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Preface

This material is used in the course Mathematical Methods of Mechanics for
last year undergraduate students at KTH in Stockholm. The aim of the course is
to develop mathematical methods and at the same time solve interesting problems
in mechanics.

v





CHAPTER 1

Linear Hyperbolic Waves

1. The wave equation

The strict de�nition of hyperbolic waves is postponed. It should just be men-
tioned that the prototype of hyperbolic waves is often taken to be the wave equation

(1.1)
@2�

@t2
= c20r2�:

This equation has a wide range of use in acoustics, elastomechanics and electro-
dynamics. The �eld quantity �(x; y; z; t) depends on the problem studied. As we
shall see the quantity c0 is the propagation velocity of the wave described by (1.1).
A physical derivation of (1.1) will now be given.

1.1. Derivation of the wave equation in �uid acoustics. We often ob-
serve �uids, which are more or less at rest. The very fact that we observe this
state of equilibrium, implies that it is a stable one. If we consider a particle for the
moment, we know that a stable equilibrium means that the particle will oscillate
around this point, when slightly disturbed. The �uid, when slightly disturbed, will
also tend back towards the state of rest. But also, pressure connects neighbour-
ing �uid elements, so there will be some sort of coupled oscillations of the �uid
elements. This is the origin of the mechanism of sound waves.

For these, except if they are of very low frequency, heat conduction can be
neglected. And except if they are of very high frequency, viscosity can also be
neglected. The equation of continuity of the �uid is

(1.2)
@�

@t
+r � (�v) = 0

and the Euler equation is

(1.3) �[
@v

@t
+ (v �r)v] = �rp:

The �uid density is �, the �uid velocity is v and the �uid pressure is p.
Sound waves are usually at constant entropy. It is well-known that when heat con-
duction and viscosity can be neglected, the entropy is constant. So the constitutive
equation is

(1.4) p = p(�; s0);

where s0 is the value of the constant entropy. In the sequel we shall just write p(�).
In particular, for an ideal gas, with constant speci�c heats,

(1.5)
p

p0
= (

�

�0
) ;

1



2 1. LINEAR HYPERBOLIC WAVES

where  = cp=cv and where p0, �0 are the �uid pressure and density at equilibrium.
For two-atomic gases  = 7=5 = 1:4 except for very low and very high temperatures.
For monatomic gases,  = 5=3 = 1:66::. The constitutive equation (1.5) is often
called polytropic.

For many liquids, (1.5) is a good approximation, but usually  is much higher
than for a gas, of the order of 10.

Linear deviations from equilibrium. Now we consider small deviations from the
state of equilibrium. We write

(1.6) p = p0 + p
0

(1.7) � = �0 + �
0

v is also small, but we don�t write a prime on it. The equilibrium state of the �uid
is assumed to be homogeneous, which means that it does not depend on r and t.
In the equilibrium state thus the pressure p0, the density �0 and the entropy s0 are
constants.

In the equations of continuity and the Euler equations we only keep terms linear
in the small quantities. As an example,

r � (�v) = �r � v + v �r� � �0 = �r � v + v �r�0 � �0r � v

This way we obtain the linearized equations

(1.8)
@�0

@t
+ �0r � v = 0

(1.9) �0
@v

@t
= �rp0:

We now assume that the velocity �eld has a potential, this is usually the case
when viscosity can be neglected.

(1.10) v =r':

If we introduce the velocity potential into the linearized Euler equation (1.9) we
obtain

r(�0
@'

@t
+ p0) = 0

This means that @'=@t + p0 has to be a function of t only. But we can add any
function of t to ' without changing v. We do that such that

(1.11) p0 = ��0
@'

@t

This is in fact the linearized Bernoulli equation.
Now, the linearized equation of continuity remains. We have

(1.12) p(�0 + �
0) = p0 + (

dp

d�
)0�

0 + ::::;

so that

(1.13) p0 = c20�
0;
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where (note that we have tacitly assumed that the derivative is positive; we shall
come back to this question later)

(1.14) c20 =
@p

@�
(�0; s0):

For the ideal gas with constant speci�c heats,

(1.15) c20 = 
p0
�0
:

Now we substitute the linearized Bernoulli equation (1.11) and the expression
(1.13) for p0 in terms of �0 into the linearized equation of continuity (1.8). We
obtain

(1.16) r2'� 1

c20

@2'

@t2
= 0;

This equation is called d�Alembert�s (1717-1783) equation or the wave equation. It
is clear from (1.13) and (1.10) that the same equation is satis�ed by �0 and p0.

In the sequel, we shall often write �; p instead of �0; p0. So the density and
pressure are then �0 + �

0; p0 + p.
Plane waves and stability. As the coe¢ cients in the equation are constants, we

�rst of all look for plane wave solutions of the form T (t)exp(ik � r). We �nd
1

c20
T 00 + k2T = 0

We see that c20 has to be positive or there will be an exponentially growing solution.
In other words, the state of equilibrium would be unstable, which is impossible. So
we conclude that for stability reasons

dp

d�
� 0:

We then obtain two solutions

(1.17) exp[i(k � r� kc0t)]
The upper sign gives a wave propagating in the direction of k and the lower sign
one propagating in the opposite direction. The (phase) velocity is c0.

Let us now take the velocity potential to be one of those solution

' = exp[i(k � r� kc0t)]
We calculate the velocity �eld as the gradient of this,

v = ikexp[i(k � r� kc0t)]
It is clear that the velocity vector is parallel to the wave vector k. Sound waves are
longitudinal.

General solution of 1+1 D wave equation. With one space dimension the wave
equation can be rewritten in terms of new variables:

(1.18) � = x� c0t; � = x+ c0t

(1.19)
@

@x
=

@

@�
+

@

@�

(1.20)
@

@t
= �c0

@

@�
+ c0

@

@�
:
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Using (1.18-1.20) in the wave equation for the pressure we obtain

(1.21)
@2p

@�@�
= 0

and thus

(1.22) p = f(�) + g(�)

or

(1.23) p = f(x� c0t) + g(x+ c0t);
where f and g are arbitrary functions.

The solution (1.23) is a combination of two waves, one whose shape is described
by the function f moving to the right with speed c0 and the other with shape g
moving to the left with speed c0.

1.1.1. Solution to the Cauchy problem. Suppose at time t = 0 the pressure
p(x; 0) = F (x) and its timederivative (@p=@t)(x; 0) = G(x) are given. From (1.23)
we obtain

f(x) + g(x) = F (x); c0(�f 0(x) + g0(x)) = G(x):

Hence, (C is a constant)

�f(x) + g(x) = 1

c0

Z x

0

G(x)dx+ C

So that

f(x) =
1

2
(F (x)� 1

c0

Z x

0

G(x)dx� C);

g(x) =
1

2
(F (x) +

1

c0

Z x

0

G(x)dx+ C)

p(x; t) = f(x� c0t) + g(x+ c0t)(1.24)

=
1

2
(F (x� c0t) + F (x+ c0t)) +

1

2c0

Z x+c0t

x�c0t
G(x0)dx0(1.25)

2. Spherical sound waves

When p is a function of r only it is convenient to write

(2.1) p(r; t) =
R(r; t)

r

In this case

(2.2) 4p = @2p

@r2
+
2

r

@p

@r
=
1

r

@2R

@r2
:

Hence, the wave equation for this case is simply the onedimensional wave equation
for R

(2.3)
@2R

@r2
� 1

c20

@2R

@t2
= 0

So the general solution is

(2.4) p =
f(r � c0t)

r
+
g(r + c0t)

r
;



3. ENERGY OF ACOUSTIC WAVES 5

where f and g are arbitrary functions. The �rst term is an outgoing wave and the
second term an ingoing wave.

2.0.2. The wave equation in presence of �uid source. For the solution of the
wave equation (1.1) appropriate boundary or initial conditions are needed. In many
occasions the body acts as a source of �uid. So let us take into account the e¤ect
of a source distribution. We assume that the mass of �uid pumped in per volume
and time is �0qV . This means that the mass of �uid in a region is decreasing by
out�ow and increasing by pumping. So the continuity equation in integral form is
then:

(2.5)
@

@t

Z
�dV = �

Z
�v � dS+

Z
�qV dV:

The di¤erential form of (2.5) is

(2.6)
@�

@t
+r � (�v) = �0qV :

The linearized Bernoulli equation (1.11) is unchanged, but the wave equation now
has an extra term. For the pressure it has the form

(2.7) �p� 1

c20

@2p

@t2
= ��0

@qV
@t

:

3. Energy of acoustic waves

In (2.4) we found that the pressure �eld in a spherical wave is proportional to
1=r. To understand this, we are now deriving the energy theorem for acoustical
waves. From the linearized Euler system

�t + �0r � v = 0;

�0v;t = �rp

we calculate the time derivative of the kinetic energy of a �xed volume in space.
Note that the energy has to be calculated to second order in the small quantities.

d

dt

Z
�0
v2

2
dV =

Z
�0v � v;tdV

= �
Z
v �rpdV = �

Z
p0v�dS+

Z
p0r � vdV

= �
Z
p0v�dS�

Z
1

�0
p0�;tdV

= �
Z
p0v�dS�

Z
c20
�0
�0�0;tdV

= �
Z
p0v�dS� d

dt

Z
c20
�0

�02

2
dV

Here we have used p0 = c20�
0. Thus

d

dt

Z
�0[

v2

2
+
c20
�20

�02

2
]dV = �

Z
p0v�dS
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Here, e0 is the energy density of the acoustic wave and j0e the energy current density

e0 = �0[
v2

2
+
c20
�20

�02

2
] = �0[

v2

2
+

p02

2�20c
2
0

];

j0e = p0v:

The same result can be obtained directly from the general expressions for energy
in continuum mechanics, see the last section of this chapter.

If we introduce the velocity potential, we have

v = r';(3.1)

p0 = ��0
@'

@t
:(3.2)

This gives us

e0 = �0[
v2

2
+
c20
�20

�02

2
] = �0[

(r')2
2

+
(@'=@t)2

2c20
];(3.3)

j0e = p0v =� �0
@'

@t
r':(3.4)

If we now consider i spherical acoustic wave, the velocity potential also satis�es the
wave equation and thus is of the form (2.4) but with di¤erent functions. Let us
just kep the outgoing wave

' =
F (r � c0t)

r
giving

p0 =
�0c0F

0(r � c0t)
r

;

v= (
F 0(r � c0t)

r
� F (r � c0t)

r2
)er

As a consequence we obtain

j0e = (
�0c0(F

0(r � c0t))2
r2

� �0c0F
0(r � c0t)F (r � c0t)

r3
)er

So the total energy �ux through a sphere of radius r is

4�(�0c0(F
0(r � c0t))2 �

�0c0F
0(r � c0t)F (r � c0t)

r
)

The �rst term remains also when r ! 1 but the second one does not. So terms
proportional to 1=r in the �elds are the ones giving radiation.

4. One frequency. Helmholtz�equation

Waves of a given frequency ! have the form

(4.1) p(x; t) = p!(x)e
�i!t:

The resulting equation for p!(x) is the Helmholtz equation

(4.2) (� + k2)p! = 0;
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where the wavenumber k = !=c0. We note that for the frequency ! = 0 Helmholtz�
equation reduces to Laplace�s equation

(4.3) �p! = 0:

Let us �rst of all look for spherically symmetric solutions of the Helmholtz
equation. Just like we did for the full wave equation in the spherically symmetric
case, we write

p!(r) =
R!(r)

r
:

The resulting equation for R! is

R00! + k
2R! = 0

with the solutions
R! = e�ikr

and this gives

p! =
e�ikr

r

(4.4) p =
ei(�!t�kr)

r

where the upper sign gives an outgoing spherical wave and the lower sign an ingoing
spherical wave compare (2.4). Both waves have a given frequency.

We also note that the outgoing wave for r !1 satis�es

p! = 0(
1

r
);(4.5)

@p!
@r

= ikp! + o(
1

r
):(4.6)

For the ingoing wave there is instead a plussign in front of ik in the second formula
here.

4.1. Green�s function for Helmholtz� equation. For any function �(x)
we have

(4.7)
Z
�(x0 � x)�(x0)dV 0 = �(x):

When we plug in a function we get the same function back, so what we have here
is a unit operator acting of the function.

