

Figure 1:

Department of Mechanics
Lars Söderholm, 7152
e-mail lars.soderholm@mech.kth.se

Continuum Mechanics

Home assignment number 1, 2008 To be handed in Wednesday September 10

1) Two of the following formulas are impossible? Explain why

$$
\begin{aligned}
C_{i j k} d_{j} E_{j k} & =a_{i} \\
B_{m i} A_{j m k} a_{k} & =C_{j i} \\
A_{i j} B_{j k} a_{k} & =c_{j}
\end{aligned}
$$

2) Write

$$
A_{i k} b_{m} C_{i m}=d_{k}
$$

without components.
3) Write

$$
\mathbf{a} \cdot \mathbf{B}^{T} \mathbf{c}
$$

in component notation.
4) Show that

$$
\varepsilon_{i m n} \varepsilon_{j m n}=a \delta_{i j}
$$

and find the number a. Also calculate

$$
\varepsilon_{l m n} \varepsilon_{l m n} .
$$

Hint: you could use the formula

$$
\varepsilon_{i j m} \varepsilon_{k l m}=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}
$$

5) A plane has (unit) normal \mathbf{n}.

We know that the tensor

$$
\mathbf{P}=\mathbf{1}-2 \mathbf{n} \otimes \mathbf{n}
$$

reflects arbitrary vectors in the plane.
Assume that \mathbf{n} lies in the plane spanned by \mathbf{e}_{1} and \mathbf{e}_{2} and makes the angle θ with \mathbf{e}_{1}. Find the matrix $[\mathbf{P}]$, calculate its components explicitly.

