration. This means that the Knudsen number
Kn = `=L << 1. To have a physical picture of what is going on we assume that
all molecules collide at the same time and then move without collisions for a
time � . Then they collide again. At the collisions the molecules are thermalized,
so they follow a local Maxwellian.

4.1.1 Temperature gradient

For simplicity we consider a situation with a temperature gradient in the x-
direction but no �ow. The pressure has to be constant, otherwise the gas would
start �owing. We solve n from the gas law to obtain n = p=kT . The Maxwellian
is (remember that T is a function of x)

F0 = n(
m

2�kT
)3=2 exp(�mc

2

2kT
) =

p

k
(
m

2�
)3=2T�5=2 exp(�mc

2

2kT
).

As long as no new collisions have occurred the molecules carry the value of the
distribution function with them. Hence at time �=2

F(r; c) =F0(r� c
�

2
; c):

c�=2 � ` and T changes little in a distance `. So

F(r; c) � F0(r; c)�
�

2
c � @F0

@r

= F0(r; c)(1�
�

2
cx
@

@x
lnF0):
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cx
2 1 0 1 2

cy

2

1

1

2

We have

lnF0 = �5
2
lnT � mc2

2kT
+ const.

@

@x
lnF0 = (

mc2

2kT 2
� 5

2T
)
@T

@x
= (�2c2 � 5

2
)
1

T

@T

@x
:

F(r; c)�F0(r; c)(1�
�

2T

@T

@x
cx(�

2c2 � 5
2
)): (18)

This is the time average of the distribution function. We see that it is no more
a local Maxwellian. The �gure shows equal density curves for the distribution
function in the xy-plane. The variables are the dimensionless velocity compo-
nents �cx and �cy.
Note that

�cx
1

T

@T

@x
� `

L
= Kn

and the factor �2c2 � 5
2 � 1.

It is a good exercise to show that the new term in the distribution function
does not contribute to n. Further that vx = 0. To show this it could be
convenient to introduce spherical polar coordinates with axis along the x-axis,
so that cx = c cos �.
What is interesting, however, is that this distribution function gives a heat

current. For symmetry reasons it is clear that the heat current also will be along
the x-axis. The zero order terrm does not contribute.

qx=
m

2

Z
c02c0xFd3c = ��

@T

@x
;
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where

� =

Z
�

2T
(�2c02 � 5

2
)c02c02x F0d3c (19)

is the heat conductivity.

qx = �m
2
n(

�p
�
)3
�

2T

@T

@x

Z
exp(��2c2)(�2c2 � 5

2
)c2c2xd

3c

= ��mn
4T

@T

@x
��4��3=2

Z
exp(��2)(�2 � 5

2
)�2�2xd

3�

Here we have changed to dimensionless velocities �i = �ci. Use spherical polar
coordinates with polar axis along the x-axis. Then �x = � cos �

I = ��3=2
Z
exp(��2)(�2 � 5

2
)�2�2xd

3�

= ��3=2
Z 1

0

exp(��2)(�2 � 5
2
)�6d�

Z �

0

cos2 � sin �d�2�

=
4

3
p
�

Z 1

0

exp(��2)(�8 � 5
2
�6)d�:

But (for Re� > �1, so that the integral to the right is convergent)Z 1

0

exp(��2)��d� = �� 1
2

Z 1

0

exp(��2)���2d�

and Z 1

0

exp(��2)�d� =
1

2
;Z 1

0

exp(��2)�d� =

Z 1

�1
exp(��2)d� =

p
�

2

We �nd that
I =

4

3
p
�
(
7

2
� 5
2
)
5

2

3

2

1

2

p
� =

5

2
:

giving

qx = �
5�mn

8T

@T

@x
��4 = �5�nkT

2

1

T

@T

@x
(
kT

m
): (20)

Here, r
kT

m
� cthermal

�

r
kT

m

1

T

@T

@x
� `

L
;

nkT � e:

The heat current transports thermal energy with the velocity which is� (`=L)cthermal.
The heat conductivity is

5k

2m
�p:
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cx
2 1 0 1 2

cy

2

1

1

2

4.1.2 Shearing

The picture here is of course quite simpli�ed but can give a feeling for how the
distribution function deviates slightly from a local Maxwellian due to the small
but non-zero mean free path. One can use a similar reasoning for a shear �ow
vx(y). The distribution function is then found to be