This makes it interesting to look for a solution of the following equation

(4.8) r2g!(r) + k
2g!(r) = ��(r);

As the source term on the right hand side is spherically symmetric, the solution is
also spherically symmetric. Except at the origin, the equation here is the Helmholtz
equation. But we have already in (4.4) found the spherically symmetric solutions
of the Helmholtz equation. Of these, we have to choose the outgoing solution. We
will come back to this later. So we have

g!(r) = A
exp(ikr)

r
;

where A is a constant. In order to �nd the value of the constant A, we integrate
(4.8) over a sphere with radius a with center at the origin. On the right hand side
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we obtain gives �1 from the �-function. We now let the radius a go to zero. Using
dV = 4�r2dr it is easy to see that the integral of the term k2g! tends to zero like
a2. In the remaining integral we transform the volume integral by Gauss�theorem

(4.9)
Z
�g!dV =

Z
rg! � dS =

@g!
@r
4�a2

Calculating the derivative we �nd that this terms has the limit value �4�A. We
conclude that �4�A = �1, so that A = 1=4�.

(4.10) g!(r) =
exp(ikr)

4�r
;

The solution (4.10) is called Green�s function for in�nite space. It satis�es the
boundary conditions at in�nity that it falls o¤ like 1=r and it also satis�es (4.6).

If we instead start by a delta-function at the point x0 the corresponding Green�s
function is simply g!(jx� x0j)

4.2. Solving the inhomogeneous Helmholtz equation. Often the body
generating the sound can be modeled as a source distribution in the Helmholtz
equation, which gives the inhomogeneous Helmholtz equation

(4.11) �p! + k
2p! = �f!(r);

We shall now use the Green�s function to �nd the solution. We already know that
any function can be written as a superposition of delta-functions, see (4.7). The
equation is linear, so we can directly write down the solution as a superposition of
Green�s functions. The solution is then

(4.12) p!(x) =

Z
f!(x0)g!(jx� x0j)dV0 =

Z
f!(x0)

eikjx�x0j

4�jx� x0j
dV0:

A physical interpretation of the solution is that the spherical waves from all ele-
mentary waves with strength f!(x0)dV0 are added to give the resulting �eld in the
point x.

4.2.1. Boundary conditions and uniqueness. But can we be sure that this is the
only solution? To answer that question we have to be more careful. The equation
(4.11) has to be supplemented with appropriate boundary conditions. We already
encountered the problem of uniqueness when we looked for the Green�s function. We
found that there was one outgoing Green�s function and one ingoing. We picked the
outgoing one, which is the physically interesting Green�s function. We also found
that the outgoing Green�s function goes to zero as 1=r and that its radial derivative
is ik times the Green�s function with an error that goes to zero faster than 1=r, see
(4.6). Those two conditions pick out the correct Green�s function.

Let us take a look at the solution we have found in (4.12). We assume that the
source is bounded and choose the origin to lie in the source region. What does the
�eld look like at distances large compared to the size of the source, that is where
r >> r0? We consider

jr� r0j =
q
r2 � 2r � r0 + r20 = r

r
1� 2 r

r2
� r0 + (

r0
r
)2

= r[1� r

r2
� r0 +O((

r0
r
)2)] = r � er � r0 +O(

r20
r
)

(4.13) p!(x) �
exp(ikr)

4�r

Z
e�iker�r0f!(r0)dV0 =

exp(ikr)

4�r
F (ker);
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The function F (ker) only depends on the direction and not on r. We see that the
solution we have found for r !1 satis�es

p! = 0(
1

r
);(4.14)

@p!
@r

= ikp! + o(
1

r
):(4.15)

These are called Sommerfeld�s radiation conditions. We will now show that these
conditions uniquely pick out the right solution.

Let us now assume that besides (4.12) we have another solution of the inho-
mogeneous Helmholtz equation. Let us then denote the di¤erence between the two
solutions by p!. So p! satis�es the homogeneous Helmholtz equation (4.2) and the
Sommerfeld radiation conditions (4.15). We multiply (4.10) by p! and (4.2) by
Green�s function g! and subtract the equations from each other

(4.16) g!(jr� r0j)�p!(r)� p!(r)�g!(jr� r0j) = p!(r)�(r� r0)
In this formula we interchange r and r0. Integration over r0 then gives:Z

[g!(jr� r0j)�0p!(r0)� p!(r0)�0g!(jr� r0j)]dV0

=

Z
p!(r0)�(r� r0)dV0:(4.17)

The quantity within the parenthesis in the integrand at the lefthand side of this
equation is r0 � [g!r0p! � p!r0g!]. Thus the volume integral can be changed
into a surface integral by Gauss�theorem. If the normal component of r0 in the
outward direction from the surface is written @

@n0
, then we obtain

p!(r) =

Z
[g!(jr� r0j)

@p!(r0)

@n0
� p!(r0)

@g!
@n0

(jr� r0j)]dS0:

The integration surface here is a large sphere, so @=@n0 = n �r0 = @=@r0. On this
sphere we know that p! as well as the Green�s function satis�es the Sommerfeld
radiation conditions. The integrand is thus o(1=r2). So when the radius of the
sphere goes to in�nity, the surface integral vanishes. We conclude that p! vanishes
identically. This means that the only solution to the inhomogeneous Helmholtz
equation with the Sommerfeld radiation conditions is the one we have already ob-
tained, (4.12).

4.3. Half space Green�s function. We have seen that in many cases the
sound is generated by sources. They were represented by the function f! in the
inhomogeneous Helmholtz equation, which was solved for the full space. But in
many occasions the sound is instead generated at the boundary of a region. A
simple example is that of a plate that is vibrating. This is a crude model of a
loudspeaker. We can model this as a halfspace problem. We take the plate to be
the plane z = 0. The region of the �uid is z > 0. The wall is supposed to vibrate so
that its velocity is in the normal direction and is a given function V (x; y) exp(�i!t).
But the linearized Euler equation (1.9) gives

(4.18) �i!�0v! = �rp!:
And thus on z = 0

(4.19)
@p!
@z

= i!�0V:
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So now we need to solve the homogeneous Helmholtz equation in the halfspace
z > 0 with this boundary condition on the plane z = 0. For large r we have the
Sommerfeld raditation conditions.

To solve this problem we need a new Green�s function. The source is at an
arbitrary point r0 = (x0; y0; z0) in the region z0 > 0. The Green�s function ~g!
solves the equation

(4.20) r2~g! + k
2~g! = ��(r� r0):

So ~g!=~g!(r; r0). It turns out that ~g! has to satisfy the same kind of boundary
condition as the solution p!, but with a zero instead of V: In other words on z = 0
it has to satisfy

(4.21)
@~g!
@z

= 0

The full space Green�s function g!(jr�r0j) does not satisfy this boundary condition.
But if we add a mirror source at the point r1 = (x0; y0;�z0) we have

(4.22) ~g!(r; r0) =
eikjr�r0j

4�jr� r0j
+

eikjr�r1j

4�jr� r1j
= ~g!(r0; r)

Here,

jr� r0j =
p
(x� x0)2 + (y � y0)2 + (z � z0)2

jr� r1j =
p
(x� x0)2 + (y � y0)2 + (z + z0)2

When the source point r0 is kept �xed, ~g has the same value in �z as in z so that
its derivative with respect to z vanishes at z = 0. Note that when the source point
is on the plane z0 = 0 , r1 = r0, so that

~g!(r; r0) = 2g!(jr� r0j) =
eikjr�r0j

2�jr� r0j
So the Green�s function is the �eld from a source at r0 when the wall is not

vibrating.
4.3.1. The sound �eld from a vibrating wall. So we need to �nd the solution p!

to the Helmholtz equation (4.2) with the boundary condition (4.19) on the plane
and the Sommerfeld radiation conditions at in�nity. We now proceed in the same
way as we did when we treated the Helmholtz equation in full space. So we multiply
(4.2) with the Green�s function ~g!(r; r0) and we take the (4.20) and multiply by
p! and subtract it. As a result we obtain (4.16) and from it (4.12). The di¤erence
now is that the part of the surface integral on the plane z = 0 does not vanish. But
according to (4.21) one of the terms in the integral over the plane vanishes and we
obtain

p!(r) =

Z Z
~g!(r; r0)

@p!(x0; y0; 0)

@z0
dx0dy0 =

i!�0
2�

Z Z
eikjr�r0j

jr� r0j
V (x0; y0; 0)dx0dy0:

The solution is of the same kind as the solution of the inhomogeneous Helmholtz
equation (4.12). We see that the pressure �eld is generated by a source distribution
on the plane

f! = 2
@p!(x0; y0; 0)

@z0
�(z0):
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5. Green�s function for the wave equation

We now continue with �nding the Green�s function of the time-dependent wave
equation for boundary conditions at in�nity. The equation to be solved is:

(5.1) (�� 1

c20

@2

@t2
)G(r; t) = ��(r)�(t):

We take the Fourier transform of the equation, i.e. multply by exp(i!t) and inte-
grate with respect to t. We denote the Fourier transform of G(r; t) g!On the right
hand side we obtain ��(r). As, further, @=@t! i!.

g! =

Z
ei!tG(r; t)dt:

The equation then is transformed into

(5.2) r2g!(r) + k
2g!(r) = ��(r):

In other words, the Fourier transform of the Green�s function of the wave equation
is simply the Green�s function of the Helmholtz equation. What remains for us is
to transform back to �nd G: In g! we have to write k = !=c0

G(r; t) =
1

2�

Z
e�i!tg!(r)d! =

1

4�r

Z
ei!(

r
c0
�t)d!:

But

(5.3)
1

2�

Z 1

�1
exp(i!t)dt = �(t) = �(�t)

So we obtain the Green�s function

(5.4) G(r; t) =
�(t� r

c0
)

4�r
:

If instead the source is at r0; t0 we substitute r; t! r� r0; t� t0 we have

(5.5) (�� 1

c20

@2

@t2
)G(jr� r0j; t� t0) = ��(r� r0)�(t� t0):

The Green�s function can now be used for solving the inhomogeneous wave
equation with a source term �s(r; t) on the righthand side:

(�� 1

c20

@2

@t2
)p(r; t) = �s(r; t):

Identically we have

(5.6) s(r; t) =

Z Z
s(r0; t0)�(r� r0)�(t� t0)dV0dt0:

This means that the solution is given by a superposition of Green�s functions

(5.7) p(r; t) =

Z Z
G(r; t; r0; t0)s(r0; t0)dV0dt0;

where we have assumed that s(r0; t0) is di¤erent from zero within a limited region
in space and time.

(5.8) p(r; t) =

Z
s(r0; t� jr� r0j=c0)

jr� r0j
dV0:

We see that the �eld at the point r at the time t depends on the source strength
at r0 at the earlier time t�jr� r0j=c0, the time di¤erence being the time necessary
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for the e¤ect to propagate from r0 to r. From electromagnetic theory the expression
(5.8) is known as a retarded potential.

5.1. Green�s function for the wave equation in the 2 + 1 dimensional
case. We know the Green�s function for the wave equation. It is

G(r; t) =
�(t� r=c)
4�r

We are now looking for the Green�s function for the case of two space dimen-
sions. We then have to solve

@2G2
@x2

+
@2G2
@y2

� 1

c2
@2G2
@t2

= ��(x)�(y)�(t):

But

�(x)�(y) =

Z 1

�1
�(x)�(y)�(z)dz:

So we can �nd G2 by superposition as

G2 =
1

4�

Z 1

�1

�(t�
p
x2 + y2 + z2=c)p
x2 + y2 + z2

5.1.1. A formula for the �-function. Now we need to use the following property
of a � function

�(f(z)) =
X
n

1

jf 0(zn)j
�(z � zn)

Here, zn are the zeros of f . It is quite clear that only the zeros of f will
contribute. To �nd the factor in front, let us for simplicity assume that f has just
one zero z1and is monotonic and f(�1) = �1. We introduce the new variable of
integration � = f(z), so that d� = f 0dz0Z 1

�1
�(f(z))dz =

Z 1

�1
�(�)

1

f 0
d� =

1

f 0(z1)
=

Z 1

�1

1

f 0(z)
�(z � z1)dz:

If f is decreasing instead, we can introduce � = jf(z)j as a new variable of
integration.

