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Chapter 1

Derivation of the Navier-Stokes
equations

1.1 Notation

The Navier-Stokes equations in vector notation has the following form

1
%_‘tl+(u.v)u = —;Vp—l—Z/VQU

V-u = 0

where the velocity components are defined

u= (U,U,U}) = (Ul,’LLQ,’LL3)

the nabla operator is defined as

o (00 9\ (0 9 o
\0x’ 0y’ 0z)  \Ox1 Oxy’ Oxs

the Laplace operator is written as

2 8_2 4 8_2 4 8_2
0x2  Oy? 022

and the following definitions are used

v — kinematic viscosity
p — density
p — pressure

see figure 1.1 for a definition of the coordinate system and the velocity components.
The Cartesian tensor form of the equations can be written

8ui + 8u1 1 ap 82’&1'
Uj = —= v

ot 70z p Ox; O0x;0x;

3ui

(r“)l'i =0

where the summation convention is used. This implies that a repeated index is summed over, from 1
to 3, as follows

UiU; = UTUL + UgU + usus

Thus the first component of the vector equation can be written out as

7
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Figure 1.1: Definition of coordinate system and velocity components
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Figure 1.2: Particle path.
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1.2 Kinematics

Lagrangian and Euler coordinates

Kinematics is the description of motion without regard to forces. We begin by considering the motion of a
fluid particle in Lagrangian coordinates, the coordinates familiar from classical mechanics.
Lagrange coordinates: every particle is marked and followed in flow. The independent variables are

x;° — initial position of fluid particle

t —  time
where the particle path of P, see figure 1.2, is

ri = r; (2, )

and the velocity of the particle is the rate of change of the particle position, i.e.



Uy = —=x
bt
Note here that when z;° changes we consider new particles. Instead of marking every fluid particle it
is most of the time more convenient to use Euler coordinates.
Euler coordinates: consider fixed point in space, fluid flows past point. The independent variables are

x; — space coordinates

t — time

Thus the fluid velocity u; = u; (z;,t) is now considered as a function of the coordinate z; and time t.
The relation between Lagrangian and Euler coordinates, i.e. (wio, t) and (x;,t), is easily found by noting
that the particle position is expressed in fixed space coordinates z;, i.e.

T, = T (:Cio,f) at the time
t =t

Material derivative

Although it is usually most convenient to use Euler coordinates, we still need to consider the rate of change
of quantities following a fluid particle. This leads to the following definition.
Material derivative: rate of change in time following fluid particle expressed in Euler coordinates.
Consider the quantity F' following fluid particle, where

F = FL (xio,f) = FE (CCi,t) = FE (’I”i (xz,f) ,t)
The rate of change of F' following a fluid particle can then be written

OF 0OFy Or; OFg 0t 0Fy  OFp

of 0w, of ot ai o "o
Based on this expression we define the material derivative % as
0 D 0 0 0
=—+(u-V)

—=—=—+4u-—=
9t - Di ot ‘oz, Ot
In the material or substantial derivative the first term measures the local rate of change and the second
measures the change due to the motion with velocity ;.
As an example we consider the acceleration of a fluid particle in a steady converging river, see figure
1.3. The acceleration is defined

a; = = U4
J Dt ot J 6£Ej

which can be simplified in 1D for stationary case to

~ Du  0u ou

S TR TR
Note that the acceleration # 0 even if velocity at fixed x does not change. This has been experienced
by everyone in a raft in a converging river. The raft which is following the fluid is accelerating although
the flow field is steady.

Description of deformation
Evolution of a line element
Consider the two nearby particles in figure 1.4 during time df. The position of P, can by Taylor expansion
be expressed as
Py : r; (df) + dr; (df) =
=7, (0) + 2 (0) df + dr; (0) + 2 (dry) Odi



Figure 1.3: Acceleration of fluid particles in converging river.
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Figure 1.4: Relative motion of two nearly particles.



where we have used

0] a ( Or; 0 ar;
- d 7 = - ! d 0 = =~ —} d 0
o = G (8:ch) Y B0 <at> "
8ui 0
= —8CCjO dl‘j = dui
and where
8ui0 — change of u; with initial pos.
6£Ej
dz;° — difference in initial pos.
du; — difference in velocity

0
We can transform the expression 5 (dr;) = du; in Lagrange coordinates to an equation for a material

line element in Euler coordinates

D
E (d’l"l) = d’U,i
= {expand in Euler coordinates}
8ui
= dT‘j
817]'
where
Ou; . o . i
el change in velocity with spatial position
Ty
dr; — difference in spatial pos. of particles

Relative motion associated with invariant parts

Ou; Ju;
We consider the relative motion du; = a—l dr; by dividing B_Z in its invariant parts, i.e.
Ly Ly
Ou; _ —
%1» = &ij T & + €
J N——

€ij

where e;; is the deformation rate tensor and

§ij = % (gzz - gzj ) anti-symmetric part
J i
e; = % (gzz g:;] — ;gzr 61-]) traceless part
i i T
€ = l%éij isotropic part
3 Ou,
8’&1'

The symmetric part of e e;, describes the deformation and is considered in detail below, whereas the
Ly
anti-symmetric part can be written in terms of the vorticity wy and is associated with solid body rotation,

i.e. no deformation.