F�F0[1�
�

2
�2c0xc

0
y

dvx
dy
]: (21)

The distribution function is non-Maxwellian in a characteristic way. Equal
density curves with dimensionless velocity components �cx; �cy on the axes.
In this case we obtain a shear stress

�xy = �m
Z
cx0c

0
yFd3c = �

@vx
@y
:

Here

� = mn

Z
�

2
c2x0c

02
y F0d3c (22)

is the viscosity

�xy =
1

8
�n��2m

@vx
@y

=
1

4
�nkT

@vx
@y

=
1

4
�
@vx
@y
p

Here, �dvx=dy is a small dimensionless number � Kn.
The viscosity is

1

4
�p
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It is easy to show that the stress tensor only has a pressure p = nkT besides
this shear stress.
For a general velocity �eld the result is

�ij = �p�ij +
1

4
� [
1

2
(
@vi
@xj

+
@vj
@xi

)� 1
3

@vk
@xk

�ij ]p: (23)

4.2 The Chapman-Enskog expansion

To treat the case with small Knudsen number in a more rigorous way we �rst
introduce dimensionless variables denoted with a tilde

xi = exiL; t = ettc; ci = eciC; Fi = bFiLC2m;n = enN; d� = d2de�:
The Boltzmann equation then takes the form (here we have skipped the tildes)

"(
L

Ctc
@t + ci@xi +

Fi
m
@ci)F =

Z
(F(c�1)F(c�)�F(c1)F(c))d�creld3c1

where

" =
1

d2NL
=
`

L
= Kn: (24)

Here, L=tcC is a Mach number. If it is of the order of 1 or less, we can simply
choose tc = L=C and L=tcC = 1.
It is convenient to introduce a bilinear operator, such that

J(F ;G) =
Z
1

2
(F(c�1)G(c�) + F(c�)G(c�1)�F(c1)G(c)�F(c)G(c1))d�creld3c1:

(25)
The collision integral is then J(F ;G).
It is important that for small Knudsen number, the small parameter multi-

plies the derivatives. This is typical of a singular perturbation. Now we assume
an expansion

F = F0 + "F1 + ::: (26)

If we insert it into the Boltzmann equation we obtain to zero order

J(F0;F0) = 0: (27)

This means that the zero order distribution function is a local Maxwellian.
We extend the collision integral as a symmetric bilinear expression by

2J(F ;G) =2J(G;F) = J(F + G;F + G)� J(F ;F)�J(G;G)

Then to next order we �nd

(@t + ci@xi +
Fi
m
@ci)F0 = 2J(F0:F1): (28)

Here we know that the right hand side when multiplied with 1; c;c2 vanishes.
Hence the same holds for the left hand side. But this is just the conservations
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laws for the distribution function F0. These are the Euler equations. From these
the time derivatives of n;v;T can be expressed in terms of spatial derivatives.
Thus the left hand side of (28) can be written in terms of the spatial derivatives
of T;v:

F0[(�2c02 �
5

2
)�c0i

T;i
T
+ 2�2c0ic

0
jv<i;j>]

Here

c0 = c� v

v<i;j> =
1

2
(vi;j + vj;i)�

1

3
vk;k�ij

F0 + "F1 = F0f1�
1

n
[(A(�2c02)c0i

T;i
T
+ 2�2c0ic

0
jB(�

2c02)v<i;j>]g+O("2) (29)

We see that the result can be obtained from the simple relaxation model by the
replacement

�

2
! A(�2c02)

n
(30)

for the temperature gradient and

�

2
! 2B(�2c02)

n
(31)

for the shearing. This means that the relaxation times depend on the dimen-
sionless speed and is di¤erent for temperature gradient and shear.
When we make the replacement �=2 ! A=n in (19) we �nd the heat con-

ductivity and the replacement �=2 ! 2B=n in (22) gives the viscosity. One
important thing that has been achieved by the Chapman-Enskog expansion is
a relation between heat conductivity and viscosity in �uid dynamics with the
cross section of the molecular interactions.
(Really, the �uid dynamic variables n;v;T in F0 are n0;v0;T0 and from (28)

F1 is given in terms of n0;v0;T0 and their �rst spatial derivatives plus a term
that gives zero in J(F0:F1). From F0 + "F1 one calculates the �uid variables,
they are n(1) = n0 + "n1 and similarly for v;T . Expressing F0 + "F1 in terms
of n(1);v(1);T(1) one obtains (29).
If one does not make this summing of the �uid variables, the resulting �uid

dynamics equations will not be valid for times characteristic of di¤usion as the
Navier-Stokes equations are.)