5.1.2. The twodimensional Green�s function. It is clear that �(t�
p
x2 + y2 + z2=c)

is nonzero only for t � r=c and that the z-values for which it is nonzero are

z� =
p
(ct)2 � r2; r =

p
x2 + y2

Further,

@

@z
(t�

p
x2 + y2 + z2=c) = � z

c
p
x2 + y2 + z2

so that (H(t) is a Heaviside function, which vanishes for negative t and is
positive for positive t)

�(t�
p
x2 + y2 + z2=c)p
x2 + y2 + z2

=
H(t� r=c)p
(t2 � r2=c2

[�(z � z+) + �(z � z�)]:

We conclude that
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Figure 1. The slender body is moving to the right with speed V .

(5.9) G2(r; t) =
H(t� r=c)

2�
p
t2 � r2=c2

:

G2 is nonzero also in the full interior of the future signal cone but G is nonzero just
on the cone. In particular, when t >> r=c we have

G2 �
1

2�t
:

So the signal has an in�nite tail. Close to the moment when the signal arrives to r
so that 0 � t� r=c << r=c , we have

G2 �
p
c

2�
p
2

1
p
r
p
t� r=c

:

6. Sound from a supersonic projectile

We now consider a slender axially symmetric body moving at supersonic speed.
We choose the x-axis along the axis of the body. The velocity is in the positive
x-direction and of magnitude V . The cross section of the body is AB , which then
is a function of x; t.

6.1. The body as a source. Consider a small element of length dx. The
volume taken up by the part of the body between x and x + dx is AB(x; t)dx. In
dt the volume increases by @AB=@tdxdt. This volume of �uid is thus pumped out
from the axis, or per length and time the volume @AB=@t. Hence the slim body
acts like a source on the axis with volume distribution

@AB
@t

�(y)�(z)

(which when integrated over a cylinder between x1 and x2 gives
R x2
x1
(@AB=@t)dx)

Let us now assume that the front of the body is at x = 0 at t = 0. Let us call the
distance from the front along the body �, so that AB = AB(�). On the body we
have

� = V t� x
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This means that AB = AB(V t� x) What we have to solve then is the equation

(6.1) 4p� 1

c2
@2p

@t2
= ��V 2A00B(V t� x)�(y)�(z):

Here we have used that @2AB=@t2 = V 2A00B(V t � x)). It was consistent to
take the density to be constant when calculating the source term, as it is a small
term. Another approach leading to the same pressure �eld would be to use the wave
equation in the exterior of the body and apply appropriate boundary conditions on
the body.

6.2. Comoving coordinates. A new formal time. The natural thing to
do now is to transform to a frame moving with the projectile. We are thus looking
for a solution that depends on x and t only in the combination x1 = x � V t. We
then obtain

@2

@x2
� 1

c2
@2

@t2
= (1� V 2

c2
)
@2

@x21
:

When V < c this term has the same sign as the other second space derivatives in
the wave operator. But when V > c it has the opposite sign. Hence, more insight
is gained introducing a formal time coordinate t1 = t� x=V = �x1=V which gives

@2

@x2
� 1

c2
@2

@t2
= �( 1

c2
� 1

V 2
)
@2

@t21
= � 1

c21

@2

@t21
;

where

(6.2) c1 =
cp

1� c2=V 2
:

The new equation to be solved is

@2p

@y2
+
@2p

@z2
� 1

c21

@2

@t21
= ��V 2A00B(V t1)�(y)�(z):

This is then the wave equation in two space dimensions y; z and one time dimension
t1.

In the source term we can write (for a body of length L, AB(�) vanishes for
� > L)

A00B(V t1) =

Z 1

0

A00B(V t
0
1)�(t

0
1 � t1)dt01:

So the source is a superposition of sources along the positive t1-axis and the solution
is a superposition of Green�s functions for the 2 + 1 dimensional case.

(6.3) M � V

c0
is called the Mach number. This reformulation of the supersonic wave problem is
called von Karman�s acoustical analogy.

Now we have the solution to our problem as

p =
�V 2

2�

Z 1

0

H(t1 � t01 � r=c1)A00B(V t01)dt01p
(t1 � t01)2 � r2=c21

:
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Figure 2. The signals reaching a point of observation. The Mach
cone is de�ned by the last signal.

So changing the variable of integration we obtain

p =
�V 2

2�

Z max(0;V t�x�r
p
M2�1)

0

A00B(�)d�p
(V t� x� �)2 � (M2 � 1)r2

:

6.2.1. The Mach cone. The �eld is nonzero in the region

�m = V t� x� r
p
M2 � 1 � 0

This is a cone with apex at the front of the body and opening angle 2�M , where

tan�M =
1p

M2 � 1
; sin�M =

1

M
:

So �m denotes from how far back on the body signals reach the point x; r at time
t.

�m = V t� x� r
p
M2 � 1 = V t�M(xsin�M + r cos �M ) = (t�

n � r
c
)V

Here, n is the normal to the cone.

n = sin�Mex + cos�Mer:

6.3. Asymptotic result for large r. Let us denote the length of the body
by L. We recall that 0 � �; �m � L: We now consider the asymptotic region wherep
M2 � 1r >> L:
We write

(V t� x� �)2 � (M2 � 1)r2

= [(V t� x� r
p
M2 � 1)� �][(V t� x+ r

p
M2 � 1)� �]

= [�m � �][2r
p
M2 � 1 + (�m � �)] � [�m � �]2r

p
M2 � 1
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xi/L
1,510,5

L 3̂/2 F_W A_Bmax 1

2

0,51

1

2

20
0

Whitham function F_W for parabolic profile

This gives us

p � �V 2

23=2�(M2 � 1)1=4
1p
r

Z max(0;�m)

0

A00B(�)d�p
�m � �

(6.4)

�V 2

(M2 � 1)1=4
p
2r
FW (V (t�

n � r
c
)):

Here we have �m = V t� x� r
p
M2 � 1. Whitham�s function FW is de�ned as

FW (�) =
1

2�

Z �

�1

A00B(�)d�p
� � �

=
1

2�

Z 1

0

A00B(� � �)d�p
�

=
1

2�

d2

d�2

Z 1

0

AB(� � �)d�p
�

:(6.5)

The integral here depends only on the geometry of the sound source. It is interesting
to note from (6.4) that the pressure decays as r�1=2 for constant t� n � r=c. From
the linearized Euler equation we have

��0i!v = �rp:

This shows that the dominating term in the velocity also decays as r�1=2 for con-
stant t� n � r=c: Hence the energy current density will be proportional to r�1, see
(3.4). This means that the energy �ux through a large cylinder will be independent
of r, whichs is characteristic of radiation. We also note that FW (�) = 0 for � < 0.
We assume that AB(�) approaches zero faster than �

3=2 for � ! 0. Then FW (�) is
�nite for � = 0.

In the plot is shown the Whitham function for a body generated by a parabola
rotating around the axis:The maximum radius is in the middle of the body. The
corresponding maximum area is denoted by ABmax The following picture shows
the pressure distribution in the asymptotic region. The thick line is the body. The
horisontal coordinates are (x � ct)=L; r=L with ranges [�10; 0] and [0; 5] and the
vertical coordinate is the pressure
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*Whitham's asymptotic expression for the solution. M=2

7. Acoustic energy

The linearized equations are (here we write p0 and �0 for the perturbations)

�0;t + �0r � v = 0;

�0v;t = �rp0:
We consider a �xed region in space and calculate the rate of change of the kinetic
energy

@

@t

Z
v2

2
�0dv =

Z
v��0v;tdv = �

Z
v �rp0dv

= �
Z
v �rp0dv +

Z
p0r � vdv

In the �rst term here we use Gauss�theorem. In the second term we use p0 = c2�0

and then the equation of continuity to �nd

p0r � v =c2�0r � v = � c
2

�0
�0�0;t = �

@

@t
(
c2

2�0
�02)

The result is
@

@t

Z
(
v2

2
�0 +

c2

2�0
�02)dv = �

Z
p0v � ds

The integral on the left hand side is the acoustic energy

ea =
v2

2
�0 +

c2

2�0
�02

and
ja=p

0v

is the acoustic energy current density.
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Let us also for completeness derive the same result directly from continuum
mechanics. The elastic energy (per mass) is given by

d" = �pd(1
�
);(7.1)

" =

Z �

�0

p

�2
d�+ "0:

Di¤erentiating, we �nd
d"

d�
=

p

�2
;

d2"

d�2
= �2p

�3
+
1

�2
dp

d�
:

Hence, up to second order

(7.2) " = "0 +
p0
�20
�0 +

1

2
[�2p0

�30
+
1

�20
c20]�

02 + :::

The energy per volume is given by

(7.3) e = �(
v2

2
+ "):

Hence

(7.4) e = �0"0 + (
p0
�0
+ "0)�

0 +
1

2
[�0v

2 +
c20
�0
�02] + :::

Let us rewrite it as

e = �p0 + (
p0
�0
+ "0)�+

1

2
[�0v

2 +
c20
�0
�02] + :::

The energy current is

je = ev+pv = (� p0 + (
p0
�0
+ "0)�+ p)v + :::

= [(
p0
�0
+ "0)�+ p

0]v + :::

The energy equation is

(7.5) e;t +r � je = 0:
The constant term in e gives no contribution. Further, we have a term

(
p0
�0
+ "0)[�;t +r � (�v)]

which vanishes because of mass conservation. What remains then is

(7.6) ea;t +r � ja = 0
Here,

ea = �0[
v2

2
+
c02

2�20
�02];

ja=p
0v:

This is the same result as we obtained earlier directly from the linearized Euler
system. What we have done is that we have subtracted the tranport of energy
caused by the constant background state.



CHAPTER 2

Linear dispersive waves

1. Dispersion. Water waves

It is wellknown that the sunlight, by means of a prism, can be decomposed
in its components, from the red light to the violet light. This phenomenon is
due to the fact that light of di¤erent frequency is di¤erently refracted. The most
refracted light has the lowest velocity. The velocity v is a decreasing function v(�)
of the frequency � and thus the violet light, which has the highest frequency, is the
most refracted light. Instead of the frequency � we will use the angular frequency
! = 2�� and instead of v we will use the wave number k = 2�

� , where � is the
wavelength. The three quantities v, � and � have the relation v = ��, so anyone
of them can be studied as a function of anyone of the two others. We will study
the function �( 1� ), or, with our notation chosen, the function !(k). This functional
dependence is called the dispersion relation.

The notion of group velocity will be illustrated by means of the superposition of
two harmonic waves with the same amplitude, frequencies !1, !2 and wave numbers
k1, k2:

(1.1) u(x; t) = A cos(k1x� !1t) +A cos(k2x� !2t);
where !1, !2, k1, k2 are all positive and k2 > k1. Equation (1.1) is rewritten:

(1.2) u(x; t) = 2A cos(
k2 � k1
2

x� !2 � !1
2

t) cos(
k1 + k2
2

x� !1 + !2
2

t):

The equation (1.2) describes a harmonic wave with wave number 12 (k1+k2), fre-
quency 1

2 (!1+!2) and consequently wave velocity
!1+!2
k1+k2

. This wave is modulated
by another wave with wave number 1

2 (k2 � k1), frequency 1
2 (!2 � !1) and propa-

gation velocity !2�!1
k2�k1 . If we assume that k2 � k1 << k1 and thus !2 � !1 << !1,

then the velocity of the wave V (k) and the velocity of the modulation U(k) can be
written

(1.3) V (k) =
!(k)

k

(1.4) U(k) =
d!

dk
:

The velocity V (k) is called phase velocity and the velocity U(k) is called group
velocity. The group velocity is the propagation velocity of a group of waves limited
by the modulation. In many applications the group velocity is the e¤ective velocity
for propagation of signals and transport of energy.

