

Figure 1:

Institutionen för mekanik
Lars Söderholm, tel 7152
lhs@mech.kth.se

Hemtal 3. Inlämnas den 21 november 2008

We are considering an acoustic wave. It satisfies the equation

$$
v_{t}+\beta v v_{x}=0
$$

At $t=0 v$ consists of two triangular pulses, v is given by

$$
\begin{aligned}
2 v_{0} \frac{x}{a}, 0 & <x<a \\
2 v_{0} \frac{(2 a-x)}{a}, a & <x<2 a \\
v_{0} \frac{x-2 a}{a}, 2 a & <x<3 a \\
v_{0} \frac{4 a-x}{a}, 3 a & <x<4 a
\end{aligned}
$$

For all other values of $x v$ vanishes.
a) Introduce dimensionless variables x^{*}, t^{*}, v^{*} such that a and v_{0} disappear from the problem and write down the equation and intial conditions in the new variables.
b) When will the larger pulse develop a shock? When will the smaller pulse develop a shock? Give the shape of the wave when there are two shocks. Draw a picture of it. At a later time, the stronger shock will catch up with the weaker shock. When will that be?

Hint: when the two shocks merge, the value of v immediately to the right of the left shock has to be the same as the value of v immediately to the left of the right shock.

