Student projects 2007

Instructions for doing the project:

Each group of two persons will chose one of the flow cases listed below and perform stability calculations. Matlab codes are provided for the cannel flow case that can be modified to perform the required calculations. Matlab codes are also provided for solution of the self-similar Falkner-Skan velocity profiles, that can be modified for use in some of the projects. Graduate students are supposed to modify the provided codes, whereas undergraduate students need only to run the desired case.

Each group should prepare a short presentation on their topic and a 2-3 page summary of the results, which is to be handed out at the oral exam. The summary of the results can be done as a report or as presentation overheads.

Each group should do the following:

0. Derive the stability equations for your flow case.

1. Calculate spectra, eigenfunctions and neutral curves, etc. for appropriate parameter ranges.

2. Calculate optimal growth, optimal disturbances and optimal response and show results for appropriate parameter ranges.

3. Calculate optimal responce to forcing, the resolvent and eigenvalue sensitivity for appropriate parameter ranges.

4. Pick additional stability characteristics appropriate for your flow case and make the relavant calcuations.

Even if you can find results in the literature the important thing is that you make your own calculations. Previous results can be used to make comparisons.


Luca Brandt, 7907176, luca@mech.kth.se 

 

FLOW CASES:                                                                            NAME:

1 Boundary layers with pressure gradients.
   6.1.1                                                                                          1.______________________

                                                                                                     2.______________________  

2 Three-dimensional boundary layers.
    6.1.2, 7.2.5                                                                              1._______________________

                                                                                                    2._______________________  

3 Shear layers and wall-jets.
   Levin's Lic thesis                                                                     1._______________________

                                                                                                    2._______________________  

4 Jets and wakes.
   7.2.4                                                                                         1._______________________

                                                                                                    2._______________________  

5 Curved and rotating channel flow.
   6.2.1, 6.2.2, 6.2.3                                                                     1._______________________

                                                                                                    2._______________________  

6 Asymptotic suction boundary layers.
   Fransson's PhD thesis                                                           1._______________________

                                                                                                    2._______________________  

7 Taylor-Coette flow.
                      
                                                            1._______________________

                                                                                                    2 _______________________

8 Pipe flow.
   3.1.5, 3.2.1, 3.2.2, 4.4.2                                                           1._______________________

                                                                                                    2._______________________