We obtain the same result if we consider a superposition of plane waves

(1.5) �(x; t) =

Z 1

�1
F (k) exp(i(kx� !(k)t))dk:

19
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Figure 1. Wave packet

We assume that F (k) is peaked around k = k0 and is narrow enough that !(k) can
be represented as a straight line for the wave numbers where F (k) is di¤erent from
zero.Putting l = k � k0 we can write

!(k) � !(k0) +
d!

dk
(k0)l:

We then obtain

(1.6) �(x; t) � exp(i(k0x� !(k0)t))G(x�
d!

dk
(k0)t):

Here

G(�) =

Z 1

�1
F (k0 + l) exp(i�l)dl

In the �gure we have drawn the real part of �(x; t) . The functions �G(x� d!
dk (k0)t)

are dashed.
Sound waves in �uids have practically the same velocity independent of their

frequency. This means that the dispersion relation for sound waves is

(1.7) ! = c0k

and this case is called no dispersion. Dispersion occurs when (1.7) is replaced by a
nonlinear dependence !(k). As we will see, this is the case for water waves.

As an example of dispersion and group velocity we will study the linear theory
of water waves. A nondissipative, incompressible, homogeneous �uid (water) is
placed in a constant gravitational �eld. The spatial coordinates are (x; y; z) and
the corresponding �uid velocity components are (vx; vy; vz = v). The gravitational
force is directed in the negative z direction. By putting the �uid density � constant
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in the continuity equation (1.2) and adding ��gez to the force term in Navier-
Stokes�equations (1.3) in Chapter 1 we obtain the fundamental equations for the
�uid motion:

(1.8) r � v = 0

(1.9) �(
@v

@t
+ (v � r)v) = �rp� �gez:

We consider irrotational motion, which means

(1.10) v = r�:
Using the vector identity

(1.11)
1

2
r(v) = (v � r)v + v � (r� v)

and the consequence of (1.10)

(1.12) r� v = 0;
we can integrate (1.9) with the result

(1.13)
p� p0
�

= ��t �
1

2
(r�)2 � gz +B(t);

where B(t) is an arbitrary function and p0 is an arbitrary constant, for reasons
of convenience separated from B(t). The function B(t) can be absorbed in the
velocity potential by making the change

(1.14) �! ��
Z
B(t)dt;

so that in practice the term B(t) can be dropped in (1.13). The equations (1.8)
and (1.10) give Laplace�s equation for �:

(1.15) �� = 0:

The problem thus is to solve Laplace�s equation with appropriate boundary condi-
tions. Then the physically interesting quantities p and ~v are obtained from (1.13)
and (1.10) respectively. The boundary conditions must be discussed �rst.

The �uid is contained in a vessel with air above it. We can describe the upper
�uid surface using the equation

(1.16) z = �(x; y; t);

We have

(1.17)
D�

Dt
� @�

@t
+ vx

@�

@x
+ vy

@�

@y
= vz =

@�

@z
:

The equation (1.17) is a kinematical condition on the �uid surface. There is also a
dynamical condition: the forces in the media on both sides of the boundary surface
must be equal. If the surface tension in the �uid is neglected, this condition means
that the pressure on both sides of the boundary surface must be equal. At the
surface we therefore have the condition:

(1.18) p = p0;

where p is the pressure in the �uid, given by (1.13) and p0 is the constant valöue of
the external air pressure. We thus neglect the e¤ect of the motion of the �uid on
the air pressure just above the boundary surface. Using (1.13) and (1.16) we can
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express the boundary condition (1.18) in terms of � and �. The same thing can be
done with the boundary condition (1.17) using (1.10). For the boundary conditions
we then obtain:

(1.19)
@�

@t
+
@�

@x

@�

@x
+
@�

@y

@�

@y
=
@�

@z

(1.20)
@�

@t
+
1

2
(r�)2 + gz = 0:

The reason why two boundary conditions are needed instead of one is that the
boundary surface z = �(x; y; t) is unknown.

Now we assume that the �uid velocity and the height of the boundary above
the equilibrium surface are small quantities. If z = 0 means the equilibrium of the
�uid surface, then the quadratical terms in the small quantities � and � can be
neglected in (1.19) and (1.20). We then obtain the linear boundary conditions

(1.21) �t = �z

(1.22) �t + g� = 0:

The boundary conditions (1.21), (1.22) are, like (1.19) and (1.20), valid for z =
�(x; y; t) and not for � = 0. However, this di¤erence gives a second order e¤ect
and is neglected in (1.21) and (1.22). Therefore we apply the boundary conditions
(1.21), (1.22) for z = 0. Eliminating � we obtain

(1.23) �tt + g�z = 0; z = 0:

The equation of the bottom surface is

(1.24) z = �h0(x; y):
The kinematical condition that the normal component of the �uid velocity is zero
at the bottom surface gives a boundary condition analogous to (1.19). We just
replace � by �h0, use the fact that the time derivative of h0 is zero and obtain:

(1.25)
@�

@x

@h0
@x

+
@�

@y

@h0
@y

+
@�

@z
= 0; z = �h0(x; y):

For a horizontal bottom surface the boundary condition (1.25) becomes

(1.26)
@�

@z
= 0; z = �h0:

The boundary value problem for water waves in the linear approximation and with
a horizontal bottom surface is summarized below, using the equations (1.15), (1.23)
and (1.26):

(1.27) �xx + �yy + �zz = 0; �h0 < z < 0

(1.28) �tt + g�z = 0; z = 0

(1.29) �z = 0; z = �h0:
After solving (1.27) - (1.29) and having obtained �, the equation for the water
surface is obtained from (1.22):

(1.30) z = �(x; y; t) = �1
g
�t(x; y; 0; t):
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We will now study solutions to (1.27) - (1.29) of the form

(1.31) � = Z(z) exp(i(kxx+ kyy)� i!t)

(1.32) � = A exp(i(kxx+ kyy)� i!t):
Solutions of the form (1.31), (1.32) mean wave propagation in the (x; y)-plane.
Inserting (1.31) into (1.27) we �nd the condition

(1.33) Z 00 � k2Z = 0;
where k2 = k2x + k

2
y. The equation (1.33) gives together with (1.29)

(1.34) Z = Z(�h0) cosh(k(z + h0)):
The condition (1.30) gives, by insertion of (1.31) and (1.32):

(1.35) A =
i!

g
Z(0):

By (1.34) and (1.35) we �nd

(1.36) Z =
g

i!
A
cosh(k(z + h0))

cosh(kh0)
:

The solution for � and � then becomes

(1.37) � = A exp(i(kxx+ kyy)� i!t)

(1.38) � = � ig
!
A
cosh(k(z + h0))

cosh(kh0)
exp(i(kxx+ kyy)� i!t):

The boundary condition (1.28) is not yet used. Inserting (1.38) into (1.28) we
obtain:

(1.39) �!2 cosh(kh0) + gk sinh(kh0) = 0
or

(1.40) !2 = gk tanh(kh0);

which is the dispersion relation for linear water waves, propagating on the surface
of a �uid with constant equilibrium height h0 above the bottom surface. For the
depoendence of ! on k we introduce the function W (k). In the case of linear water
waves we thus have

(1.41) W (k) =
p
(gk tanh(kh0)); ! = �W (k):

It is convenient to chooseW as an odd function of k (tanhx=x is a non-negative
function of x)



24 2. LINEAR DISPERSIVE WAVES

(1.42) W (k) =
p
gh0k

p
tanh(kh0)=(kh0):

2. The stationary phase method

The linear water wave problem is an example of a boundary value problem for
a di¤erential equation, whose solution, in one space dimension, has the form

(2.1) �(x; t) = A exp(i(kx�W (k)t));
where W (k) is a given function of k. In the water wave problem new solutions can
be obtained by superposition of solutions of the form (2.1) with di¤erent k values.
The most general superposition is given by a Fourier integral

(2.2) �(x; t) =

Z 1

�1
F (k) exp(i(kx�W (k)t))dk:

A method will now be developed for evaluating the integral (2.2) asymptotically for
t ! 1 with x

t constant. Physically this means that we study the group of waves
represented by the integral in (2.2), when the group has propagated a long distance
with constant velocity (the group velocity). The integral in (2.2) is now written:

(2.3) �(x; t) =

Z 1

�1
F (k) exp(�i�(k)t)dk;

where

(2.4) �(k) =W (k)� kx
t
:

In the equation (2.3) �(k) is considered as a function of k with x
t as a �xed para-

meter. For great t values the main contribution to the integral in (2.3) must come
from a region in the neighborhood of the point k0, where � is stationary. For k
values far from the stationary point the integral in (2.3) is expected to oscillate so
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fast so that the contributions to the integral cancel. The inventor of this "station-
ary phase method" was Lord Kelvin (1824-1907), and henceforth we will follow his
argumentation.

The functions F (k) and �(k) in (2.3) are expanded in Taylor series in the
neighborhood of k = k0:

(2.5) F (k) � F (k0)

(2.6) �(k) � �(k0) +
1

2
(k � k0)2�00(k0):

We assume that �00(k0) 6= 0. With the approximations (2.5), (2.6) inserted into
(2.3) we obtain

(2.7) �(x; t) = F (k0) exp(�i�(k0)t)
Z 1

�1
expf� i

2
(k � k0)2�00(k0)t dk:

The integral here is the wellknown. It converges for Re(�) � 0 or ��=2 � arg(�) �
�=2. We introduce � =

p
�z. Here the root is picked with ��=4 � arg(

p
�) � �=4.

The integration over � is then pushed to the real line.

(2.8)
Z 1

�1
exp(��z2)dz = 1p

�

Z
exp(��2)d� =

r
�

�
:

Writing (sgn stands for the sign)

�00(k0) = j�00(k0)jsgn(�00(k0))

� =
i

2
�00(k0)t =

1

2
exp(i

�

2
sgn�00(k0))j�00(k0)tj;(2.9)

p
� =

r
j�00(k0)tj

2
exp(i

�

4
sgn�00(k0))(2.10)

We conclude that

(2.11) �(x; t) = F (k0)

s
2�

tj�00(k0)j
expf�i�(k0)t� i

�

4
sgn�00(k0)g:

In (2.11) we have found an approximation of the Fourier integral (2.3). The ap-
proximation becomes better when t increases. That is why that part of the interval
�1 < k < 1, where (2.5), (2.6) is a bad approximation, becomes less important
when t increases.

3. A Fourier method for the linear water wave problem

The velocity potential �(x; y; z; t) and the surface z = �(x; y; t) was determined
by Laplace�s equation (1.27) with the boundary conditions (1.28), (1.29) to give the
result (2.5), (2.6). In order to complete the determination we also need an initial
condition. We will make this determination in this section with the simpli�cation
that we consider one-dimensional water waves, which means that � and � do not
depend on y.

The general solution for �(x; t) is a sum of solutions of the type (1.37) for all
possible values of k, which means a Fourier integral

(3.1) �(x; t) =

Z 1

�1
F (k) exp(i(kx� !t))dk
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We have two solutions, called modes, ! = �W (k) to the dispersion relation (1.40)
with W (k) given in (1.41). A superposition of the two modes gives:

(3.2) �(x; t) =
Z 1

�1
F1(k) exp[i(kx�W (k)t)]dk+

Z 1

�1
F2(k) exp[i(kx+W (k)t)]dk:

As W (k) > 0 for k > 0 and is an odd function of k, see (1.41) the �rst term on the
righthand side of (3.2) means waves propagating in the right direction (unchanged
phase for growing x and t) and the second term means waves propagating in the
left direction (unchanged phase for decreasing x and increasing t).

