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1. Introduction

The present text is based on a set of lectures given as part of a post graduate course in
fluid mechanics at the Department of Mechanics, KTH School of Engineering Sciences.
The topic of kinetic gas theory was chosen as to broaden the students knowledge in
the field of fluid mechanics in general. In particular the students should get a new
perspective on the contiuum theory approach applied in their every day research task.
Also, the topic has bearing on the theory of two phase flow for dispersed systems, where
the molecules of kinetic gas theory are replaced with macroscopic, discrete particles
supended in a continous fluid. The formalism for expressing averaged kinetic transport
of gas properties is also in very close analogy to the averaging of contiuum properties in
a turbulent flow field, a subject the students usually are more familiar with. In all, the
subject is a quite central part of the field of mechanics, and provides a link between under
graduate courses in mechanics of particle systems, classical equilibrium thermodynamics
and courses in continuum fluid mechanics.

The present lectures notes are complemented by each class with a set of project
reports. Each group of two(or three) students performs a DSMC(Direct Simulation
Monte-Carlo) simulation on a specific problem using an available designated code pro-
vided with the text book by Bird [1]. The results of these simulations are summarized
by each group in a project report that is distributed to all participants as part of the
course literature.

1.1. Macroscopic versus kinetic theory approach. In the macroscopic, or contin-
uum approach for the description of local fluid properties in a flow field, it is assumed
that the fluid matter occupies every point in space. The density of matter in a point
is defined as the ratio of mass to volume of a small fluid element as its size, centered
aruond the point in question, approaches zero. Likewise, the velocity component in a
given direction, n, at a given point is defined as the ratio of the volumetric flow rate to
area that crosses a small surface element of unit normal n as the surface area approaches
zero. This is illustrated in figure 1. The true limiting process of a decreasing measuring
volume for evaluation of the macroscopic point value of density in a physical experi-
ment is illustrated qualitatively in figure 2. For large measuring volumes, variation of
the evaluated mass density as the size decreases is associated with a non-homogeneous
macroscopic spatial distribution of mass. As the measuring size is small enough to en-
compass a sufficiently homogeneous macroscopic amount of mass, the evaluated mass
density levels out on a local value, virtually insensitive to small relative variations of the
measuring size. This value is defined as the macroscopic density of mass at the given
point around which the measuring volume is centered. However, should the measuring
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Figure 1. The macroscopic and microscopic approaches.
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Figure 2. Effect of varying measuring volume for evaluation of mass density.

volume be too small, statistical fluctuations on molecular scales are affecting the evaluted
mass density. Changing the measuring size for volumes containing only a few molecules,
the measured number of molecules(mass) will not be proportional to the volume in each
measurement due to the non-homogeneous distribution of matter on this small length
scale. This pin points the difference in the macroscopic, continuum approach and the
microscopic kinetic theory approach.

In kinetic theory, the local mass density is the mass to volume ratio of the discrete
molecular masses within a given volume. A measurement of this density for a small
volume of a macroscopically homogeneous gas at thermal equilibrium may give an aver-
age value over many samples equal to the macroscopic density of the gas. However, the
statistical fluctuations in the series of individual samples will increase with decreasing
measuring size. Thus, there is an obvious break down of the continuum theory approach
as the number of molecules in the typical volume of a local fluid element is too small.
The probability of finding a given number of particles, N , within a measuring volume
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Figure 3. Probability density of finding N particles in a measuring vol-
ume, ∆V , in a macroscopically homogeneous gas with overall number
density n.
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∆V is approximately given by a Gaussian distribution around the mean value N with
a standard deviation σ = 1/

√
N , see figure 3 (Bird [1, page x]). The average number

of molecules in the measuring volume is related to the number density, n, of the homo-
geneous gas as N = n∆V . Thus, the standard deviation will be small if the linear size
of the measurement volume, ∆L = ∆V 1/3, is large compared to n−1/3. If, by approx-
imation, the molecules are distributed in a cubical gitter with distance δ between the
molecules, the number density is n = 1/δ3, see figure 4. The requirement of insignificant
fluctuations in the measurement volume then gives δ = n−1/3 << ∆L, i.e. the size of
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Figure 5. Left: Microscopic description of collissionless flow between
two parallel plates illustrating the wall slip of the average motion at large
Knudsen numbers. Right: Continuum flow limit with frequent interac-
tions between molecules at small Knudsen numbers.

the volume is much larger than the distance between molecules. As a rule of thumb one
may require ∆L/δ ≥ 100, i.e. N ≥ 106 with σ ≤ 10−3. Air at standard temperature and
pressure has a number density of about n0 = 3 ·1025/m3 giving δ0 = 3 ·10−9m. The mea-
suring volume should then be L0 ≥ 0.3µm. Thus at normal conditions the breakdown
of continuum theory, due to significant statistical fluctuations, appear on quite small
lengthscales, which would apply rather to gas dynamical nano-technology. However, for
applications in the low density part of the earths atmosphere this restriction may appear
for much larger dimensions.

