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Abstract

Kinetic-equation approach of numerical study of fluid-dynamic equa-
tions is discussed. A method constructing a kinetic equation replacing
the fluid-dynamic-type equation exactly is proposed. On the basis of
this method, the validity or improvement of heuristic numerical kinetic-
equation systems is discussed.

1 Introduction

There is a recent trend to make use of kinetic-type equation in obtaining nu-
merical solutions of the Euler or Navier-Stokes set of equations (e.g., [1], [2],
[3]). The way of computation is different among the authors, but they noticed
the simple linear form of the differential term of the kinetic equation and try
to avoid some difficulties in numerical analysis of the Euler or Navier-Stokes set
(e.g., instability problems in shock wave computations, the pressure term in the
incompressible Navier-Stokes set, preference of quick computation of complex
problems to detailed precise one). They made some success in various problems.
One of the direction of this trend is by Vasseur’s. He uses the simplest part

of kinetic equation, that is, the Boltzmann equation without collision term but,
instead, modifies the velocity distribution function at each time step. For this
scheme he developed the mathematical theory, though it is limited to the case
where the ratio of the specific heats is equal to three. Kun Xu’s approach is
also in this direction, although he uses the BKW equation and introduces some
technique to treat the discontinuity (shock wave or contact discontinuity) in the
flow field. He investigated many problems by his method.[4]
In the present brief notes, we propose a simple way to construct a kinetic

system of equation and initial condition from a set of partial differential equation
of a conservation form (e.g., Euler and Navier-Stokes sets) in such a way that
some moments of the solution of the kinetic system satisfy the set of partial
differential equations exactly. On the basis of this kinetic system, we discuss
the numerical scheme of Vasseur type as an example. This type of discussion
has wide application to construction of efficient schemes and evaluation of their
validity.
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2 Exact kinetic-equation approach

Let xi, ξi, and t be independent variables, and f(xi, ξi, t) be a dependent vari-
able (or the velocity distribution function). The (macroscopic) variables ρr
(r = 0, 1, · · · , 4) are defined as follows:

ρr =

Z
γrfdξ1dξ2dξ2, (1)

where

γ0 = 1, γi = ξi, γ4 = ξ2i , (2)

and the fluxes Hr
i of the macroscopic variables are defined as follows:

Hr
i =

Z
ξiγrfdξ1dξ2dξ2. (3)

Take a velocity distribution function fc of Chapman-Enskog type where the
space and time variables enter only through the macroscopic variables or their
space variables:

f(xi, ξi, t) = fc(ρr,∇ρr, ξi), (4)

where ∇ is the representative of a collection of the derivatives ∂s/∂xi1 · · ·∂xis .
Naturally,

ρr =

Z
γrfc(ρr,∇ρr, ξi)dξ1dξ2dξ2.

The fluxes Hr
i corresponding to the velocity distribution function fc(ρr,∇ρr, ξi)

of Chapman-Enskog type is denoted by Ĥr
i , that is,

Ĥr
i (ρr,∇ρr) =

Z
ξiγrfc(ρr,∇ρr, ξi)dξ1dξ2dξ2. (5)

Now, choosing a function fc(ρr,∇ρr, ξi) of Chapman-Enskog type, we dis-
cuss a solution of the following functional equation:

∂f

∂t
+ ξi

∂f

∂xi
= ξi

µ
∂fc
∂ρs

∂ρs
∂xi

+
∂fc
∂∇ρs

∂∇ρs
∂xi

¶
− ∂fc

∂ρq

Ã
∂Ĥq

i

∂ρs

∂ρs
∂xi

+
∂Ĥq

i

∂∇ρs
∂∇ρs
∂xi

!

− ∂fc
∂∇ρq∇

Ã
∂Ĥq

i

∂ρs

∂ρs
∂xi

+
∂Ĥq

i

∂∇ρs
∂∇ρs
∂xi

!
, (6)

with the initial condition:

f(xi, ξi, t) = fc(ρ
0
r,∇ρ0r, ξi) at t = t0. (7)



This equation has the same form of conservation equation as the equation
without the right-hand side terms:

∂ρr
∂t

+
∂Hr

i (ρr,∇ρr)
∂xi

= 0. (8)

