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Far-field radiation from localized wall vibrations

We assume that the plane wall z = 0 is vibrating, so that its normal velocity
is a given function. The vibrations have the angular frequency ω, so all functions
have a factor exp(−iωt) and the real part is understood.
a) The connection between velocity and pressure.
First of all, show from the linearized Euler equations

ρ0
∂v

∂t
= −∇p

how the velocity v can be found from the pressure deviation

ρ0iωvω=∇pω.

b) The Green’s function for half-space z ≥ 0
We already know the Green function for the whole of space

1

4π

exp(ik|r− r0|)
|r− r0|

.

Now we shall show how the pressure distribution outside the vibrating plane
can be calculated from the known vibration, using the Green’s function for the
half-space. What we need turns out to be a Green’s function such that its
normal derivative vanishes on the plane. We obtain that Green’s function by
first taking the usual Green’s function for the whole of space

1

4π

exp(ik|r− r0|)
|r− r0|

.

It represents the pressure field from a point source of sound at (z0 ≥ 0)

r0 = (x0, y0, z0).

But the Green’s function for the whole space does not satisfy the boundary
condition we need on the plane. So we choose a second point source at the
mirror point

r1 = (x0, y0,−z0).
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We now try two diffent Green’s functions

gω±(r, r0) =
1

4π
[
exp(ik|r− r0|)

|r− r0|
± exp(ik|r− r1|)|r− r1|

].

Note that only the original source lies in the half-space. So gω± satisfy for r
and r0 in the half-space z ≥ 0

(∇2 + k2)gω±(r, r0) = −δ(r− r0).

Check now that they satisfy the boundary conditions

∂gω+(r, r0)

∂z
= 0,

gω−(r, r0) = 0,

when r is in the plane z = 0.

c) Finding the pressure distribution in the half-space using Green’s function
The pressure distribution satisfies the Helmholtz equation

(∇2 + k2)pω(r) = 0.

Now use Green’s theorem to show that

pω(r) =

Z
[gω(r, r0)∇0pω(r0)− pω(r0)∇0gω(r, r0)] · ds0.

The integration is taken over a large half-sphere with center at the origin and
the corresponding equatorial plane of the circle, which is on the plane z = 0.
Then use the Sommerfeld radiation condition to show that the integral over

the half-sphere can be neglected if the radius of the sphere goes to infinity.
Now, if the pressure distribution on the plane is given, which of the Green’s

functions is appropriate? If instead the normal derivative is given, which of
the Green’s functions is the correct one? Show in each case that the boundary
condition satisfied by the Green’s function on the plane makes one the terms in
the integral vanish. In our case, where the wall velocity is given, show that we
obtain

pω(r)= −
1

2π

Z Z
exp(ik|r− r0|)

|r− r0|
∂pgw
∂z

(x0, y0, 0)dx0dy0

= − iωρ0
2π

Z Z
exp(ik|r− r0|)

|r− r0|
vω(x0, y0, 0)dx0dy0.

Here, r0= (x0, y0, 0).

d) The pressure field from a rigid vibrating disc
Now assume that a circular disc of radius a in the wall is vibrating, so that

vω is a constant v for r0 =
p
x20 + y20 ≤ a and zero for r0 > a. At a distance

r >> a simplify the result to, using polar coordinates on the plane z0 = 0

x0 = r0 cosφ0, y0 = r0 sinφ0
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and denoting the angle between r and the z−axis θ

pω(r) = −
iωρ0
2π

v
exp(ikr)

r

Z a

0

Z 2π

0

exp[−ikr0 sin θ cos(φ− φ0)]r0dr0dφ0.

Check that the integral does not depend on φ by changing variables to φ − φ0
in the integration to find finally

pω(r) = −
iωρ0
k2

v
exp(ikr)

r
F (θ),

where

F (θ) =
k2

2π

Z a

0

Z 2π

0

exp[−ikr0 sin θ cos(φ0)]r0dr0dφ0

=
1

2π sin2 θ

Z ka sin θ

0

{
Z 2π

0

exp[−iu cos(φ0)]dφ0}udu

Try to interpret the result! (The result can be shown to be, but this is not
necessary to show)

pω(r) = −iρ0vcka2
J1(ka sin θ)

ka sin θ

exp(ikr)

r
.

Hint: write (n = r/r is a unit vector in the direction of r)

|r− r0| = r

r
1− 2

r
n · r0 + (

r0
r
)2.

and expand in a Taylor series, as r0/r ≤ a/r << 1.
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