1.2. The Knudsen number. The obvious break down of continuum theory due to
statistical fluctuations turns out not to be the most restrictive criteria regarding the
density of the gas. The continuum description of a gas in motion, i.e. a gas which de-
parts from thermal equilibrium, also requires frequent collisions between the molecules.
These collisions transfer properties of the gas, like energy and momentum, between the
molecules in addition to the trivial transport of the property carried by the individual
molecules themselves even without collisions. Without molecular collisions, the macro-
scopic behaviour of the gas would not be that of the Newtonian fluid we are used to
even if statistical fluctuations were insignificant. To see this, consider the planar Cou-
ette flow between two infinitely long plates at distance h apart. Let the lower plate be
stationary and the upper plate move with constant speed Uh in the x-diretion, parallel
to the plates, see figure 5. In a gas without intermolecular collisions the molecules would
collide with the planar plates only (provided they initially have at least some speed com-
ponent perpendicular to the surface of the plates). Assume, for simplicity, that half the
number of molecules are moving towards the upper plate and the other half are moving
towards the lower plate, let’s say uniformly distributed in space. The molecules moving
towards the upper plate on the average have a zero velocity component parallel to the
plates since their last collision was with the lower stationary plate, which transfers its
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Figure 6. Validity of mathematical models versus Knudsen number.

zero momentum to the molecules. Molecules moving towards the lower plate have, on
the average, the same velocity as the upper plate. Thus, by avering over both classes
of molecules the mean velocity of molecules in the direction of the plates is Uh/2. This
average represents the macroscopic value of the velocity. Thus a gas without molecular
collisions does not satisfy no slip conditions at the plates. Although scattered molecules
from the plate attains a parallel component of velocity biased by the plate, the averaging
over also the incoming molecules carrying a different parallel velocity component, results
in a slip of the macroscopic average velocity at the plate.

A collisionless gas therefore has a macroscopic velocity profile which largely differs
from the result of the continuum theory using the Navier-Stokes equation. The linear
velocity profile in Couette flow of a Newtonian fluid may be interpreted as a result of the
frequent interactions between the molecules themselves, where the macroscopic viscosity
of the continuum model may be related to kinetic properties of the thermal molecular
motion. The key parameter to differ between the two limiting cases discussed, i.e. a gas
without collisions and a gas with frequent collisions, is the Knudsen number, Kn = λ/L,
where λ is the average molecular mean free path between collisions in the gas and L is
a typical length scale of the macroscopic flow field. The collisionless gas is characterized
by Kn >> 1 whereas the Newtonian continuum limit follows as Kn << 1. The limit
Kn = 0 corresponds to the Euler equations of inviscid flow. Then the gas is assumed
to be in local thermodynamic equilibrium in each point of the flow field. The limits of
the Knudsen number for different models are summarized in figure 6 (Bird [1, page y]).
What is there referred to as the Boltzmann equation is the model equation of statistical
kinetic theory governing the distrubution of molecular velocities in a gas that is dilute
enough that molecular interactions can be treated as short instance collisions in the
overall molecular motion.

The shear stress acting on the wall of the example studied above for the collision-
less gas comes about from averaging the gain/loss of momentum experienced by the
molecules colliding with the upper/lower plate. If the average speed of the molecules in

the vertical direction is c =
√
c2
y, and half of the molecules belongs to each class, the
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loss of momentum on the lower wall per unit time and area can be estimated to

(1) τw =
mnc

2
Uh,

where m is the mass of one molecule and n is the number density. In fact, this expression
is a momentum flux density that defines the shear stress on a plate-parallel surface
element at any position in between the plates. (The sign of the stress, as usual, shifts
with the direction of the unit normal in the vertical direction.) The corresponding
relation for a Newtonian fluid in Couette flow is

(2) τw = µ
∂u

∂y
= µ

Uh
h
.

We may note that the limit Kn >> 1 in (1) is independent of h, whereas the limit for
small Kn in (2) does depend on h. As we shall see in more detail later the continuum
approach can be interpreted from the result of a microscopic approach with Kn << 1 if
one assumes that the molecules retain their momentum on distances of the order of the
mean free path. Thus, the continuum gas can be considered collisionless on this very
small length scale. The loss of momentum of molecules colliding with the lower wall is
then proportional to the average speed in a fluid layer a distance λ above the plate, i.e.
∼ λ∂u∂y = λ

hUh, rather than the velocity of the upper plate. Reforming the collisionless
result (1) for a small mean free path we obtain in this case for Kn << 1

(3) τw ∼
mncλ

2
∂u

∂y
=
mnc

2
λ

h
Uh,

which is a factor Kn smaller than the result in (1). In more general flow cases one may
define a local Knudsen number of the form

(4) Kn = λ
1
u

∂u

∂y
,

or use any other relevant macroscopic gradient in the flow. Next we shall see how to
determine the mean free path in a gas.