This is derived from the following manipulation of the right-hand side:Z
γrξi

µ
∂fc
∂ρs

∂ρs
∂xi

+
∂fc
∂∇ρs

∂∇ρs
∂xi

¶
dξ1dξ2dξ2

=
∂Ĥr

i

∂ρs

∂ρs
∂xi

+
∂Ĥr

i

∂∇ρs
∂∇ρs
∂xi

,

and Z
γr

∂fc
∂ρq

Ã
∂Ĥq

i

∂ρs

∂ρs
∂xi

+
∂Ĥq

i

∂∇ρs
∂∇ρs
∂xi

!
dξ1dξ2dξ2

=

Ã
∂Ĥq

i

∂ρs

∂ρs
∂xi

+
∂Ĥq

i

∂∇ρs
∂∇ρs
∂xi

!
∂

∂ρq

Z
γrfcdξ1dξ2dξ2

=

Ã
∂Ĥq

i

∂ρs

∂ρs
∂xi

+
∂Ĥq

i

∂∇ρs
∂∇ρs
∂xi

!
∂ρr
∂ρq

=
∂Ĥr

i

∂ρs

∂ρs
∂xi

+
∂Ĥr

i

∂∇ρs
∂∇ρs
∂xi

,

and Z
γr

∂fc
∂∇ρq∇

Ã
∂Ĥq

i

∂ρs

∂ρs
∂xi

+
∂Ĥq

i

∂∇ρs
∂∇ρs
∂xi

!
dξ1dξ2dξ2

= ∇
Ã
∂Ĥq

i

∂ρs

∂ρs
∂xi

+
∂Ĥq

i

∂∇ρs
∂∇ρs
∂xi

!
∂

∂∇ρq

Z
γrfcdξ1dξ2dξ2

= ∇
Ã
∂Ĥq

i

∂ρs

∂ρs
∂xi

+
∂Ĥq

i

∂∇ρs
∂∇ρs
∂xi

!
∂ρr
∂∇ρq

= 0.

Proposition: The solution of the initial value problem (6) with (7) is as-
sumed to be unique. Then the set of the macroscopic variables ρr calculated
from the solution f(xi, ξi, t) is the solution of the initial value problem of the
partial differential equations

∂ρr
∂t

+
∂Ĥr

i (ρr,∇ρr)
∂xi

= 0, (9)

with the initial condition

ρr = ρ0r at t = t0. (10)



Proof : Take a function

f(xi, ξi, t) = fc(ρ
c
r(xi, t),∇ρcr(xi, t), ξi), (11)

where ρcr(xi, t) is the solution of the following partial differential equations:

∂ρcr
∂t

+
∂Ĥr

i (ρ
c
r,∇ρcr)

∂xi
= 0, (12)

with the initial condition

ρcr = ρ0r at t = t0. (13)

Then

ρr(xi, t) = ρcr(xi, t),

∂f

∂t
=

∂fc
∂ρcr

∂ρcr
∂t

+
∂fc
∂∇ρcr

∂∇ρcr
∂t

= −∂fc
∂ρcr

∂Ĥr
i (ρ

c
r,∇ρcr)

∂xi
− ∂fc

∂∇ρcr
∇
Ã
∂Ĥr

i (ρ
c
r,∇ρcr)

∂xi

!
,

and

ξi
∂f

∂xi
= ξi

∂fc(ρ
c
r,∇ρcr, ξi)
∂ρcr

∂ρcr
∂xi

+ ξi
∂fc(ρ

c
r,∇ρcr, ξi)
∂∇ρcr

∂∇ρcr
∂xi

.

Thus,

∂f

∂t
+ ξi

∂f

∂xi
= ξi

∂fc(ρ
c
r,∇ρcr, ξi)
∂ρcr

∂ρcr
∂xi

+ ξi
∂fc(ρ

c
r,∇ρcr, ξi)
∂∇ρcr

∂∇ρcr
∂xi

− ∂fc(ρ
c
r,∇ρcr, ξi)
∂ρcr

∂Ĥr
i (ρ

c
r,∇ρcr)

∂xi

− ∂fc(ρ
c
r,∇ρcr, ξi)
∂∇ρcr

∇
Ã
∂Ĥr

i (ρ
c
r,∇ρcr)

∂xi

!

= ξi
∂fc(ρr,∇ρr, ξi)

∂ρr

∂ρr
∂xi

+ ξi
∂fc(ρr,∇ρr, ξi)

∂∇ρr
∂∇ρr
∂xi

− ∂fc(ρr,∇ρr, ξi)
∂ρr

∂Ĥr
i (ρr,∇ρr)
∂xi

− ∂fc(ρr,∇ρr, ξi)
∂∇ρr ∇

Ã
∂Ĥr

i (ρr,∇ρr)
∂xi

!
.

