Calculating fluid fields from the distribution function

Lars H. Söderholm
Mekanik, KTH

November 2011

General relations

The following relations hold for any distribution function $F=n f(e$ is the thermal energy per mass)

$$
\begin{aligned}
\int f d^{3} c & =1 \\
\mathbf{v} & =\int \mathbf{c} f d^{3} c \\
\mathbf{c} & =\mathbf{v}+\mathbf{c}^{\prime} \\
m e & =\int \frac{m}{2} c^{\prime 2} f d^{2} c \\
-\sigma_{i j} & =m n \int c_{i}^{\prime} c_{j}^{\prime} f d^{3} c \\
q_{i} & =n \int \frac{m}{2} c^{\prime 2} \mathbf{c}^{\prime} f d^{3} c
\end{aligned}
$$

T is the temperature, $\sigma_{i j}$ the stress tensor and q_{i} the heat current density.

Maxwellian

1. The Maxwellian distribution is $F=n f$, where

$$
f=A \exp \left(-\beta^{2} c^{\prime 2}\right)
$$

Here A, β are constants.
1.1. Determine A.

$$
A=\beta^{3} \pi^{-3 / 2}
$$

1.2 Show that the stress tensor only has diagonal components which are all the same

$$
\sigma_{i j}=-p \delta_{i j}
$$

and that

$$
p=\frac{n m}{2 \beta^{2}}
$$

As the gas is ideal, we know that it should satisfy the gas law $p=n k T$. Hence that

$$
\beta^{2}=\frac{m}{2 k T}
$$

The Maxwellian is thus

$$
f=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m c^{\prime 2}}{2 k T}\right)
$$

1.3 Calulate the average thermal kinetic energy per particle. Show that

$$
m e=\frac{3 k T}{2}
$$

which means $k T / 2$ per degree of freedom.

Small Knudsen number

2. We now consider a simple shear flow where the velocity is in the x direction and is a function of y only, $v(y)$. In the continuum limit $K n \ll 1$ the simple relaxation model gives the distribution function as

$$
\begin{aligned}
F & =n\left(\frac{\beta}{\sqrt{\pi}}\right)^{3} \exp \left(-\beta^{2} c^{\prime 2}\right)\left[1-\frac{\tau}{2} \beta^{2} \frac{d v}{d y} c_{x}^{\prime} c_{y}^{\prime}\right] \\
\beta^{2} & =\frac{m}{2 k T}
\end{aligned}
$$

A strict calculation by the Chapman-Enskog method will give the same result except that τ is a function of $\beta^{2} c^{\prime 2}$ that is given by the forces between the molecules.
2.1. Show that n is the number density and that the term in F containing $d v / d y$ does not contribute to the fluid velocity. Show that the heat current q_{i} vanishes. Calculate the shear stress

$$
\sigma_{x y}=\frac{n \tau k T}{4} \frac{d v}{d y}=\frac{1}{4} \tau \frac{d v}{d y} p .
$$

Large Knudsen number

3. Suppose that a solid wall has diffuse reflection so that the outgoing particles have a Maxwellian distribution (\mathbf{n} is the normal pointing into the gas)

$$
F=n_{w} \beta_{w}^{3} \pi^{-3 / 2} \exp \left(-\beta_{w}^{2} c^{\prime 2}\right), \mathbf{c}^{\prime} \cdot \mathbf{n} \geq 0
$$

Let us now consider the Couette problem with gas flowing between two parallel planes in $y=0$ and $y=d$. The latter plane has the speed V in the
positive x-direction. For $K n \gg 1$ all the collisions are with the walls. As a consequence the distribution is the sum of two half Maxwellians

$$
F=\left\{\begin{array}{c}
n_{w} \beta_{w}^{3} \pi^{-3 / 2} \exp \left(-\beta_{w}^{2} c^{2}\right), c_{y}>0 \\
n_{w} \beta_{w}^{3} \pi^{-3 / 2} \exp \left(-\beta_{w}^{2}(\mathbf{c}-\mathbf{V})^{2}\right), c_{y}<0
\end{array}\right.
$$

Here

$$
\beta_{w}^{2}=\frac{m}{2 k T_{w}}
$$

The two walls have the same temperature T_{w}.
3.1. Find the number density in the gas. Show that

$$
n=n_{w} .
$$

3.2. Then show that $v_{x}=V / 2$ and that v_{y} vanishes and hence no particles are entering or leaving the walls. Now it is time to introduce the thermal velocity through

$$
\mathbf{c}=\mathbf{v}+\mathbf{c}^{\prime}
$$

3.3. Find the mean thermal kinetic energy and from the formula

$$
\overline{\frac{m}{2} c^{\prime 2}}=\frac{3}{2} k T
$$

the temperature in the gas. Show that

$$
k T=k T_{w}+\frac{m V^{2}}{12}
$$

3.4. Also find the shear stress

$$
\sigma_{x y}=\frac{m n V}{2 \sqrt{\pi} \beta_{w}}=\sqrt{\frac{k T_{w} m}{2 \pi}} n V
$$

Hint

Partial integration gives (n is a nonnegative integer)

$$
\begin{aligned}
& \int_{0}^{\infty} \exp \left(-\xi^{2}\right) \xi^{2 n+1} d \xi \\
= & \frac{1}{2} n!
\end{aligned}
$$

Further,

$$
\int_{0}^{\infty} \exp \left(-\xi^{2}\right) d \xi=\frac{\sqrt{\pi}}{2}
$$

and by partial integration

$$
\begin{aligned}
& \int_{0}^{\infty} \exp \left(-\xi^{2}\right) \xi^{2 n} d \xi \\
= & \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \ldots \frac{1}{2} \frac{\sqrt{\pi}}{2}
\end{aligned}
$$