1.3. The molecular model. The force interaction between molecules is of electrostatic
origin. The pair interaction may be described by an interaction potential φ which de-
pends on the distance r between the centres of the molecules. The simplest model is
the hard sphere model, which assumes the interaction force is zero except at contact at
r = d, the diameter of the molecule. More advanced interaction potentials are sketched
in figure 7. The soft sphere model accounts for the repulsive near field interaction,
whereas the Sutherland model accounts for the attractive far field interaction and acts
as a hard sphere in the near field. A model that accounts for both far and near fields is
e.g. the Lennard-Jones (6-12) potential.

The cross-section for a molecular collision is losely defined as the surface area a
molecule must cross in order for the collision to appear. For the hard sphere model
it is straight forward to see that this area is given by σT = πd2, see figure 8. For
the more advaced molecular models the cross-section will depend on the relative speed,
cr, between the colliding pair. For the Sutherland model, e.g., the cross-section will
be larger than for the hard sphere model with the same diameter, since the attraction
between molecules increases the probability for a collision. Fast molecules will see a
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Figure 8. Definition of cross-section of a collision.

smaller cross-section than will slow molecules, since the time for interaction decreases
with the relative speed. Often one uses a phenomenological model for the cross-section
directly rather than derive the cross-section from the actual interaction potential. The
variable hard sphere model, Bird [1, page y], uses an effective particle diameter

(5) d = dref (
cr,ref
cr

)ν ,

where the subscript ref refers to a known reference state and ν is a constant model
parameter.
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1.4. The dilute gas approximation and the mean free path. At standard tem-
perature and pressure in air the equivalent molecular diameter is d0 ≈ 4 · 10−10m. This
is one order of magnitude smaller than the average distance between the molecules,
δ0 ≈ 3 · 10−9. The dilute gas approximation builds on the assumption that d << δ. In
such a gas binary collisions are the overwelming dominant events, since the probability
of three, or more, particles appearing in the same position in space is so much lower. To
obtain the collision frequency of a test molecule with speed ct with the other molecules
in a gas, consider first the collision rate with field molecules in a specific velocity interval
([cx, cx + dcx], [cy, cy + dcy], [cz, cz + dcz]). Let the number density of this class of field
molecules be denoted dn. The number of collisions within the time interval ∆t is then
proportional to the volume σT cr∆t swept out by the cross-section of test molecule in its
motion, cr, relative to the field molecules, see figure 9. The number of collisions of this
class is then

(6) dn σT cr∆t.

Let f(c)dcxdcydcz denote the fraction of molecules within the considered class such that
dn = nf(c)dcxdcydcz. Then the total number of collisions of the test molecule per unit
time is obtained by integrating over all classes of field molecules

(7) νcoll(ct) = n

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

σT |ct − c|f(c)dcxdcydcz.

Considering all classes of test molecules, the average number of collisions of a test mol-
ecule is

(8) νcoll =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

νcoll(ct)f(ct)dctxdctydctz = nσT cr,

where the bar denotes an average over all velocity classes of test and field molecules.
For the hard sphere model it is simply

(9) (νcoll)h.s. = nπd2cr.

The total collision rate per unit volume of gas can then be expressed as

(10)
n

2
νcoll =

n2

2
σT cr,
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where care is taken that each collision is counted only once. Also, we note that this is
proportional to the square of the number density as this gives the probabiliy of finding
two molecules at the same position.

From the collision rate we define the mean free path as the average distance travelled
by the molecules in their thermal motion. The thermal motion, c′, is the random motion
of the molecules in addition to the average bulk motion, v. Thus we can write

(11) c = v + c′.

The mean free path is then

(12) λ ≡ c′

νcoll
=

c′

nσT cr
,

where

(13) c′ = |c′|.
For hard spheres in a gas in equilibrium (12) reduces to

(14) λh.s. =
c′/cr
nπd2

=
1√

2nπd2
.

We may now compare the mean free path with the average distance between the molecules
with the estimate

(15)
λ

δ
∼ 1√

2nπd2δ
∼ δ2

d2
� 1.

Therefore, in a dilute gas we have the scale separation

(16) d� δ � λ.

The rule of thumb for applying the dilute gas approximation may be taken as δ/d ≥ 7.
The limits for applying the different approximations discussed is summarized in figure
10.