Thus the function f defined by Eq. (11) with the subsidiary conditions (12) and
(13) is a solution of the initial-value problem (6) with (7) From the uniqueness,



the set of the macroscopic variables ρr obtained the solution f of the initial-
value problem is the solution of the partial differential equations (9) with the
initial condition (10). ¥
As the first example, take the Maxwellian distribution

fc =
ρ

(2πRT )3/2
exp

µ
−(ξi − ui)

2

2RT

¶
, (14)

as a velocity distribution function of Chapman-Enskog type, where the macro-
scopic variables ρr are related to the parameters ρ, ui, and T in the Maxwellian
as

ρ0 = ρ, ρi = ρui, ρ4 = ρ(3RT + u2i ). (15)

and the fluxes Ĥr
i for the Maxwellian are given by

Ĥ0
i = ρui, Ĥj

i = ρ(uiuj +RT δij), Ĥ4
i = ρui(5RT + u

2
j ). (16)

The macroscopic variables ρr (or ρ, ui, and T ) derived from the solution of this
kinetic equation satisfy the Euler set of equation:

∂ρ

∂t
+

∂ρui
∂xi

= 0, (17a)

∂ρui
∂t

+
∂ρuiuj
∂xj

+
∂RρT

∂xi
= 0, (17b)

∂ρ(3RT + u2j)

∂t
+

∂ρui(5RT + u
2
j )

∂xi
= 0. (17c)

As the second example, take the distribution function:

fc =
ρ

(2πRT )3/2
exp

³
−ζ̃2

´·
1− a(T, ρ)

(2RT )1/2
∂T

∂xi
ζ̃i(ζ̃

2 − 5
2
)

−b(T, ρ)
µ
∂ui
∂xj

+
∂uj
∂xi

¶Ã
ζ̃iζ̃j − ζ̃2

3
δij

!#
, (18)

where

ζ̃i =
ξi − ui
(2RT )1/2

, (19)

and a(T, ρ) and b(T, ρ) are functions of T and ρ, which can be chosen according
to our convenience. The macroscopic variables ρr are related to the parameters
ρ, ui, and T in the distribution function (18) as

ρ0 = ρ, ρi = ρui, ρ4 = ρ(3RT + u2j ). (20)



and the fluxes Ĥr
i are given by

Ĥ0
i = ρui, (21a)

Ĥj
i = ρ(uiuj +RT δij)− b(T, ρ)(RρT )

·µ
∂ui
∂xj

+
∂uj
∂xi

¶
− 2
3

∂uk
∂xk

δij

¸
, (21b)

Ĥ4
i = ρui(5RT + u

2
j)− b(T, ρ)(RρT )uj

·µ
∂ui
∂xj

+
∂uj
∂xi

¶
− 2
3

∂uk
∂xk

δij

¸
− 5a(T, ρ)(RρT )

2

∂T

∂xi
. (21c)

The macroscopic variables ρr (or ρ, ui, and T ) derived from the solution of this
kinetic equation satisfy the Navier-Stokes set of equation:

∂ρ

∂t
+

∂ρui
∂xi

= 0, (22a)

∂ρui
∂t

+
∂ρuiuj
∂xj

+
∂RρT

∂xi
=

∂

∂xj

½
b(T, ρ)(RρT )

·µ
∂ui
∂xj

+
∂uj
∂xi

¶
− 2
3

∂uk
∂xk

δij

¸¾
,

(22b)

∂ρ(3RT + u2j)

∂t
+

∂ρui(5RT + u
2
j )

∂xi

=
∂

∂xj

½
b(T, ρ)(RρT )ui

·µ
∂ui
∂xj

+
∂uj
∂xi

¶
− 2
3

∂uk
∂xk

δij

¸¾
+

∂

∂xj

·
5a(T, ρ)(RρT )

2

∂T

∂xi

¸
. (22c)

These are the Navier-Stokes set of equations with viscosity b(T, ρ)(RρT ) and
thermal conductivity 5a(T, ρ)(RρT )/2. Thus choosing a(T, ρ) and b(T, ρ) prop-
erly, we obtain the Navier-Stokes set with arbitrary viscosity and thermal con-
ductivity. It should be noted that the form (18) of fc is not necessary to be
taken to be the same distribution function of the Chapman-Enskog expansion
that gives the Navier-Stokes set with the same viscosity and thermal conduc-
tivity.
In the examples, the function fc is somewhere resembled with the Chapman-

Enskog expansion, but it is not required to be so. We can choose freely according
to the request that the function gives the required set of equations. Equation
(14) or (18) is just an example giving the Euler set or Navier-Stokes set.

