Institutionen för mekanik
Lars Söderholm, tel 7152
lhs@mech.kth.se

Home assignment 5 to be handed in Thursday December 4, 2008

A nonlinear oscillator has the equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+y+\varepsilon y^{3}=0 .
$$

Find the solution to first order in ε for which (a is a constant)

$$
\begin{aligned}
y(0) & =a \\
\frac{\mathrm{~d} y}{\mathrm{~d} t}(0) & =0
\end{aligned}
$$

by the Poincaré-Lindstedt method.
Hint:

$$
\cos ^{3} \alpha=\frac{1}{4} \cos (3 \alpha)+\frac{3}{4} \cos \alpha .
$$