1.5. Thermal equilibrium and non-equilibrium. The thermal equilibrium of a di-
lute gas enclosed in a box is characterised by a uniform macroscopic distribution of
mass, momentum (= 0) and temperature. There is no preferred direction of molecular
speed and there is no energy loss from collisions with the walls of the box. Although
collisions take place all the time, the gas appear collision less in a statistical sence. Each
time a molecule disappears from a velocity class because of a collision, there is another
molecule scattered into that class with the same probablity. Therefore, the distribution
of molecules on the different classes of molecular velocities does not change with time
for a gas in equilibrium. As soon as there is a small departure from equilibrium, e.g.
by increasing the wall temperature of the box, the intermolecular collisions act as to
retrieve equilibrium again. If the departure from equilibrium is small one often use the
concept of local thermodynamic equilibrium flow. This is an approximation in that the
macroscopic gradients in the flow are so small that the gas is assumed to rapidly adjust
to equilibrium according to the local properties of the gas, just as if it was enclosed in a
box moving with the local average speed. This is also refered to as isentropic flow and
is governed by the macroscopic Euler equations as mentioned earlier, valid for Kn = 0,
in which mass, momentum and energy is only advected with the macroscopic velocity.
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Figure 10. Limits for dilute gas approximation, Navier-Stokes equations
and insignificant statistical fluctuations.

Sound waves are also part of this limit, where longitudinal transport of mass, momentum
and energy occur through propagation of equilibrium pressure waves.

In the next level of approximation, small departures from equilibrium are accounted
for. Then there is a small thermal/kinetic transport of both momentum and energy
proportional to the corresponding macroscopic gradients. This diffusion is an essential
part of the Navier-Stokes equations, valid for Kn << 1. The macroscopic model of
diffusion includes the diffusivity D, and the time needed for diffusion of a property to
reach a distance ∆L is

(17) ∆tdiff ∼
∆L2

D
.

From a microscopic point of view the diffusion comes about by the irregular thermal
motion of the molecules as a result of intermolecular collisions. Following a single particle
in its thermal motion the average displacement in a chosen coordinate direction is zero
when keeping track of positive and negative displacements. However, the average of
its squared displacement, ∆x2 is always non-zero, and in fact adding up the collisions
∆x2 ∼ λ2νcoll∆tdiff . Identifying the root mean square displacement with the diffusion
length of the macroscopic model we get

(18) D ∼ λ2νcoll = λc′.

This result holds for the diffusivity of any property of a gas and shows the relation
between the macroscopic diffusivity coefficient and the kinetic properties of the gas.
It also demonstrates the quantitative importance of the mean free path in flows that
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depart from equilibrium. The hand waving arguments leading to (18) will successively
be replaced with more stringent theories in what follows.

As we have seen the continuum models break down if Kn is not small, or if the
relaxation time to retain equilibrium, ∼ 1/νcoll = λ/c′, is long compared to time scales
of the flow ∼ 1/(∂u∂y ). Thus, in terms of the mean free path we require for continuum
flows also

(19) λ
∂u/∂y

u

u

c′
= KnM < 1,

which is a bit more restrictive in the Kn if M > 1. In general we require then
max[Kn,KnM ] << 1 for continuum flow. A typical example from continuum fluid
mechanics where the time scale of the flow is short may be found in a strong normal
shock wave. Thus, the contuum model using the Navier-Stokes equations breaks down
in the thin shock layer describing the rapid transition between the upstream and down-
stream conditions of the shock.

2. Macroscopic variables - microscopic variables

In this section we shall see how the macroscopic flow variables are expressed in terms
of the kinetic variables. We will not follow each molecule individually in its path and
change of velocity due to collisions. Rather we shall use a statistical approach where
we classify the molecules in groups according to their velocity and position. Therefore,
consider the molecules in a physical-space volume dr = dxdydz centered around r and
with velocities in the velocity-space volume dc = dcxdcydcz centered around c. The
number of particles in this phase-space volume, drdc, is expressed as

(20) dN = F(t, r, c)drdc,

where F is the distribution function in phase-space. For the moment we consider F to
be a known function and we shall see how to obtain the macroscopic variables from that.
The number density, n(t, r), is obtained by integrating over all classes of velocities

(21) n(t, r) =
∫ ∞
−∞
F(t, r, c)dc.

Now, let Q(c) denote any property of the gas that is carried and transported by the
molecule. The total amount of Q per unit volume is then

(22)
∫ ∞
−∞

Q(c)F(t, r, c)dc = n(t, r)Q(t, r),

where Q defines the average of the molecular property Q(c) in the unit volume

(23) Q(t, r) =
1

n(t, r)

∫ ∞
−∞
F(t, r, c)Q(c)dc =

∫ ∞
−∞

f(t, r, c)Q(c)dc.

Here, we have also defined the velocity distribution function f(t, r, c) such that F(t, r, c) =
n(t, r)f(t, r, c), where by (21)

(24)
∫ ∞
−∞

f(t, r, c)dc = 1.
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Thus, f(t, r, c)dc is the local fraction of molecules in the velocity-space volume dc. If
we take the property Q = m we have

(25) n(t, r)Q = nm = ρ,

where ρ is the density of the gas. If Q = c then

(26) Q = c = v,

where v is the macroscopic velocity. The flux density vector of any property Q(c) is
given by

(27)
∫ ∞
−∞
F(t, r, c)Q(c)cdc = n(t, r)Qc.