5 Knudsen layer and kinetic boundary condi-

tions for Navier-Stokes

When the mean free path is small compared to typical dimensions of the geom-
etry, we have a small Knudsen number and the Boltzmann equation can be
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approximated with the Navier-Stokes equations. This is however not fully true.
Close to a wall, the distance to the wall is the most important length scale.
When it is of the order of the mean free path, the e¤ective Knudsen number
is of order 1 and no longer small. As a consequence, there will be a layer of
thickness ` where the Navier-Stokes equations don�t apply. This layer is called a
Knudsen layer named after the Danish physicist Martin Knudsen (1871-1949).

5.1 Velocity slip

We consider a shearing �ow close to a wall. According to the usual non-slip
boundary condition the velocity is given by vx = (@vx=@y)y and vanishes at the
wall given by y = 0. We take a point with a distance to the wall which is small
compared to `. Now the point is that the molecules with velocities pointing
to the wall have travelled a mean free path so they have a mean velocity of
the order (@vx=@y)`. We assume the wall re�ects di¤usely (possibly with a
small contribution of specular re�exion). So the outgoing molecules will have
an average velocity which is zero (or small). The average for all molecules will
be of the order of half (@vx=@y)`. This means that the velocity close to the wall
will not be zero. We have a velocity slip.
This can be in a rigorous way. Close to the wall one rescales the Boltzmann

equation using ` as a length scale normal to the wall. The resulting kinetic
equation can be solved numerically. The result for hard spheres is this. The
distance to the wall is measured in mean free paths. Data are taken from Sone,
Kinetic Theory and Flud Dynamics, 2002. The full solution can then be found

velocity
1 0 1 2 3

distance/l

1

2

3

4

by adding the Navier-Stokes solution. In this way the boundary condition for v
is also found. We see that the tangential velocity of the Navier-Stokes solution
vanishes when we extrapolate the curve of the order one mean free path into
the wall
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velocity
1 2 3 4

distance/l

1

0

1

2

3

5.2 Temperature jump

The temperature has an entirely analogous behaviour. The Navier-Stokes-
Fourier solution will attain the wall temperature only when extrapolated of
the order of one mean free path into the wall. And there is a Knudsen layer
contribution.

5.3 Thermal creep

There is however also another e¤ect of the Knudsen layer. This is when there
is a temperature gradient along the wall. The same temperature gradient will
be established in the gas close to the wall. Let us consider a point close to the
wall compared to the mean free path. The molecules with velocities pointing to
the wall have travelled a mean free path or mean free time from the gas. We
already know their distribution, see . But the molecules leaving the wall have all
arrived from a point very close to the point we consider. This means that they
will follow the local Maxwellian of the wall. So the total distribution function
will look like this (the normal into the gas is in the y-direction).It is given by

F(r; c)�F0(r; c)f
(1� �

2T
@T
@x cx(�

2c2 � 5
2 ));cy < 0

1; cy > 0
: (32)

The point is now that this distrubution gives rise to a shear stress. We know
it is calculated as the integral of �cxcyF . It is clear that the Maxwellian term,
will not give rise to shear. So what remains is

�xy =
�

2T

@T

@x

Z
cy<0

cxcyF0(r; c)cx(�2c2 �
5

2
))d3c:
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cx
2 1 0 1 2

cy

2

1

1

2

We choose polar coordinates with axis along the y-axis. Then cy = c cos �; cx =
c sin � sin'; d3c = c2dc sin �d�d'. Introducing dimensionless variables, the inte-
gral is proportional toZ 1

0

(�7 � 5
2
�5) exp(��2)d�

Z �

�=2

sin3 � cos �d�

Z 2�

0

sin2 'd'

= (
6

2
� 4
2
� 2
2
� 5
2
� 4
2
� 2
2
)

p
�

2
(�1
4
)� = ��

3=2

4
:

�xy = �
�

8T

@T

@x
��3:

At a distance of the order mean free path from the wall, most of the molecules
come from the gas, so there we have simply the distribution function for a
temperature gradient and no shear stress. So the derivative d�xy=dy will be
positive, giving the gas an acceleration in the positive x-direction and set up a
�ow in that direction. This is the phenomen of thermal creep:We estimate this
velocity. We assume it to be v in the positive x-direction. This means that the
local Maxwellian F0(r; c) should be replaced by F0(r; c� v). v is small, so

F0(r; c� v) � F0(r; c)[1 +
mv(cx � vx)

kT
]

� F0(r; c)[1+2�2cxvx]:

So the new distribution function is given by the replacement

� �

2T

@T

@x
(�2c2 � 5

2
)! � �

2T

@T

@x
(�2c2 � 5

2
) + 2�2cxvx:

For this to give the shear stress zero we �nd

� �

2T

@T

@x

p
�

2
+ �2vx

p
� = 0:
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This gives us

vx =
1

�2
�

4T

@T

@x
=
k�

2m

@T

@x

We have

vx �
`

L

p
c02:

5.3.1 Thermophoresis

An interesting application is that of a body in a gas with a temperature gradient.
There will then be a temperature gradient also in the body unless it has an
extremely high thermal conductivity. Due so thermal creep the gas around
the body will start streaming in the direction of increasing temperature. As a
consequence the body will move in the opposite direction. It will move from
hotter to colder gas. This is the phenomen of thermophoresis. This phenomenon
can be seen when a candle is burning close to a cold wall. Soot particles will
move from the candle to the wall and get stuck there.
Here the temperature gradient is to the left (green arrow). A �ow will start

along the boundary of the body. It is given by the blue arrows. As a result the
body will move in the opposite direction (black arrow).

5.3.2 Radiometer

Another example is the radiometer. It is used to measure electromagnetic radi-
ation, in particular infrared light.
The blades are black on one side and metallic on the other side. The glass

container is �lled with rare�ed air. If the container had a perfect vacuum one
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Figure 1: The radiometer seen from above. The gas �ow is in the direction from
the colder to the hotter sides and the radiometer is rotating in the opposite
direction

would expect the photons to be absorbed on the black sides and re�ected on the
metallic sides. As a result a rotation would set up with the black side coming
�rst. But in a radiometer, there is some air and the mechanism is quite di¤erent.
The black sides will have a higher temperature than the metallic sides. Hence,
at the tip of a blade there will be a temperature gradient pointing from the
metallic side to the black side. A thermal creep will set up, the gas will �ow
from the metallic side to the black side. This will give a back reaction on the
blades and the radiometer will start to move in the opposite direction.

5.4 Boundary conditions for Navier-Stokes-Fourier

The boundary conditions for the Navier-Stokes-Fourier solution are (n is the
normal into the gas, Tw is the wall temperature)

vi � ninjvj � �v[vi;j + vj;i � 2nivj;knk]nj = �T (T;i � ninjT;j); (33)

T � �TniT;i = Tw

Here, �v; �T are coe¢ cients � ` and �T � `
T

p
c02 � `cs

T . �v gives the velocity
jump and �T the temperature jump. �T is the coe¢ cient of thermal creep.
If vz(x; y) is the only non-zero component of velocity, as in a pipe �ow, the

boundary conditions are simply

vz � �v
@vz
@n

= �T
@T

@z
; (34)

T � �T
@T

@n
= Tw
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6 Flows driven by a temperature di¤erence

A tube with circular cross section and with a temperature gradient. Solving the
Navier-Stokes equations we obtain

v =
1

4�

dp

dz
r2 +A:

The boundary condition is (the outward normal of the surface is in the negative
radial direction)

v + �v
dv

dr
= �T

dT

dz
or

1

4�

dp

dz
R2 +A+ �v

1

4�

dp

dz
2R = �T

dT

dz
:

Hence,

A = � 1

4�

dp

dz
(R2 + 2R�v) + �T

dT

dz

� � 1

4�

dp

dz
(R+ �v)

2 + �T
dT

dz
:

as �v << R.

v = � 1

4�

dp

dz
[(R+ �v)

2 � r2] + �T
dT

dz
: (35)

The �rst correction involving �v means that the �ow is the same as if the radius
of the tube were R + �v; of the order of a mean free path larger then the real
radius R: The second correction is the one we will consider now. The total mass
�ux is