We now assume the initial conditions on the water surface:

(3.3) �(x; 0) = �0(x)

(3.4) �t(x; 0) = 0:

With the condition (3.4) we obtain from (3.2):

(3.5) F1(k) = F2(k) = F (k):

The condition (3.3) then gives with (3.2) and (3.5):

(3.6) �0(x) = 2

Z 1

�1
F (k) exp(ikx)dk

with the inverse Fourier transform

(3.7) F (k) =
1

4�

Z 1

�1
�0(x) exp(�ikx)dx:

From (1.41) W (k) seems to have a singularity for k = 0. This singularity can be
removed; if we choose the behaviour k

p
(gh) near k = 0, then W (k) is unique and

analytic on the whole k-axis. Then W (k) becomes an odd function, which implies
that the �rst term in �(x; t) means waves propagating to the right and the second
term means waves propagating to the left. The stationary phase method now gives
an expression for the �rst term in �(x; t) in (3.2). To the equation

(3.8) W 0(k)� x

t
= 0

we have, with W (k) given by (1.41), two solutions k = �k0. From (2.11) we now
obtain Z 1

�1
F (k) exp(i(kx�W (k))dk

= F (k0)
p
(

2�

tjW 00(k0)j
) expfik0x� iW (k0)t� i

�

4
sgnW 00(k0)g

+F (�k0)
p
(

2�

tjW 00(�k0)j
) expf�ik0x� iW (�k0)t� i

�

4
sgnW 00(�k0)g:(3.9)

From (3.7) we obtain immediately

(3.10) F (�k0) = F �(k0);

where F � is the complex conjugated of F . We will show below that W 00(k0) < 0
for k0 > 0: As W (k) is an odd function, so is its second derivitive. This means
that the two terms on the righthand side of (3.9) are complex conjugated to each
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other and their sum, which we call �r(x; t) (the superscript "r" means right-going
waves), can be written:

(3.11) �r(x; t) = 2RefF (k)
p
(

2�

tjW 00(k)j ) exp(ikx� iW (k)t+
�i

4
)g; t!1; x

t
> 0;

where k is now the positive root of the equation (3.8).
Let us now for simplicity introduce dimensionless variables k� = kh0; !

� =p
h0=g!: We then have According to (1.3) and (1.4) the phase velocity c(k) and

the group velocity C(k) are given as:

W �(k�) =
p
k� tanh k�;(3.12)

c�(k�) =
W �

k�
=

r
tanh(k�)

k�
(3.13)

We �rst show that the phase speed is strictly decreasing with the wave number.
We �nd, using cosh2 k� � sinh2 k� = 1 and sinh 2k� = 2 sinh k� cosh k�

d

dk�
c�2 =

k� � 1
2 sinh 2k

�

k�2 cosh2 k�
:

But sinh 2k�=k� is a strictly increasing function for k� > 0. Hence, the phase
velocity c(k) is a strictly decreasing function. Let us now consider the group velocity

C� =
dW �

dk�
=

1

2W � (tanh k
� +

k�

cosh2 k�
)

=
c�

2
(1 +

2k�

sinh 2k�
)(3.14)

Obviously C is a strictly decreasing function of k. This is also seen clearly in the
�gure (1).

For a �nite depth h0 the maximal group velocity
p
(gh0) is attained for kh0 ! 0.

The velocity
p
(gh0) thus is the velocity of the foremost point of disturbation,

where the waves with the longest wavelength occur. The front of the disturbation
if followed by waves with successively decreasing wavelength. On the other hand,
for h0k ! 0 the expression (3.11) for the wave can no longer be used, because
W 00(k) tends to zero when k tends to zero.

4. Kinematic derivation of the group velocity

The waveform given in (3.11) for rightgoing waves is obtained by an approxi-
mate summation of the superposition (3.1) of elementary waves for great t values
and x

t > 0. Since k in (3.11) is the positive root of the equation (3.8), k becomes
a function of x and t. Thus the procedure of summation of elementary waves gives
us a wave of the form

(4.1) �(x; t) = RefA(x; t) exp(i�(x; t))g;

whose amplitude and phase both depend on space and time. The amplitude A(x; t)
and the phase �(x; t) are obtained from (3.8) as:

(4.2) A(x; t) = 2 exp(
�i

4
)F (k(x; t))

p
(

2�

tjW 00(k(x; t))j )

(4.3) �(x; t) = k(x; t)x�W (k(x; t))t:
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The form of the nonuniform wave (4.1) is the same as of the monochromatic wave
(2.1), but neither the amplitude nor the distance in space and time between two
successive wave maxima are constant.

For the nonuniform wave we introduce the concepts of wave number and fre-
quency by de�ning them as �x and ��t respectively. In the nonuniform case we
cannot, of course, obtain any well-de�ned quantities by counting the number of
wave maxima per unit time or unit length. For our new de�nitions of wave number
and frequency we obtain using (4.3):

(4.4)
@�

@x
= k + (x�W 0(k))

@k

@x

(4.5)
@�

@t
= �W (k) + (x�W 0(k)t)

@k

@t
:

The condition (3.8) eliminates the terms with kx and kt in (4.4) and (4.5) and we
obtain

(4.6)
@�

@x
= k(x; t)

(4.7)
@�

@t
=W (k(x; t)) = !(x; t):

The wave number k, which was �rst introduced as a certain value of the wave
number in the Fourier integral (3.1), where it was called k0, thus agrees with the
de�nition of the local wave number �x in a nonuniform oscillating wave. Further-
more, the local wave number and the local frequency satisfy the dispersion relation
even in the nonuniform case.

The intuitive interpretation of �x as a wave number is meaningful only if �x
does not change too much during one oscillation. From (3.8) we obtain

(4.8) W 00(k)kx =
1

t
=
W 0

x
and thus

(4.9)
kx
k
=

W 0

kW 00
1

x
and analogously

(4.10)
kt
k
= � W 0

kW 00
1

t
:

If the distance x contains a great number of wavelengths, it follows from (4.9) that
the relative change of k in a wavelength is small. The same conclusion can be made
for the relative change of k in a period, if t contains a great number of periods.
Thus k(x; t) and !(x; t), for x and t great in the abovementioned meaning, ful�l
the condition of being slowly varying functions of x and t.

According to (3.8) a de�nite value k0 of the function k(x; t) is found on the
straight line

(4.11) x =W 0(k0)t:

This means that an observer travelling with the velocity W 0(k0) always sees waves
with the wave number k0 and the frequency W (k0). The quantity

(4.12) W 0(k) =
d!

dk
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is the group velocity, introduced in a way di¤erent from (1.4). In a superposition
like (2.2) of waves with di¤erent wave number and frequency a certain wave number
k0 propagates with the velocity W 0(k0) and moves the distance W 0t in the time t.

A de�nite value �0 of the phase �(x; t) is found in the (x; t)-plane on the curve

(4.13) �(x; t) = �0:

This �-value propagates according to the equation

(4.14) �x
dx

dt
+ �t = 0:

Using (4.6) and (4.7) we obtain from (4.14):

(4.15)
dx

dt
=
�t
�x
=
!

k
:

Thus we have arrived at the same de�nition of phase velocity as in (1.3). The
local phase velocity is the velocity of an observer attached to one and the same
wave maximum. Such an observer sees how the local wave number and the local
frequency are changed. This phenomenon will now be studied in an example.

The motion of a homogeneous beam which is not a¤ected by forces except at
its ends, is described by the equation

(4.16) 2zxxxx + ztt = 0;

where 2 is a constant:

(4.17) 2 =
EI

�
:

Here E is the modulus of elasticity, I is the surface moment of inertia of the beam
intersection with respect to the central line of the beam and � is the beam mass per
unit length. If the beam is in equilibrium, the central line is the x-axis and z(x; t)
is the deviation from the x- axis of that point on the central line, whose coordinate
is x in equilibrium. Without specifying any boundary conditions we can obtain a
dispersion relation from (4.16) by the oscillatory solution

(4.18) z = A exp(i(kx� !t));
which, after insertion into (4.16), gives

(4.19) 2k4 � !2 = 0:
If we solve the equation (4.19) for ! and choose the positive sign we obtain

(4.20) ! =W (k) = k2:

From (3.8) and (4.20) we obtain

(4.21) W 0(k) = 2k =
x

t
and consequently

(4.22) k =
x

2t

(4.23) ! =
x2

4t2

(4.24) � = kx� !t = x2

4t
:
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Figure 2. Group lines (continuous) and phase lines (dashed) of
waves along a homegeneous beam.

An observer travelling with the group velocity moves in the (x; t)-plane along curves
with constant W 0(k), which means according to (4.21):

(4.25)
x

t
= constant:

An observer travelling with the phase velocity moves in the (x; t)-plane along curves
with constant �, which means according to (4.24):

(4.26)
x2

t
= constant

The group lines and phase lines are drawn in the (x; t)-plane in Fig. 2.
As is seen from the �gure a phase line (4.26) cuts group lines (4.25) with

successively decreasing k value and successively increasing wavelength. An observer
travelling with the local phase velocity attached to one and the same wave maximum
thus sees the wave maxima in his neighborhood at growing distances. On the other
hand, an observer travelling with the local group velocity always passes new wave
maxima, because the phase velocity !

k = k is half the group velocity 2k.
Starting from an arbitrary superposition (3.1) of plane waves with di¤erent

wave numbers and frequencies we have introduced the concept of group velocity in
(3.8) by evaluating this superposition by the method of stationary phase. However,
group velocity is such a fundamental concept, that it ought to be introduced with-
out reference to a Fourier integral evaluated by a special method. There are also
problems in wave propagation, for example waves in inhomogeneous media, which
are not solved by a Fourier integral like (3.1). Even in such cases the concept of
group velocity should be possible to introduce.



4. KINEMATIC DERIVATION OF THE GROUP VELOCITY 31

In order to ful�l the program of introducing group velocity without reference
to a Fourier integral we assume the existence of a nonuniform wave with a phase
function �(x; t). We define wave number and frequency as �x and ��t respectively.
That these de�nitions are meaningful is obvious from our earlier considerations,
leading to (4.4) and (4.5). In this earlier case we also had at our disposal a dispersion
relation ! = W (k) and the relation (3.8), valid for x and t large. Now we start
with the equations

(4.27) k = �x; ! = ��t
and assume a functional dependence

(4.28) ! =W (k);

but we do not have the relation (3.8), which was derived as a consequence of
a Fourier integral calculated by the stationary phase method. By derivation we
eliminate � from (4.27) and obtain

(4.29)
@k

@t
+
@!

@x
= 0:

By use of (4.28) we obtain

(4.30)
@!

@x
=W 0(k)

@k

@x

and after insertion of (4.30) into (4.29)

(4.31)
@k

@t
+ c(k)

@k

@x
= 0;

where

(4.32) c(k) =W 0(k):

The equation (4.31) is a nonlinear �rst order partial di¤erential equation. We will
solve it by a general method in next chapter. It is remarkable that even though the
original problem, from which the dispersion relation (4.28 was derived, is linear,
the complete solution of the wave problem implies the nonlinear equation (4.31).





CHAPTER 3

Nonlinear hyperbolic waves propagating in one
direction

1. The kinematic wave equation

We consider a second order partial di¤erential operator

(1.1) L �
nP

i;j=1

�ij
@2

@xi@xj
:

When L operates on exp[��ixi] this corresponds to the substitution

@

@xi
! �i:

The di¤erential operator L is replaced by the quadratic form

L! bL � nP
i;j=1

�ij�i�j :

This quadratic form can be diagonalized. If the signs of the resulting diagonal form
all have the same sign, L is said to be elliptic. The most basic example is the
Laplace equation- If one term has opposite sign it is said to be hyperbolic and the
wave equation is a basic example. The wave operator can be factorized.

(1.2) (
@2

@t2
� c20

@2

@x2
) = (

@

@t
� c0

@

@x
)(
@

@t
+ c0

@

@x
):

If only one of the factors is retained in (1.2), just one of the two terms in (1.24) is
a solution. If we retain only

(1.3) (
@

@t
+ c0

@

@x
)� = 0;

the general solution is an arbitrary function of x� c0t:
(1.4) � = f(x� c0t):
This is the simplest hyperbolic wave problem and almost trivial. The nonlinear
counterpart

(1.5) �t + ~c(�)�x = 0;

where ~c(�) is a given function of � is nontrivial and we will see that a study of
this problem, which we have met already in (4.31), leads to the essential ideas for
treating nonlinear hyperbolic waves.

The key to the solution of (1.5) lies in the question: What is the condition for
the lefthand side of (1.5) to be a total derivative? The total derivative d�(x; t)=dt
is calculated as

(1.6)
d�(x; t)

dt
=
@�

@x

dx

dt
+
@�

@t
:

33
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Figure 1. Straight lines starting at x = � and having slope
dx=dt = ~c(�)

Comparing (1.5) and (1.6) we now �nd the answer to the question above: Along
every curve in the (x; t)-plane with the slope

(1.7)
dx

dt
= ~c(�(x; t))

the lefthand side of (1.5) is a total derivative. Consider such a curve C. On the
curve C we thus have

(1.8)
d�

dt
= 0

(1.9)
dx

dt
= ~c(�):

According to (1.8) � is constant on the curve C. This means according to (1.9)
that dx=dt is constant on C. Consequently the curves C are straight lines in the
(x; t)- plane. The solution of (1.5) thus depends on the construction of a multitude
of straight lines (Fig. 1) in the (x; t)-plane. Each of the straight lines has a slope
~c(�) corresponding to the � value belonging to the straight line.