Introducing the thermal speed c′ = c − v in (27) the flux vector may be split in two
parts according to

(28) n(t, r)Qc = nQv︸︷︷︸
bulk transport

+ nQc′︸ ︷︷ ︸
kinetic/thermal transport

.

If, e.g., we take Q = m in (28) then

(29) n(t, r)Qc = nmc = ρv,

which is the bulk mass flux density vector.

2.1. Transport of momentum. If we take momentum as the property, then Q = mc
and we get

(30) n(t, r)Qc = ρvv︸︷︷︸
bulk transport
of momentum

+ ρc′c′︸︷︷︸
kinetic/thermal transport

of momentum

Equation (30) is a tensor relation since it expresses the average flux density in different
directions of the momentum vector mc. The flux density of momentum across a surface
with unit normal n is then the vector

(31) n(t, r)Qc · n = ρvv · n︸ ︷︷ ︸
bulk transport
of momentum

+ ρc′c′ · n︸ ︷︷ ︸
kinetic/thermal transport

of momentum

.

Now, consider the rate of change of the property Q in a fixed control volume V due
to the net flux of the property out through the control surface S. Considering particles
of all classes we have

(32)
d

dt

∫
V
nQdV = −

∮
S
nQc · ndS.

As we take Q = m we obtain

(33)
d

dt

∫
V
ρdV = −

∮
S
ρv · ndS,
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which is the equation for conservation of mass in the continuum approach. If there is
no external force field acting on the particles (32) should hold also for the momentum
vector Q = mc = mv +mc′, such that

(34)
d

dt

∫
V
ρvdV +

∮
S
ρv(v · n)dS = −

∮
S
ρc′c′ · ndS︸ ︷︷ ︸

macroscopic surface force

.

Having transferred the thermal transport of momentum to the right hand side we may
interprete it as a force in the average continuum approach, acting on the surface of the
control volume. The integrand may be referred to as the stress tensor

(35)
≈
σ= −ρc′c′ = −ρ


c′2x c′xc

′
y c′xc

′
z

c′yc
′
x c′2y c′yc

′
z

c′zc
′
x c′zc

′
y c′2z

 .

As such it just represents the average flux density of momentum across an element of the
control surface given a certain population of particles in the different classes of molecular
velocities. Each element in (35) represents the flux in one given coordinate direction of
a momentum component in an other independent coordinate direction. If the gas is in
equilibrium the population is independent of the direction of the velocity and different
velocity components are uncorrelated so that the stress tensor is isotropic

(36)
≈
σeq= −ρ

 c′2x 0 0
0 c′2y 0
0 0 c′2z

 ,

where c′2x = c′2y = c′2z . By defining the scalar pressure p = ρ(c′2x + c′2y + c′2z )/3 from the
magnitude of the trace of the general stress tensor we can write for the equilibrium state

(37)
≈
σeq= −p

≈
I ,

where
≈
I is the unit tensor. If the gas is not in equilibrium the deviator defines the

viscous stress tensor according to

(38)
≈
τ= −(ρc′c′ − p

≈
I).

Thus, the stress tensor may be expressed

(39)
≈
σ= −p

≈
I +

≈
τ ,

and appears in the integral on the right hand side of (34). The viscous stress tensor at
equilibrium is

≈
τ eq= 0.

To see explicitly how the pressure tensor is related to, e.g., the normal force acting
on a wall in a gas in equilibrium one can make the following considerations. The force
per unit area of the wall will be equal to the rate of change of momentum of molecules
colliding with the wall per unit area. The rate of molecules in a velocity class colliding
with the wall per unit area will be nf(c′)dc c′x for all classes with a velocity c′x in the
opposite unit wall-normal direction (see figure 11). The change of momentum for each
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Figure 11. Sketch of molecule colliding with a wall indicating the change
in direction of the x-momentum.

particle during a collision is −2mc′x such that the reaction force on the wall integrated
over molecules in all classes per unit area is∫

c′x>0
nf(c′)c′x 2mc′xdc =

∫
c′x>0

nf(c′) mc′x
2
dc +

∫
c′x<0

nf(c′) mc′x
2
dc =

= n

∫ ∞
−∞

f(c) mc′x
2
dc = ρc′2x = −σxx.(40)

2.2. Transport of energy. We now turn to another prooperty of the molecule, namely
the energy. Apart from the kinetic energy molecules with several atoms also have internal
modes of energy like rotational and vibrational energy. Thus we can write

(41) Q = E =
mc2

2
+ εint.