3 Discussion on numerical systems

In the previous section, a kinetic-equation system that describes fluid-dynamic
equations exactly is presented. In the present section, we discuss the validity
of heuristic numerical kinetic-equation systems. The kinetic-equation approach
which is interested in here is the following one or its variant: The solution of an
initial-value problem of the Euler set of equations is discussed by the following



kinetic equation in place of solving the Euler set directly. That is, the solution
of Eq. (23) in a continuous series of intervals (t0, t1], (t1, t2], (t2, t3], · · · , · · ·

∂f

∂t
+ ξi

∂f

∂xi
= 0, (23)

under the initial condition of each interval

f =
ρ(m)

(2πRT(m))3/2
exp

µ
−(ξi − ui(m))

2

2RT(m)

¶
at t = tm, (24)

where ρ(0), ui(0), and T(0) are the real initial value at t = t0 for the Euler set,
and ρ(m), ui(m), and T(m) (m 6= 0) are ρ, ui, and T calculated from f at t = tm
obtained as the solution of Eq. (23) in the interval (tm−1, tm]. The ρ, ui, and T
of the solution f at arbitrary time is taken the solution of the corresponding
initial-value problem of the Euler set.
The above system being compared with the exact system corresponding to

Eq. (14) in the previous system, the difference of the kinetic equations is that
on their right-hand side, which is of the order of unity. With the same initial
condition, the error of the velocity distribution function f is order of t(m+1)−t(m)
in the interval (t(m), t(m−1)]. That is, |f − fc| = O(t(m+1 − t(m)). Our interest
is the error of the variables ρ, ui, and T. These variables or their equivalents ρr
satisfy the conservation equations

∂ρr
∂t

+
∂Hr

i

∂xi
= 0, (25)

and the variables ρc, uci , and T
c (or ρcr) satisfy

∂ρcr
∂t

+
∂Ĥr

i (ρ
c
r,∇ρcr)

∂xi
= 0. (26)

The difference between fluxesHr
i and Ĥ

r
i (ρ

c
r,∇ρcr) are bounded by the difference

between f and fc by definition [see Eqs. (3) and (5)], that is,

|Hr
i − Ĥr

i | = O(|f − fc|) = O(t(m+1) − t(m)). (27)

Thus from Eqs. (25) and (26),

|ρr − ρcr| = O((t(m+1) − t(m))2). (28)

The the initial distribution function f(m+1) at t = t(m+1):

f(m+1) =
ρ(m+1)

(2πRT(m+1))3/2
exp

µ
−(ξi − ui(m+1))

2

2RT(m+1)

¶
(29)

differs from fc at t = t(m+1) only by O((t(m+1)− t(m))2). Continuing the discus-
sion to the next interval, we obtain the same error estimate with the subscripts
(m+ 1) and (m) shifted by unity. Thus, the errors of the distribution function



f and the macroscopic variables ρr at a finite time t from fc and ρcr are of the
order of max |t(m+1) − t(m)|. That is, by modifying the distribution function f
to the corresponding Maxwellian f(m) at every end t(m) of time interval, we can
limit the error within the order of the maximum length of divided time intervals.
Thus, the kinetic system described at the beginning of this section (say, system
of free molecular type) is an appropriate one to obtain the solution of the Euler
set of equations (the first order system). By choosing an appropriate term on
the right-hand side of Eq. (23), we can construct a higher-order system.
By a similar discussion, we find that the solution of the Navier-Stokes set of

equations is obtained by the kinetic system of free molecular type with modifica-
tion of the initial condition at the beginning of every interval to the function fc

given by Eq. (18). For the first-order system, the kinetic system of free molecu-
lar type is sufficient. It often happen that the viscous and thermal conduction
terms [a and b in Eq. (18)] are small corrections and that we would like to ob-
tain the solution correct up to that order. Then, for a reasonable computation
avoiding too small time step, we should choose the right hand side of Eq. (6)
with fc given by Eq. (14) as the right-hand side of Eq. (23).
The direct simulation Monte-Carlo (DSMC method) developed by Bird[5]

is widely used in engineering problems of a rarefied gas flow. The hybrid-
method that combines the DSMC and fluid-dynamic (Euler or Navier-Stokes)
schemes is developed by several authors (e.g., [6], [7], and references there) to
save the computing time of the DSMC computation in the fluid-dynamic region,
where the effective Knudsen number (the local mean free path divided by the
local characteristic length scale of variation of the variables) is small. The main
difference among various works is the technique of transition to one region to the
other between two quite different schemes. Vasseur’s method of kinetic-equation
approach reminds us the direct simulation DSMC method in the way: Free
molecular computation corresponds to free motion of the particles in DSMC,
and modification of the distribution function to Maxwellian in each time step
corresponds to changing the velocities of some particles by statistical collision
simulation. If the second process of the DSMC computation to modify particle
velocities by the statistical process is replaced by modifying the distribution of
the particle to the local Maxwellian (24) or the distribution e.g., of the type
by Eq. (18), the DSMC computation can be carried out more efficiently in the
fluid-dynamic region. In combination of the original DSMC method and the
DSMC version of Vesseur’s approach, the transition is done naturally and can
be another candidate to time saving in addition of the existing domain splitting
method.
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