We now consider an initial value problem for the equation (1.5) and assume:

(1.10) �(x; t = 0) = f(x):

If a curve C intersects the x-axis t = 0 at x = �, then � = f(�) is constant on
this curve. The slope of the curve is ~c(f(�)), which is called F (�); it is a known
function. The curve C has the equation

(1.11) x = � + F (�)t:

Now the solution of (1.5) with the initial condition (1.10) can be written down; it
is simply

(1.12) � = f(�);
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where � is implicitly given as a function of x and t through (1.11).
The solution (1.12) will now be veri�ed. From (1.12) we have

(1.13) �t = f 0(�)�t

(1.14) �x = f 0(�)�x

The derivatives �t and �x are obtained through implicit derivation of (1.11):

(1.15) 0 = �t + F
0(�)�tt+ F (�)

or

(1.16) �t = �
F (�)

1 + F 0(�)t
:

In the same way we �nd

(1.17) �x =
1

1 + F 0(�)t
:

From (1.15)-(1.17) we obtain

(1.18) �t = �
F (�)f 0(�)

1 + F 0(�)t

(1.19) �x =
f 0(�)

1 + F 0(�)t

It is now obvious from (1.18) and (1.19) that (1.5) is satis�ed, because ~c(�) = F (�).
A glance at the multitude of curves in Fig. 1 directly leads to the question:

What happens when the curves intersect? As we know they are associated with
di¤erent values of �. In order to answer the question we return to the equations
(1.7)-(1.9). They can be interpreted in the sense that every value of � propagates
with a velocity ~c(�), speci�c for the �-value considered. If � is given as � = f(x)
at the time t = 0, then according to (1.11) and(1.12) a solution at the time t is
obtained by moving each point on the curve � = f(x) the distance ~c(�)t = F (�)t
to the right (Fig. 1); this distance is di¤erent for di¤erent �.

As we know, a constant �-value is associated with a straight line x = � + ~c(�)t

in the (x; t)-plane. If d~c(�)d� > 0 the propagation velocity increases with � and the
front of the wave pro�le steepens. �x and �t become in�nite for

(1.20) t = � 1

F 0(�)
:

A front steepening of the wave corresponds to negative F 0(�).
What is primarily interesting is where this occurs for the �rst time. We �nd

this by di¤erentating t with respect ot �

(1.21)
dt

d�
=

F 00(�)

(F 0(�))2
:

So it occurs �rst where F 00(�) vanishes and at the same time F 0(�) < 0. In other
words for a � value for which the initial distribution has a point of in�exion and is
decreasing with y:

Eventually, the front steepening gives a pro�le like that shown in Fig. 2. In Fig.
3 there is an x-interval in which three �-values correspond to each x-value. This
phenomenon corresponds to intersection of curves C in Fig. 1. If � is a physical
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Figure 2. Construction of �(x; t) (right curve) from �(x; 0) (left curve)

Figure 3. Front steepening of wave giving a multivalued wave pro�le

quantity like density or pressure, this is an unacceptable physical situation and a
better physical theory must be formulated. This will be done in this chapter by
allowing discontinuities in the solution and giving rules for their handling.

Now we can solve the nonlinear �rst order partial di¤erential equation (4.31),
which describes how the wave number in a nonuniform wave propagates with the
group velocity. If

(1.22) k(x; t = 0) = f(x);

where f(x) is a given function, the solution is

(1.23) k = f(�);

where � is given implicitly as a function of x and t through the equation

(1.24) x = � + ~c(�)t;

where

(1.25) ~c(�) = ~c(f(�)):

If the initial distribution k = f(x) is such that k 6= 0 only for x � 0, then we use
� � 0 in (1.24) and obtain a determination of k(x; t):

(1.26) x � ~c(�)t = ~c(f(�))t = ~c(k)t
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and we have reproduced the same derivation of the group velocity as that leading to
(3.8). The asymptotic equation (1.26), and consequently (3.8), is valid for x and t
so great, that the spatial extension of the initial disturbation can be neglected, and
the disturbation at t = 0 is thus treated as if it were concentrated to x = 0. Thus
the exact relation (1.24), in which this approximation is not made, is a progress in
comparison with (3.8), which is based on the stationary phase method.

2. Nonlinear sound waves

In Chapter 1 we have seen how the fundamental hydrodynamic equations for
an ideal �uid (1.2) and (1.3) and the constitutive equation for an ideal �uid (1.5)
give the wellknown linear wave equation. Now we will again start with the same
equations but take into account the lowest order deviations from the linearized
equations. We restrict our study to waves propagating in one dimension only, so
that the variables are functions of x; t only.

The continuity equation then becomes

(2.1)
@�

@t
+

@

@x
(�v) = 0:

In nonlinear acoustics it is common to use the letter p for the deviation of pressure
from some bacground value p0: So let us use a capital P for the total pressure. The
Euler equations reduce to a single equation:

(2.2) �(
@v

@t
+ v

@v

@x
) = �@P

@x
:

The constitutive equation for the �uid is conveniently written

(2.3) � = �(P; s);

where s is the entropy.
In �uids, heat conduction is usually a very slow process. This means that it

can be neglected except for waves of very low frequency. Further, viscosity can
usually be neglected, except for waves of very high frequency. One can then show
from thermodynamics that the entropy is a constant in the motion. We can thus
take

(2.4) s = s0

So, the constitutive equation simpli�es to

(2.5) � = �(P; s0):

In particular, for an ideal gas, with constant speci�c heat,

(2.6) P = a� ;

where  = cp=cv and a is a constant, which depends on the value of the constant
entropy s0. For two-atomic gases  = 7=5 = 1:4 except for very low and very high
temperatures. For monatomic gases,  = 5=3 = 1:66::.

For many liquids, (2.6) is a good approximation, but usually  is then much
higher, of the order of 10. *give a reference here*

(2.7) �(
@v

@t
+ v

@v

@x
) = �c2 @�

@x
:



38 3. NONLINEAR HYPERBOLIC WAVES PROPAGATING IN ONE DIRECTION

Ee can consider � and c, de�ned as

(2.8) c � (a)1=2P
�1
2 = c0(

P

p0
)
�1
2 = c0(1 + p)

�1
2 :

as functions of only the pressure p. For an ideal gas with constant speci�c heats,

(2.9) c � (@�(p; s)
@p

)�
1
2

We conclude that we have two equations for two functions v and one of the ther-
modynamic variables � or p.

The two equations (2.1) and (2.7) cannot in general be solved explicitly. There
is, however, an important class of exact solutions, which in e¤ect involve one un-
known function only. We �nd them by assuming that v is actually a function of p.
This assumption gives for (2.1) and (2.2):

(2.10)
d�

dp

@p

@t
+
d(�v)

dp

@p

@x
= 0

(2.11) �
dv

dp

@p

@t
+ (�v

dv

dp
+ 1)

@p

@x
= 0:

The equations (2.10), (2.11) are a homogeneous system of equations for the two
variables @p=@t and @p=@x. It has nontrivial solutions if and only if its determinant
of coe¢ cients vanishes, or

(2.12)
d�

dp
(�v

dv

dp
+ 1)� �dv

dp

d(�v)

dp
= 0:

After simpli�cation, we �nd

(2.13)
d�

dp
� �2(dv

dp
)2 = 0:

We have already in chapter 1 introduced the speed of sound for linear sound waves

(2.14)
d�

dp
=
1

c2

we obtain from (2.13)

(2.15)
dv

dp
= � 1

�c
;

To �nd the class of exact solutions, we assumed v to be a function of p. Here we
see that the speci�c form of this function: if we integrate the above equation, we
�nd

(2.16) v = �
Z
dp

�c
:

Note that as the entropy is constant, � and c are unique functions of p.
In particular for an ideal gas with constant speci�c heats,Z p

0

dp

�c
=
2(c� c0)
 � 1 :

which gives, inserted into (2.10) or (2.11):

(2.17)
@p

@t
+ fv(p)� c(p)g@p

@x
= 0:
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The equation (2.17) describes a disturbation whose local propagation velocity
is v � c, where v is the local �uid velocity and c is the local sound velocity, which
means the local velocity of wave propagation relative to the �uid. The upper sign
in (2.17) means waves propagating to the right and the lower sign means waves
propagating to the left.

We choose to study waves propagating to the right according to the equation

(2.18)
@p

@t
+ (v + c)

@p

@x
= 0:

From now on p will mean the deviation from the pressure of the �uid in equilibrium,
which thus has p = 0. If the acoustic waves have small amplitude, we can replace
� and c0 in (2.15) and obtain

(2.19) v =
p

�0c0
:

Thus p can be replaced by v as the dependent variable in the equation (2.18).
For the derivation of (2.18) only the continuity equation (2.1) and Newton�s

second law (2.2) have been used together with the existence of a constitutive law
(2.3) with constant entropy s0. In order to be able to solve our nonlinear acoustic
wave problem we must assume a speci�c form of the constitutive equation (2.3).
This assumption will give us the desired dependence of c on p.

A two terms Taylor expansion of c(p) gives

c = c0 + (
@c(p; s)

@p
)s=s0;p=0p

= c0 + (
@c(p; s)

@p
)s=s0;p=0�0c0v;(2.20)

where c0 is the wave velocity in the �uid in equilibrium. From (2.20) we obtain

(2.21) c+ v = c0 + �v = c0 +
�p

�0c0
= c0[1 +

�(�� �0
�0

];

where

(2.22) � = 1 + �0c0(
dc

dp
)0 = 1 +

1

2
�0(

dc2

dp
)0:

The subscript "0" after the derivatives in (2.22) means that the derivative is taken
at the equilibrium value p = 0. Using (2.8) and the fact that only processes with
constant entropy s = s0 are considered we rewrite the last derivative in (2.22):

(2.23)
dc2

dp
=

d

dp
(
dp

d�
) =

d2p

d�2
d�

dp
=

d2p
d�2

dp
d�

:

A frequently used notation is

(2.24) A = (�
dp

d�
)0

(2.25) B = (�2
d2p

d�2
)0:
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The quantities A and B are used in a Taylor expansion of the excess pressure p as
a function of the relative density change ��

�0
from equilibrium:

(2.26) p = A
��

�0
+
1

2
B(
��

�0
)2:

The ratio B
A is a measure of the nonlinearity in the adiabatic equation of state,

which gives a relation between p and �. Using (2.23)-(2.25) in (2.22) we obtain

(2.27) � = 1 +
1

2

B

A
:

The ratio B
A is an important quantity to measure for �uids transmitting acoustical

pulses. As an example of a medium, for which B
A can be calculated, we choose the

ideal �uid. For this the pressure at constant entropy, according to Poisson�s law
(2.6), is proportional to � , where  = cp

cv
. Consequently using (2.24), (2.25):

(2.28) A � (���1)0 = (�)0 = p0

(2.29) B � (�2( � 1)��2)0 = ( � 1)p0:

>From (2.28), (2.29) we �nd that

(2.30)
B

A
=  � 1

and consequently from (2.27)

(2.31) � =
 + 1

2
:

Using (2.19) and (2.21) we write (2.18) as an equation for v:

(2.32)
@v

@t
+ (c0 + �v)

@v

@x
= 0;

where the constant � is determined for the ideal �uid in (2.31).
The equation (2.32) can now be solved using the procedure developed for solving

(1.5) with an initial condition. The initial condition for (2.32) is chosen as :

(2.33) v(x; t = 0) = f(x):

The solution (1.11), (1.12) gives for (2.32), (2.33) the solution

(2.34) v = f(�);

where � is implicitly given as a function of x and t through the relation

(2.35) x = � + [c0 + �f(�)]t:

A solution of (2.32) will now be graphically analyzed for a simple harmonic
sound source. This leads to a boundary value problem with the boundary condition
at x = 0:

(2.36) v(0; t) = v0 sin!t:

However, the solution of (2.32) was given in (2.34), (2.35) under the assumption
that a condition at t = 0 is known. Whether an initial condition or a boundary
condition is appropriate depends on the experimental situation. It is obvious that
our method of solution of (2.32) with an initial condition can also be used if the
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initial condition is replaced by a boundary condition. We only change the positions
of x and t in the earlier analysis, writing (2.32) as

(2.37)
@v

@x
+

1

c0 + �v

@v

@t
= 0:

The local propagation velocity dx
dt = c0 + �v is thus replaced by the "slowness"

dt
dx = (c0 + �v)�1. The solution of (2.37) with (2.36) obtained analogously to the
solution to (2.32) with (2.33) is

(2.38) v(x; t) = v0 sin! ;

where  (x; t) is implicitly given by the relation

(2.39) t =  +
x

c0 + �v0 sin! 
:

By (2.38) and (2.39) the solution can also be written implicitly as an equation to
be solved for v(x; t):

(2.40) v(x; t) = v0 sinf!(t�
x

c0 + �v
)g:

In (2.40) it is practical to use the retarded time

(2.41) � = t� x

c0
:

Using (2.41) in (2.40) we obtain

(2.42) v = v0 sinf!(� +
x

c0

�0
v
c0

1 + � v
c0

)g:

The pure sine oscillation of the wave at x = 0 will be deformed with increasing
x-values. We will now study the deformation of the wave pro�le. Using the Mach
number

(2.43) M =
v0
c0

we write (2.42):

(2.44) !� = arcsin(
v

v0
)� !

c0
x

�M v
v0

1 + �M v
v0

:

We note that the terms containing � are the nonlinear contributions. If we keep
only the lowest nonlinear contribution we have the simpler equation

(2.45) !� = arcsin(
v

v0
)� � v

v0
;

where

(2.46) � =
�

c20
!v0x:

The equation (2.45) is studied graphically in Fig. 4. It is seen that for in-
creasing �, which means longer distance from the monoharmonic sound source, the
negative slope of the straight line increases and the deformation of the wave pro�le
becomes stronger. The deformation of the wave pro�le thus is a cumulative e¤ect,
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Figure 4. Deformed periodical wave (continuous) at nondimen-
sional distance sigma from a boundary with a pure sin oscillation
(dashed)

a result of contributions which add to each other during the propagation of the
wave. Derivation of (2.45) gives:

(2.47)
d(!�)

d( vv0 )
=

1
p
(1� v2

v20
)
� �:

>From (2.47) we �nd that for � = 1 the derivative of !� with respect to v
v0
becomes

zero for v
v0
= 0. This means that the derivative of v with respect to !� becomes

in�nite. For � > 1 the implicit function v(t), given by (2.45), is not unique and
cannot be used. As was mentioned in Section 3.1 the nonuniqueness can be removed
by allowing discontinuities in the solution.

3. Shock waves

In the nonlinear wave theory, studied in Sections 3.1 and 3.2, we have met
the problem of multivalued solutions to the �rst order partial nonlinear di¤erential
equation considered. It is already mentioned that one way of avoiding the dilemma
is to introduce discontinuous solutions. However, the di¤erential equation is not
valid at the discontinuity. There it must be replaced by an integral equation on an
interval covering the discontinuity. The continuity equation (2.1) has the physical
meaning of conservation of mass. In our subsequent analysis, with the assumption
(2.4) of constant entropy, it follows from (2.3), (2.8) and (2.15) that �v can be
considered as a function of �:

(3.1) �v = j(�):

Using (3.1) the continuity equation (2.1) can be written

(3.2) �t + j
0(�)�x = 0:

The equation (3.2) has the same form as (1.5).
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We will now integrate the continuity equation over a volume with intersection
area 1 and �xed endpoints x1 and x2. The result is

(3.3)
d

dt

Z x2

x1

�dx = (�v)x1 � (�v)x2 :

The interpretation of the equation (3.3) is that the increment of mass per unit time
in the volume is the di¤erence per unit time between the entering mass in x1 and
the outgoing mass in x2.

We now assume that � has a discontinuity at xsh(t) between x1 and x2. The
lefthand side of (3.3) is rewritten with two integrals:

d

dt

Z x2

x1

�dx =
d

dt
f
Z xsh�

x1

�dx+

Z x2

xsh+

�dxg

= (�� � �+)
dxsh
dt

+

Z xsh�

x1

@�

@t
dx+

Z x2

xsh+

@�

@t
dx;(3.4)

where plus and minus correspond to the right and left side of the discontinuity
respectively.

For x1 and x2 approaching each other the two last integrals in (3.4) vanish and
we obtain with (3.4) inserted into (3.3):

(3.5) (�v)xsh� � (�v)xsh+ = (�� � �+)
dxsh
dt

or with vsh = dxsh
dt :

(3.6) [�(v � vsh)]+ = [�(v � vsh)]�:

The relation (3.6) is one of Rankine � Hugoniot0s relations. The remain-
ing of these relations are obtained from the momentum and energy balance at a
discontinuity.

Another way of writing (3.6) is:

(3.7) vsh =
(�v)+ � (�v)�
�+ � ��

:

Now we assume that the discontinuity is weak, which means that

(3.8)
j�+ � ��j

�+
<< 1:

A Taylor expansion of vsh gives by use of (3.1):

(3.9) vsh =
1

�+ � ��
f(�+ � ��)j0(��) +

1

2
(�+ � ��)2j00(��) + :::g:

A Taylor expansion of the propagation velocity ~c(�) = j0(�) gives

(3.10) ~c(�+) = ~c(��) + (�+ � ��)j00(��) + ::::

Comparison between (3.9) and (3.10) gives:

(3.11) vsh = ~c(��) +
1

2
[~c(�+)� ~c(��)] +O((

�+ � ��
�+

)2)
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or, with neglect of higher order contributions,

vsh =
1

2
[~c(�+) + ~c(��)](3.12)

= c0 +
�

2
(v+ + v�)(3.13)

= c0[1 +
�

2�0
[(�+ � �0) + (�� � �0)]:(3.14)

In the weak shock approximation founded on the condition (3.8) thus the velocity
of the discontinuity is the mean value of the propagation velocities on both sides of
the discontinuity.

The result (3.12) will now be used for handling the discontinuity in the solution
of the nonlinear equation of acoustic waves (2.32). Using the solution (2.34) we call
the propagation velocities in the �uid behind the discontinuity (or to the left of
the discontinuity) and in the front (or to the right) of the discontinuity f(��) and
f(�+) respectively. The velocity of the discontinuity then becomes according to
(3.12) and (2.32):

(3.15) vsh = c0 +
�

2
[f(�+) + f(��)]:

The position of the discontinuity is given by (2.35) with � put equal to either �+
or �� (the result shall be the same):

xsh = �+ + [c0 + �f(�+)]t = �� + [c0 + �f(��)]t(3.16)

= �+ + c0[1 +
�

�0
(�+ � �0)]t = �� + c0[1 +

�

�0
(�� � �0)]t:(3.17)

In the solution (2.34), (2.35) we cannot use �-values between �� and �+ in the
curve describing the dependence of v on x. We will now �nd a simple method for
constructing the position of xsh. We will show that the position of xsh is such that
the areas of the two shadowed regions in Fig. 5 are equal. The total shadowed
region A(t) with sign is:

A(t) =

Z
�dx =

Z �+(t)

��(t)

�
@x

@�
d�(3.18)

=

Z �+(t)

��(t)

�
@

@�
(x� xsh)d�(3.19)

= �
Z �+(t)

��(t)

[x(�; t)� xsh(t)]
d�(�)

d�
d�:(3.20)

Here we have integrated by parts. Note that x(��; t) and x(�+; t) both are equal
to xsh so the integrand in (3.18) vanishes both in the lower and in the upper limit.
The derivative dA

dt then becomes:

(3.21)
dA

dt
= �

Z �+(t)

��(t)

[
@x(�; t)

@t
� dxsh

dt
(t)]

d�(�)

d�
d�:
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Figure 5. Dependence of v on x at time t

Using (2.35) in (3.21) we obtain

dA

dt
= �

Z �+(t)

��(t)

[~c(�)� vsh]
d�(�)

d�
d�

= �
Z �+(t)

��(t)

@

@�
f(�v)(�)� vsh(t)�(�)gd�

= �[(�v)(�+)� (�v)(�+)] + vsh(t)[�(�+)� �(��)] = 0:(3.22)

That the result is zero follows from the expression for the shock velocity.

(3.23)
dA

dt
= 0:

At the moment when the discontinuity is created A = 0. Because of (3.23) A
equals zero henceforth and the rule of equal areas is veri�ed. Note that the area A
is nothing but the mass of the part of the curve that is cut away. Hence we are
cutting away a part with vanishing mass, which is necessary for mass conservation.

Let us now instead tackle the original expression. The rule of equal areas can
be formulated in another way by making a partial integration of (3.18), where we
now put A(t) = 0:

(3.24) A = 0 =

Z �+

��

@x(�; t)

@�
�(�)d�:

Using (2.35) we obtain

(3.25)
@x(�; t)

@�
= 1 +

�c0
�0

d�

d�
t:

Using this in (3.24) gives

(3.26) 0 = �
Z �+

��

[1 +
�c0
�0

d�

d�
t]�(�)d�:

Integration of the second term on the righthand side of (3.26) gives

(3.27)
Z �+

��

�(�)d� =
�c0
2�0

[�2(��)� �2(�+)]t:



46 3. NONLINEAR HYPERBOLIC WAVES PROPAGATING IN ONE DIRECTION

Figure 6. The rule of equal areas

From (3.16) we have

(3.28) �+ � �� =
�tc0
�0

[�(��)� �(�+)]:

Insertion of (3.28) into (3.27) gives a new formulation of the rule of equal areas,
illustrated in Fig. 6:

(3.29)
Z �+

��

�(�)d� =
1

2
(�+ � ��)[�(�+) + �(��)]:

Triangular pulse
We consider a triangular pulse, which at t = 0 is given by

v = f

0; x � �a
v0

x+a
a ; �a � x � 0

v0
a�x
a ; 0 � x � a
0; x � a

:

We are using a frame moving with the background speed c0 so that the equation
for v is

vt + �vvx = 0:

We want to �nd the location of the shock as a function of t as well as its strength:First
introduce dimensionless variables

v = v0v
�;

x = ax�;

t =
a

v0
t�

The equation is the same in the dimensionsless variables. We now skip the stars.
The initial conditions now become (we denote x by � for t = 0)

v = f

0; x � �1
1 + x; �1 � x � 0
1� x; 0 � x � 1

0; x � 1

:

In the picture we draw a line having dv=d� = �1=�t obeying the equal area rule.
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Figure 7. Original triangular pulse

Figure 8. The triangular pulse with a line with inclination �1=�t:

The line cuts the triangle in �� and �+. Clearly �1 � �� � 0 and v� = 1+��.
1 � �+ and v+ = 0. Then the area of the pulse between �� and �+ isZ �+

��

vd� =

Z 0

��

vd� +

Z 1

0

vd� =
1

2
(0� ��)(v� + 1) +

1

2
=
1

2
[���)(2 + ��) + 1]:

The area under the straight line between �� and �+ is

1

2
(�+ � ��)v� =

1

2
(�+ � ��)(1 + ��)
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Figure 9. Appearance of shock

Equal areas means that these are equal

���(2 + ��) + 1 = (�+ � ��)(1 + ��)
Further, the position of the shock is given by �� as well as �+

x = �� + �v�t = �+ + �v+t:

As v+ vanishes, we obtain

�+ = �� + �(1 + ��)t:

We insert this into the equation of equal area and obtain

(1 + �t)(�2� + 2��) = 1� �t;

�� = �1 +
r

2

1 + �t

We have that �1 � �� � 0, so the positive sign has to be taken and �t � 1. This
means that the shock appears when �t = 1,

tsh =
1

�
:

This also gives

�+ = �t+ (1 + �t)��

= �1 +
r

2

1 + �t

+�t

r
2

1 + �t

= �1 +
p
2(1 + �t):

The position of the shock at time t is (we now reinsert the stars)

x�sh(t) = ��+ = �1 +
p
2(1 + �t�):
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Figure 10. At t = 2.