For the rotational energy of a spherically symmetric molecule, e.g., we have εint,rot = Iω2

2 ,
where I is the moment of inertia and ω the angular frequency. The amount of energy in
a unit space volume is then

(42) nQ =
ρc2

2
+ nεint =

ρ(v + c′) · (v + c′)
2

+ nεint =
ρv2

2︸︷︷︸
bulk kinetic

energy

+
ρc′2

2
+ nεint︸ ︷︷ ︸

thermal energy

.

The thermal energy per unit mass is

(43) e =
c′2

2︸︷︷︸
etrans

+
εint
m︸︷︷︸
eint

.

From the definition of the scalar pressure, p = ρc′2/3, we see that

(44)
p

ρ
=

2
3
etrans.
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Thus, only the translational part of the thermal energy contributes to the pressure. From
classical thermodynamics we have the familiar perfect gas law for a gas in equilibrium

(45)
p

ρ
= RT =

kT

m
.

The thermodynamic temperature T is a property defined only for a system in thermody-
namic equilibrium, whereas (44) is more generally valid. For non-equilibrium systems we
can then generalize the definition and speak about kinetic temperatures, characterising
the energy contained in a specific mode of molecular thermal energy. Thus the kinetic
translational temperature is defined by

(46)
3
2
RTtrans ≡ etrans =

c′2

2
=
c′2x + c′2y + c′2z

2
.

One may even define the kinetic translational temperature for motion in the x-direction
separately according to

(47)
1
2
RTtrans, x ≡ etrans, x =

c′2x
2
.

In equilibrium each translational degree of freedom contributes with the same amount
of energy per unit mass RT/2. For thermal energy from the internal energy modes we
can define a kinetic temperature Tint according to

(48)
ζ

2
RTint ≡ eint (=

I

m

(ω2
x + ω2

y + ω2
z)

2
),

where ζ is the thermal degrees of freedom of the energy mode considered. Only at
equilibrium we have that Ttrans = Tint = T .

The energy flux density vector is obtained by taking Q = E in (28). Thus

n(t, r)Ec = nEv︸︷︷︸
bulk transport

+ nEc′︸ ︷︷ ︸
kinetic/thermal transport

=

=

(
ρc2

2
+ nεint

)
v + ρ

c2c′

2
+ nεintc′ =

=

bulk transport of energy︷ ︸︸ ︷ ρv2

2︸︷︷︸
bulk kinetic

energy

+
ρc′2

2
+ nεint︸ ︷︷ ︸
ρe

v +

kinetic transport of
mixed term︷ ︸︸ ︷
ρv · c′c′︸ ︷︷ ︸
v · P

−work by pressure
and viscous forces

+

kinetic transport of
thermal energy︷ ︸︸ ︷

ρ
c′2c′

2
+ nεintc′︸ ︷︷ ︸
q

heat flux density vector

.(49)

Below the last line of equation (49) are given the continuum approach interpretations of
each of the terms of the energy flux density vector. The first bracket is the bulk transport
of bulk kinetic energy and thermal energy. The second, mixed term is the translational
work rate performed per unit area by components of the pressure tensor on the surface of
any control volume. The last term is the transport of heat by diffusion/heat conduction.
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The rate of change of Q = E in the control volume is then given by (32) and (49) as

(50)
d

dt

∫
V

(
ρv2

2
+ ρe

)
dV +

∮
S
ρ

(
v2

2
+ e+

p

ρ

)
v · ndS =

∮
S

v · (≈τ ·n)dS−
∮
S

q · ndS.

Here, the stress tensor has been split in the isotropic part, −p
≈
I , where the scalar

pressure appears on the left hand side as part of the heat function, h = e + p
ρ , and the

viscous part,
≈
τ , appearing in the translational work rate integral over the surface of the

control volume. This is the usual form of the energy equation used in the continuum
approach, but here all quantities are properly defined from the microscopic kinetic theory
approach. Together with (33) and (34) they form the conservation equations for mass,
momentum and energy.

In general the velocity distribution function f(t, r, c′) is unknown and (34), (33) and
(50) do not form a closed set of equations for the averaged motion. In reality, if the mean
free path is small compared to the size of the control volume, the momentum and energy
of the particles entering/leaving the control volume will be transferred by collisions to
other particles in the very neighbourhood of the control surface. Macroscopically the flux
of momentum is then experienced as a surface force acting on the control volume, which
magnitude can be related to the local gradients of the bulk velocity via the Newtonian
viscosity concept, c.f. (2). Similarly, the thermal transport of heat, q, can be related
to the local gradient of the temperature. This closed set of equations for small Kn
are the Navier-Stokes equations. We shall see later that the Navier-Stokes equations
are equivalent to a small but well defined departure from an equilibrium distribution
function. For larger Knudsen numbers the thermal transports of momentum and energy
across the control surface are no longer local phenomena, as the distances travelled by
the molecules since their last collisions on the average are not small compared to the
typical length scale of the problem. The gas is then far from an equilibrium state and
the distribution function can no longer be related to the local gradients of the flow.

