

Figure 1:

Institutionen för mekanik
Lars Söderholm, tel 7152
lars.soderholm@mech.kth.se

Home assignment 4 to be handed in Thursday November 27, 2008

A particle of small mass M with a hole drilled through it can slide along the Y-axis. The particle is connected with a damper, giving it a damping force $-B d Y / d T$. The particle is also connected with one spring, with one end fixed at the point $X=l_{0}$ on the X-axis and with an identical spring fixed at $X=-l_{0}$. The spring constant is k. When the particle is at the origin, the spring is in its relaxed state. Show that to lowest order in Y the component of the spring force in the direction of motion of the particle is not linear in Y as is usually the case for a spring, but cubic, that it is given by $-\left(k /\left(l_{0}^{2}\right)\right) Y^{3}$. So now we have a cubic force rather than a linear one.

$$
M \frac{d^{2} Y}{d T^{2}}+B \frac{d Y}{d T}+\frac{k}{l_{0}^{2}} Y^{3}=0
$$

Assume that the particle starts at $Y(0)=a$. It is natural to use a as a scale of Y. Write

$$
Y=a y
$$

This means that $y(0)=1$.

$$
M \frac{d^{2} y}{d T^{2}}+B \frac{d y}{d T}+K y^{3}=0
$$

So we have three constants in the equation

$$
M, B, K=k\left(\frac{a}{l_{0}}\right)^{2} .
$$

From them we can form one dimensionless combination

$$
\varepsilon=\frac{M K}{B^{2}}
$$

Strong damping means that this is a small quantity. When the inertia term can be neglected, after the transient, as $y \sim 1$, the characteristic time is $\sim T_{1}=$ B / K. The particle is assumed to arrive at $Y=a / 3$ at time $T=B / K$.

Introduce a dimensionless time $t=T / T_{1}$ and find T_{1} such that the coefficients of the spring term and the damping term are the same. Show that the equation is

$$
\varepsilon \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} t}+y^{3}=0
$$

What is the timescale of the transient? In terms of t and in terms of the time T ?

This means that we have to find a solution to the differential equation, which satisfies

$$
y(0)=1 ; y(1)=1 / 3 .
$$

Find this solution. You need to calculate it to lowest (or zeroth) order in ε only. But it should be valid for all t.