Figure 11. At t = 5.
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Figure 12. The dash dot line is the actual shape of the wave at
t = 3.

Or with dimensions

(3.30) xsh(t) = [�1 +
r
2(1 +

�v0t

a
)]a:

Its amplitude is

v�� = 1 + �
�
� =

r
2

1 + �t�

and in dimensional units

(3.31) v� = v0

r
2a

a+ �v0t

For large t we have

(3.32) xsh(t) �
p
2�v0ta:

For large t

(3.33) v� � v0

r
2a

�v0t

We �nally also draw the real shape at t = 3 in �g. (12).

4. Tra¢ c �ow

In the general nonlinear �rst order partial di¤erential equation (1.3)

(4.1)
@�

@t
+ ~c(�)

@�

@x
= 0
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the dependent variable � has the meaning of density. The velocity ~c(�) is, as
is found from the considerations of the equations (1.6)-(1.9), the velocity of an
observer observing constant density �. We also introduce a �ow velocity j(�) and
a velocity V (�) of the medium, connected by the relation (j is the current):

(4.2) j(�) = �V (�):

The continuity equation

(4.3)
@�

@t
+
@j

@x
= 0

must be compatible with (4.1), which gives

(4.4) ~c(�) = j0(�):

The nonlinear wave theory based on (4.1) will now be applied to tra¢ c �ow. It is
clear that the vehicle velocity V (�) = j(�)

� is a decreasing function of �, starting at
some �nite value at � = 0 and reaching zero at � = �j , where �j is the maximal
density of the vehicles, attained when they are packed along the road without
interspace. The �ow velocity j(�), which means the number of passing vehicles per
time unit, thus is zero both for � = 0 and for � = �j . A maximum value qm of j(�)
is attained for � = �m, with 0 < �m < �j . By observing the vehicles on a road with
one drive the values of �j , �m and qm are found. American conditions give �j =
225/mile, �m = 80/mile, qm = 1500/hour. The velocity of the cars which gives the
maximum �ow velocity thus is vm = qm

�m
= 19 miles/hour. At higher velocity the

vehicles need so long distance between them that the number of passing vehicles
per time unit decreases.

The propagation velocity of waves in the tra¢ c �ow is

(4.5) ~c(�) = j0(�) = V (�) + �V 0(�):

Since V (�) is a decreasing function of �, V 0(�) is negative and from (4.5) we then
conclude that the wave velocity is lower than the vehicle velocity. This means
that waves propagate backwards through the tra¢ c �ow and drivers are warned by
disturbances in front of them. The wave propagation velocity ~c is the slope of the
curve of j(�) in Fig. 4 and thus a decreasing function of �. Therefore the waves
move in the forward or backward direction with respect to the road, depending on
whether � < �m or � > �m. At the maximal �ow velocity j = qm the wave velocity
is zero with respect to the road and the wave velocity with respect to the vehicles
is the same as the vehicle velocity qm

�m
� 19 miles/hour.

We will now see if we can construct a model, which gives us a functional de-
pendence j(�). Assume that a driver has a reaction time �, before he reacts upon a
change in front of him. In this case the distance of security between the cars must
be �V . If h is the distance between the fronts of two successive cars and L is the
typical vehicle length, then

(4.6) �V = h� L
or

(4.7) V =
h� L
�

:

Since

(4.8) h =
1

�
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and

(4.9) L =
1

�j

we obtain from (4.7)

(4.10) V (�) =

1
� �

1
�j

�

and then from (4.2)

(4.11) j =
1

�j�
(�j � �):

However, the equation (4.11) only gives a realistic picture of the behaviour of the
drivers in the neighborhood of � = �j . A functional dependence j(�), which agrees
with observations in a wider range of �-values , is

(4.12) j(�) = a� log
�j
�
= a�(

�j � �
�

)� a�(
�j � �
�

)3 + ::::

The �ow velocity Q as a function of the density � in tra¢ c �ow

Comparison

of the �rst term in the series expansion in (4.12) with (4.11) gives

(4.13) a =
1

�j�
:

>From (4.12) we then obtain

(4.14) V � c = j(�)

�
� j0(�) = a log

�j
�
� a log

�j
�
+ a = a:

The logarithmic formula (4.12) does not give �nite vehicle velocity for � ! 0.
However, this failure of our model is of less importance, since the foundation of our
model is weak in any case for very sparse tra¢ c �ow.

Because j(�) is convex (see Fig. 8) with j00(�) < 0, then c(�) = j0(�) is a
decreasing function of �. This means that a local enhancement of density propagates
so that a discontinuity is formed on the back side (see Fig. 9). Because, as we know
from (4.5), individual cars move faster than the shockwaves, then a driver notices
such a local density enhancement in front of him. Therefore he must brake suddenly,
but he accelerates only slowly when he leaves the discontinuity point. This is seen
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Figure 13. Discontinuity formation of a density enhancement in
tra¢ c �ow

in Fig. 13. We will now discuss the discontinuity in the solution of the equation
(4.1). As we have found in (3.7), the discontinuity travels with the velocity vsh,
where

(4.15) vsh =
j(�+)� j(��)
�+ � ��

:

By means of the rule of equal areas we have already studied the discontinuity of
the equation (2.32), which is a special case of (4.1). This special case is obtained by
putting j(�) equal to a second order polynomial in �, so that ~c(�) = j0(�) becomes
a �rst order polynomial in �. Under this assumption the rule of equal areas (3.29)
can be used. The assumption that j(�) is a second order polynomial in � is, as
is seen from (4.12) or Fig. 4, not strictly true, but it includes the case of small
disturbations around a value � = �0. In this case we have approximately

(4.16) j(�) = j(�0) + j
0(�0)(�� �0) +

1

2
j00(�0)(�� �0)2

or

(4.17) j(�) = ��2 + ��+ 

and thus

(4.18) ~c(�) = 2��+ �:

The velocity of the discontinuity is given by (3.12):

(4.19) vsh =
1

2
[~c(��) + ~c(�+)]

with c(�) given by (4.18).
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By using (4.18) in (4.1) the position of the discontinuity can be determined by
the rule of equal areas. If we choose to treat a di¤erential equation for ~c(�) instead
of a di¤erential equation for �, we can use the rule of equal areas independently of
the form of the dependence ~c(�). This can be seen by multiplying (4.1) with ~c0(�):

(4.20) ~c0(�)�t + ~c(�)~c
0(�)�x = 0

or

(4.21) ~ct + ~c~cx = 0:

Thus in (4.21) we have obtained an equation possible to treat by the rule of equal
areas independently of the dependence j(�). Having solved (4.21) and obtained the
discontinuity we can �nd � by inverting the known dependence c(�).

A continuous solution of (4.21) can be written

(4.22) ~c = F (�)

(4.23) x = � + F (�)t;

where

(4.24) F (x) = ~c(f(x))

and f(x) is given by the initial condition for the density of the tra¢ c �ow:

(4.25) �(x; t = 0) = f(x):

The rule of equal areas can be written according to (3.29):

(4.26)
1

2
fF (��) + F (�+)g(�+ � ��) =

Z �+

��

F (�)d�:

If the position of the discontinuity is x = s(t) at the time t, we have in analogy
with (3.16):

(4.27) s(t) = �� + F (��)t = �+ + F (�+)t:

We now assume that the initial �ow ful�ls the condition

~c(x; t = 0) = F (x)

F (�) < c0; �l < � < 0

F (�) = c0; � < �l; � > 0:(4.28)

At t = 0 we thus have a local reduction of the wave velocity. Because, according to
Fig. 8, the wave velocity c(�) in tra¢ c �ow is a decreasing function of the density
�, the reduction of wave velocity means an increase of density. The rule of equal
areas (4.26) can now be written:

(4.29)
1

2
f2c0 � F (��)� F (�+)g(�+ � ��) =

Z �+

��

[c0 � F (�)]d�:

At the time t = tsh, at which the discontinuity sets in, �+ and �� have one and the
same value, situated between �l and 0. For t increasing still more, �+ increases and
�� decreases. In Fig. 14 the initial condition is pictured and in Fig. 15 the rule
of equal areas for ~c as a function of � and x respectively.>From the left picture in
Fig. 15 we see that the straight line between the points (��; F (��)) and �+; F (�+))
becomes more horizontal for growing t values. At the same time �� decreases and
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Figure 14. Initial condition for shock in tra¢ c �ow

Figure 15. The rule of equal areas in tra¢ c �ow

becomes less than �l and �+ increases and approaches zero. If we assume that
�� < �l, we obtain from (4.29):

(4.30)
1

2
fc0 � F (�+)g(�+ � ��) =

Z �+

�l
[c0 � F (�)]d�:

For �� < l we obtain from (4.27):

(4.31) t =
�+ � ��

F (��)� F (�+)
=

�+ � ��
c0 � F ( xi+)

:

Then we obtain from (4.30) and (4.31):

(4.32)
1

2
fc0 � F (�+)g2t =

Z �+

�l
[c0 � F (�)]d�:

The position of the discontinuity s(t) and the value c+ of c just to the right of the
discontinuity are determined by the relations

(4.33) s(t) = �+ + F (�+)t

(4.34) c+ = F (�+);

where �+ is given by (4.32).
When t approaches in�nity �+ approaches zero and F (�+) approaches c0. Then

we obtain from (4.32):

(4.35) F (�+) � c0 �
p
(
2A

t
); t!1;

where

(4.36) A =

Z 0

�l
[c0 � F (�)]d�:
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Thus A is the area of the initial reduction of c below its undisturbed value c0. Using
(4.35) and the fact that �+ ! 0 when t!1 we �nd the asymptotic forms of (4.33)
and (4.34):

(4.37) s(t) � c0t�
p
(2At); t!1

(4.38) c+ � c0 = �
p
(
2A

t
):

The solution valid to the right of the discontinuity at x = s(t) is given by (4.22),
(4.23) for �+ < � < 0. Because, for t!1 and �+ ! 0, the �-values in the interval
�+ < � < 0 tend to zero, we �nd from (4.22), (4.23):

(4.39) x = ct

or

(4.40) c(x; t) =
x

t
:

For a �xed t value the straight line solution (4.40) with the slope 1
t is valid in the

x interval

(4.41) s(t) < x < c0t;

where the upper limit is determined by the fact that the front of the depression
propagates with the undisturbed velocity c0. For t ! 1 we obtain from (4.41)
using (4.37):

(4.42) c0t�
p
(2At) < x < c0t:

The limit form of the wave velocity reduction in the interval (4.42) is pictured in
Fig. 12.

>From Fig. 16 we see that all the structure of the initial wave velocity reduction
is lost in its limit form for t!1. The just completed analysis of the discontinuity
in the wave propagation velocity c can be applied immediately to the discontinuity
in the density �. In the asymptotic region t!1 we can assume that �� �0 is so
small that the relation

(4.43) ~c� c0 = ~c0(�0)(�� �0); ~c0(�0) < 0
is valid independently of the form of the function j(�). As we know from (4.17), the
equation (4.43) is exact only for the case that j(�) is a second degree polynomial
in �. We now start with a density increase, so that

�(x; 0) = f(x); �l < x < 0

�(x; 0) = �0; x < �l; x > 0:(4.44)

>From (4.40), (4.42) and (4.43) we obtain immediately

(4.45) �� �0 =
x� c0t
~c0(�0)t

; c0t�
p
(2Bt) < x < c0t;

where B is the area earlier called A and now written:

(4.46) B = j~c0(�0)j
Z 0

�l
[f(�)� �0]d�:

At the same position there is thus a discontinuous increase of wave propagation
velocity density and a discontinuous increase of vehicle density. From (4.5) we then
conclude (since V 0(�) < 0) that the vehicle velocity has a discontinuous decrease at
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Figure 16. Limit form of a wave velocity depression in tra¢ c �ow

that position. To the right of the discontinuity the velocities and the density recover
the values they had to the left of the discontinuity. The recovering is completed in
a distance growing as

p
t, while simultaneously the discontinuity is decaying as 1p

t .
THE END