3. The Maxwell-Boltzmann velocity distribution function.

We shall introduce here the velocity distribution function, f(c1 , c2 , c3 ), that prevails
in thermodynamic equilibrium. The ideas in this section was first worked out my Maxwell
1859 and later derived also by Boltzmann using statistical mechanics. In forthcoming
chapters we shall give another derivation of the equilibrium distribution function, based
on the dilute gas approximation and the so called H-theorem (see chapter ??). As such,
the velocity distribution function gives the probability density in velocity space of finding
a molecule with a given velocity c = (c1 , c2 , c3 ). Consider a frame of reference in which
the gas is macroscopically at rest, i.e. in which the averages of the velocity components
are zero. At equilibrium it turns out that the velocity components are uncorrelated, or
independent, stochastic variables so that we must have

(51) f(c1 , c2 , c3 ) = f1 (c1 )f2 (c2 )f3 (c3 ).

The equilibrium velocity distribution function is also isotropic, i.e., the value of f depends
only on |c|. Thus if we vary the velocity components in such way that

(52) c2 = c2
1 + c2

2 + c2
3 ≡ g(c1 , c2 , c3 )
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is kept constant the differential df = 0. Equivalently d(ln(f)) = df/f = 0 for changes of
the velocity components under the constraint g(c1 , c2 , c3 ) = const. . We may formulate
this according to the method of Lagrange multiplyers: Find min{ln[f(c1 , c2 , c3 )]} under
the constraint g(c1 , c2 , c3 ) = const. Thus we require

(53)
∂(lnf)
∂ci

= λ
∂g

∂ci
,

where λ is the Lagrange multiplyer and i can be any one of the coordinate directions.
With (51) and (52) we get from (53) that

(54)
d(lnfi)
dci

= λ 2ci.

Since this must hold for any direction i, λ must be a (single) constant, independent of
the velocity components. By integration we find

(55) ln(fi) = λc2
i + ln(α),

and

(56) fi(ci) = αeλc
2
i ,

where α is an integration constant that is determined from the normalization condition∫∞
−∞ fi(ci)dci = 1. Thus, as fi must be finite for large velocities, λ must be a negative

constant, say, λ = −β2. The normalization condition then gives α = β/
√
π and

(57) fi(ci) =
β√
π
e−β

2c2i .

Apparently, f1 , f2 and f3 are identical functions of c1 , c2 and c3 respectively. The
complete velocity distribution function at equilibrium is then

(58) f(c1 , c3 , c3 ) =
β3

π3/2
e−β

2(c2
1 +c2

2 +c2
3 ).

The non-dimensional, one-component Maxwell-Boltzmann velocity distribution function
fi/β versus ciβ is shown in figure 12. The parameter β is related to the mean square
speed of the molecules

(59) c2 =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

c2 fdc1dc2dc3 =
∫ ∞

0
c2 β3

π3/2
e−β

2c24πc2 dc =
3

2β2
.

(In the second integral of (59) we have introduced spherical coordinates in velocity space
for convenience). The last integral can be found evaluated in standard mathematical
tables of integrals. Also, we have previously related the mean square speed to the
macroscopic temperature at equilibrium via the perfect gas law

(60)
c2

3
≡ p

ρ
=
kT

m
.

Thus, by (59) and (60) we have

(61)
1
β2

=
2c2

3
= 2

kT

m
.
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Figure 12. The one-component Maxwell-Boltzmann velocity distribu-
tion function.

In terms of the macroscopic temperature the Maxwell-Boltzmann distribution is then
given by

(62) f(c1 , c3 , c3 ) =
( m

2πkT

)3/2
e−

m
2

(c2
1 +c2

2 +c2
3 )/(kT ).

As the distribution is independent of the direction of the velocity, it is convenient to in-
troduce spherical coordinates in velocity space, just as in (59). The distribution function
is then expressed only in terms of the magnitude of the velocity, c =

√
c2
1 + c2

2 + c2
3 .

The probability of finding a molecule with speed in the interval [c, c + dc] with any
direction is then f(c)4πc2dc. The probability density for the speed c is then

(63) fc(c) = f(c)4πc2 =
4√
π

( m

2kT

)3/2
c2 e−

mc2

2
/(kT ).

This function is plotted in figure 13 for some different temperatures in air. At higher
temperatures the distribution is shifted towards higher molecular speeds and is spread
over a wider range of velocities.