Q = ���
8�

dp

dz
[2(R+ �v)

2R2 �R4] + ���T
dT

dz
R2

6.1 Closed tube

We now assume that the tube is closed at both ends. We will show that a
pressure gradient will set up. As the tube is closed Q = 0. We can then neglect
�v and obtain

dp

dz
=
8��T
R2

dT

dz
(36)

The pressure will increase in the direction of increasing temperature to coun-
terbalance the thermal creep �ow caused by the temperature gradient. As an
estimate (recall that � � �cs` and �T � `cs=T ; cs is the speed of sound)

4p � �c2s(
`

R
)2
4T
T
:
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But mc2s � kBT so that p = �kBT=m � �c2s:
4p
p
� ( `

R
)2
4T
T
:

So the pressure di¤erence is of second order in the Knudsen number based on
the radius. A thinner tube will create a larger pressure di¤erence.
In this case, the velocity pro�le is

v = �T
dT

dz
(
2r2

R2
� 1) (37)

Close to the walls, the �ow is in the direction of the temperature gradient, but

1 0,5 0 0,5 1

1

0,5

0,5

1

Figure 2: Velocity pro�le at equilibrium due to thermal gradient

in the middle of the tube it is in the opposite direction.

6.2 Two connected tubes with di¤erent radii

Now we assume that two tubes of di¤erent radii R1 and R2 are connected in
their end points to form a closed system as shown in the picture. But let us
�rst solve for dp=dz, which we want to eliminate

dp

dz
= 8��T

dT

dz

R2

[2(R+ �v)
2R2 �R4] �

8�

��

1

2(R+ �v)
2R2 �R4Q

For the �rst tube, R is replaced by R1: For the second tube R is replaced by R1
and Q by �Q. We take the di¤erence of the two equations to �nd the relation
between Q and dT=dz. But R1; R2 and jR2�R1j are much larger than the mean
free path, so we can neglect �v. As a result we �nd

Q = ��T
dT

dz
�R21q(

R1
R2
); (38)

q(x) =
1� x2
1 + x4

:
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The function q is plotted here. As expected, when the two radii are equal, so

x
0 0,2 0,4 0,6 0,8 1

q(x)

0

0,2

0,4

0,6

0,8

1

that x = 1, the �ux is zero. When R2 >> R1 the �ux is

Q � ��T
dT

dz
�R21:

7 Free molecular �ow

We have earlier considered the heat transfer between two plates for a very high
Knudsen number. Now we consider another important example.
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7.1 Flow in a tube at Kn >> 1
We consider a circular tube with radius R. We assume a pressure gradient but
no temperature gradient. And we consider the case where ` >> R. This means
that the only collisions are those with the wall of the tube. The red line is the
motion of a molecule. It starts at the wall.
We then know that the value of the distribution function F is constant when

we follow the motion of a molecule, until it collides with the wall. Let us consider
a point with the distance r from the axis. We choose cartesian coordinates
such that the point has coordinates r; 0; z. We now introduce spherical polar
coordinates. The direction of the molecular velocity given by a red line in the
�gure is given by the angles �; �. � is the angle with the z-direction. The dashed
line is the projection of the molecular velocity on the xy-plane. The angle � is
the angle of the dashed line from the x-axis. To �nd the value of the distribution
function we simply need to �nd out where the molecule has last collided with
the wall. We call the coordinates of that point x0; y0; z0.
The speed of the molecule is c: So the components of the velocity are given

by

cx = c sin � cos�;

cy = c sin � sin�;

cz = c cos �

We �nd, if we assume that the molecule has traveled the time4t since it collided
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with the wall,

x0 = r � c4t sin � cos�;
y0 = �c4t sin � sin�;
z0 = z � c4t cos �:

Here we eliminate c4t and obtain

x0 = r + (z � z0) tan � cos�;
y0 = (z � z0) tan � sin�:

But the distance to the axis is then the radius R of the tube

R2 = r2 + (z � z0)2 tan2 � + 2r(z � z0) tan � cos�:

The interesting thing is to �nd out the value of z0. We write the equation

(R2 � r2) cot2 � = (z � z0)2 + 2r(z � z0) cot � cos�

and �nd (there are two solutions; we pick the one that gives z0 < z when
0 < � < �=2)

z � z0 = �r cot � cos�+
q
(R2 � r2) cot2 � + r2 cot2 � cos2 �

= �r cot � cos�+ cot �
q
R2 � r2 sin2 �

= cot �(�r cos�+
q
R2 � r2 sin2 �)
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The Maxwellian is given by

F0 = nw(
�p
�
)3 exp(��2c2):

So the distrubution function is

F(r; z; c; �; �) = nw(z0)(
�p
�
)3 exp(��2c2):

Here
�2 =

m

2kTw
:

We have pressure gradient but a constant temperature. From

p = knT

we have the density gradient

dn

dz
=

1

kT

dp

dz
:

To a su¢ cient approximation we write

nw(z0) � nw(z) +
dnw
dz

(z0 � z)

So we obtain the distribution function

F(r; z; c; �; �) � F0(R; z; c)�
dnw
dz

(
�p
�
)3 cot �(�r cos�+

q
R2 � r2 sin2 �) exp(��2c2):

(39)
Let us now �nd the velocity macroscopic velocity vz. To that end we use

nvz =

Z
Fczd3c

The Maxwellian gives no contribution to the integral. The remaning integral is

�dnw
dz

(
�p
�
)3
Z
exp(��2c2) cot �(�r cos�+

q
R2 � r2 sin2 �)c cos �c2dc sin �d�d�

The term �r cos� does not contribute. The result is

�dnw
dz

(
�p
�
)3
Z
exp(��2c2)c3dc cot �

q
R2 � r2 sin2 � cos � sin �d�d�

= �dnw
dz

(
�p
�
)3
Z 1

0

exp(��2c2)c3dc
Z �

0

cos2 �d�

Z 2�

0

q
R2 � r2 sin2 �d�:

Here we introduce � = �2c2 and obtain
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Z
Fczd3c = �dnw

dz
(
�p
�
)3��4

Z 1

0

1

2
exp(��)�d��

2
R

Z 2�

0

r
1� ( r

R
)2 sin2 �d�

= �dnw
dz

1

�
p
�

1

4
R

Z 2�

0

r
1� ( r

R
)2 sin2 �d�

= �dnw
dz

1

�
p
�
RE(

r

R
)

We have introduced the elliptic integral of the second kind

E(w) =

Z �=2

0

q
1� w2 sin2 �d�:

We also need to calculate n.

n =

Z
Fd3c

The Maxwellian gives simply n(z); the value of n at the boundary. The remain-
ing term in the integral is

�dn
dz
(
�

�
)3=2

Z
exp(��2c2)c2dc cot �(�r cos�+

q
R2 � r2 sin2 �) sin �d�d�

= �dn
dz
(
�

�
)3=2

Z
exp(��2c2)c2dc(�r cos�+

q
R2 � r2 sin2 �) cos �d�d�

The integral over � vanishes, so the number density is simply constant over a
cross section, n = nw.
We conclude that

vz = �
1

n

dn

dz

R

�
p
�
E(
r

R
): (40)

To �nd the total �ux, we need the integralZ 1

0

E(w)wdw =
2

3
:

As a result we obtain

Qfm = 2�mn

Z
vzrdr = �

4

3
R3
r
2�kT

m
m
dn

dz
: (41)

It is interesting here to compare with the Navier-Stokes Poiseuille result

QNS = �mn
�R4

8�

dp

dz
:

But we know that

� = mn� � mncs`;
mc2s � kT
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and use the gas law to obtain

QNS � �mn
R4kT

`cs

dn

dz
� mR

4

`
m
dn

dz
cs

In the same way we obtain

Qfm � �R3m
dn

dz
cs:

We conclude that if we put ` � R in the Navier-Stokes expression we obtain the
free molecular �ow result. This is reasonable: the diameter of the tube gives an
estimate of the distance between two collisions and thus serves as an e¤ective
mean free path in this case.
If we consider the integrals for c2 to obtain the total energy density, we

obtain a similar result, it will be a constant. But

�e = �
v2

2
+ �e0 = �

v2

2
+ �

3

2m
kT;

T =
2m

3k
(e� v

2

2
)

As � and �e are constants over a cross section (independent of r) but v2=2
decreases with the distance from the axis, this means that T increases with the
distance from the axis.
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