4. The macroscopic description of kinetic transport phenomena.

We have previously adressed the importance of the limit of small Knudsen numbers,
Kn << 1, leading to the well known Navier-Stokes equations where the kinetic trans-
port terms can be modelled as local phenomena. In this section we shall se how to relate
the macroscopic concepts of viscosity, heat conduction and scalar diffusion to the kinetic
variables of the gas. The approach will follow the mean free path method which emph-
esizes on the physical mechanisms of the kinetic transport. A more rigorous approach,
the Chapman-Enskog method, will be discussed later in section ??.
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Figure 13. The Maxwell-Boltzmann distribution function of the molec-
ular speed in air. T = 100K, 300K, 500K,R = k/m = 287J/(kgK),
corresponding to crms =

√
c2 =

√
3RT = 293 m/s, 508 m/s, 656 m/s.

non-uniform flow velocity temperature composition
transported quantity momentum internal energy mass of species
macroscopic model viscosity heat conduction mass diffusivity

formula τxy = µ∂u∂y qy = −k∂T∂y jA = −DAB
∂nA
∂y

Table 1. Models of macroscopic transport phenomena.

In thermodynamic equilibrium all macroscopic variables of the gas are uniformly dis-
tributed in space, and there is no net transport of mass, neither of momentum nor
energy. The cause of any transport is a non-uniform distribution of a macroscopic quan-
tity. The resulting action of the non-equilibrium state is a transport of the property
carried by molecules during their random movements. The relevant mathematical mod-
els are summarized in table 1. To see the basic mechanism behind thermal transport
of a macroscopic quantity, consider the flux density vector (27) introduced in section
2. We are interested in the thermal transport, the second term of (27). Let’s assume
the quantity Q macroscopically is non-uniformly distributed in space according to Q(y).
Thus, molecules at different positions of y on the average carry different values of Q
which may be transferred to other positions in y due to the molecules random motion in
the y-direction. A specific value of Q is carried by a molecule only until its next collision
so that excess values of Q are transferred from one position to another position at an
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Figure 14. Schematic of molecular transport in y-direction of property Q.

average distance on order of the mean free path away. This is illustrated schematically
in figure 14. The flux density of Q in the y-direction is given by n(y)Qc′y. To actu-
ally calculate this average we would need the expression for the velocity distribution
function f(t, r, c). However, the previous discussion may be used to derivean estimate.
First, let’s divide the molcules in two classes according to the sign of c′y. It is reason-
able to believe that there are the same number of molecules in each of these classes at
any y-position. The molecules in the class c′y > 0 on the average come from a position
y − λ since their last collsions and carry a value Q(y − λ) of the transported quantity.
The contribution to the flux density n(y)Qc′y for this class can then be estimated to
1
2n(y)Q(y − λ)|c′y|, where the average magnitude of the speed in the y-direction can be

estimated as |c′y| ≈
√
c′2y ≈ c′. For the other class, c′y < 0, the corresponding estimate

of the flux density is 1
2n(y)Q(y + λ)(−|c′y|). Adding the estimates to the contributions

from the two classes we get

(64)
n(y)Qc′y ≈ 1

2n(y)Q(y − λ)c′ + 1
2n(y)Q(y + λ)(−c′) =

= n(y)c′

2

(
Q(y−λ)−Q(y+λ)

2λ

)
2λ = −n(y)c′λ

(
dQ
dy + λ2

6
d3Q
dy3

+ ...
)
.

The last term of the expansion in (64) will be small compared to the first term if
λ2Q/L3 << Q/L, i.e. if λ2/L2 = Kn2 << 1. A more careful application of the mean
free path method used here, based on the small departure from the Maxwell-Boltzmann
velocity distribution, shows that the average distance travelled by a molecule in a given
direction since its last collision is 2λ/3 rather than λ, and that the number flux density
of molecules in a given direction is nc′/4 rather than nc′/2. With these modifications
we can write for small Knudsen numbers

(65) nQc′y ≈ −
nc′λ

3
dQ

dy
.
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4.1. Diffusion of momentum. Now, let the transported quantity be the momentum
in the x-direction, Q = mcx. Then Q = mcx = mvx, and (65) gives

(66) ρcxc′y = ρc′xc
′
y ≡ −τxy = −ρc

′λ

3
dvx
dy

.

We may then indentify the macroscopic Newtonian dynamic viscosity as

(67) µ =
ρc′λ

3
,

and the kinematic viscosity

(68) ν =
c′λ

3
.

Thus, it is clear that for a gas the viscosity, µ, and diffusivity of momentum, ν, increase
with the magnitude of the thermal motion, c′, and the mean free path, λ. Using the
previous expression, (12), derived for the mean free path we get

(69) µ =
mc′

2

3σT cr
.

Using the simplifying assumption of hard spheres for the cross section, σT = πd2, and
since from the definition of scalar pressure and the perfect gas law c′2

3 = p
ρ = k

mT , we
find

(70) µ =
kT

πd2cr
≈
√
mkT

πd2
,

where we also use that the mean relative speed is proportional to the root mean square
speed. Thus the viscosity in a gas of hard spheres increases with the square root of the
temperature.
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