The anti-symmetric part can be written
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Figure 1.5: Deformation of a cube.
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Deformation of a small cube

Consider the deformation of the small cube in figure 1.5, where we define

Rﬁg = Ry component k of side [
l l Ouy, i . . .
r, = Rp+-—R:dt relative motion of side [
8CCJ‘ J
~——
du%c
3uk
= R0+ —=—dt deformed cube
(9&61

First, we consider the deformation on side 1, which can be expressed as

dR' = |¢'[ =R = \/rirl ~ R

The inner product can be expanded as

6u1 2 8u2 2 8u3 2
(1+8—$1dt> +(a—$1dt> + 8—$1dt

= {drop quadratic terms}

6’11,1
=R%(1+2=—dt
( %5 )

X1

_ 2
TR = R




We have dropped the quadratic terms since we are assuming that dt is small. dR' becomes

R,/1+2%dt—R:R PR Y
oxy O0z1

o
RZU 4t = Reyy dt
8561

dr!

which implies that

=R
1 €11

Thus the deformation rate of side 1 depends on e11, both traceless and isotropic part of g;i .
J

Second, we consider the deformation of the angle between side 1 and side 2. This can be expressed as

cos (g + d¢12) = % =rire - (rere, - rflrfl)flm
= <5k1 + g_z;; dt) (5k2 + g—;”; dt) : (1 + 22—: dt) o (1 + 22—52 dt) o
- <g—$dt+g—zidt> <1_g—zidt) (1—2—52&)
= (g—Z;Jrg—Zj) dt = 2e5 dt

where we have dropped quadratic terms. We use the trigonometric identity
cos (g + d(,Dlz) = cosg - cos dpio — sing -sin dp12 &~ — dp12
which allow us to obtain the finial expression

dp1o

= —9%¢
dt €12

Thus the deformation rate of angle between side 1 and side 2 depends only on traceless part of g;‘;

Third, we consider the deformation of the volume of the cube. This can be expressed as

v = |r' r? 3| -R?
1+ 9udr gud 9 gt
_ p3 P d 3
= RO gmde 14 fmd gGRde |oR
3 3 3
a_mldt 8—w2dt 1+0_m3dt

ouq Ous Ous
3 __ R3
= R <1 o0x1 dt> <1 0xo dt> (1 0x3 dt) R

6’11,1 8u2 6’11,3

= R(Z—/=+=2+2) &
(8171 + 8:62 + 8.173)
8uk

= R*_——dt
8CCk

where we have again omitted quadratic terms. Thus we have

dVv -
= Rg_rr
dt ¢

and the deformation rate of volume of cube (or expansion rate) depends on isotropic part of gg? .
J

In summary, the motion of a fluid particle with velocity u; can be divided into the following invariant
parts



Figure 1.6: Volume moving with the fluid.

i) U; solid body translation

Ou; Ou,
i) &= % <sz — (;;Z) = —%ekijwk solid body rotation

Ou; = Ouj 2 0u, .
i) ;=3 (a;j + (f;;z — ga—zT(&j) volume constant deformation

1 Ouy

) G = ag,
T

i volume expansion rate

1.3 Reynolds transport theorem

Volume integral following with the fluid

Consider the time derivative of a material volume integral, i.e. a volume integral where the volume is moving
with the fluid. We obtain the following expressions

D ) 1
V(t) |V (t+At) V(t)

. 1
[V (t+At) V(t)

- /Tij(t—i-At)dV— /zy(t)dv
V(t) V(t)

— lim { — / Ty (t+At) dV § + / o

o v

At—0 | At
V(t+At) -V (t) V(t)

The volume in the first integral on the last line is represented in figure 1.6, where a volume element
describing the change in volume between V' at time ¢ and ¢ + At can be written as

u-nAt = uknkAt = dV = uknkAt ds



This implies that the volume integral can be converted to a surface integral. This surface integral can
in turn be changed back to a volume integral by the use of Gauss (or Greens) theorem. We have

oT;;
+/ S dv

40

D .
o [ T = dm
V()

7{ T;; (t+ At) upng dS
S(t)

7{ Tijupng dS + ag” dV = {Gauss/Green’s theorem}
S(t) Vi) t

oT;; 3]
[ |5+ o ot av

ot
V()

which is the Reynolds transport theorem.

Conservation of mass

By the substitution 73; — p and the use of the Reynolds transport theorem above we can derive the
equation for the conservation of mass. We have

D op 0
dV = =0
Di / p / {at dzr (“’“”)]
V(t) V(t)
Since the volume is arbitrary, the following must hold for the integrand

B @ 0 @ op 6uk B Dp Ouy
0= I gy (WP = Gy Fung g o
A/—’ ——

@ ®) @ @

where we have used the definition of the material derivative in order to simplify the expression. The
terms in the expression can be given the following interpretations:

@O : accumulation of mass in fixed element

@ : net flow rate of mass out of element

® : rate of density change of material element
@ : volume expansion rate of material element

By considering the transport of a quantity given per unit mass, i.e. T;; = pt;;, we can simplify Reynolds
transport theorem. The integrand in the theorem can then be written
0 (cont. eq.)
0 0 0 Ot 0 Oty Dt;,;
¢ S tij) = ti L+t L= !
ot (ptij) + O2x (ukptij) UEE“" ot tiija— - kP) +puk3zk P Dt

which implies that Reynolds transport theorem becomes

D Dt;
ti;d
V() V(t)

where V' (t) again is a material volume.

Y qy
Dt

1.4 Momentum equation

Conservation of momentum

The momentum equation is based on the principle of conservation of momentum, i.e. that the time rate of
change of momentum in a material region = sum of the forces on that region. The quantities involved are:

F; - body forces per unit mass
R; - surface forces per unit area
pu; - momentum per unit volume



Figure 1.7: Momentum balance for fluid element

Figure 1.8: Surface force and unit normal.

We can put the momentum conservation in integral form as follows

D

V(t) V(t) S(t)

Using Reynolds transport theorem this can be written

D’U,i

th dV = /pFldV'i‘/RldS
V(t) V(t) S(t)

which is Newtons second law written for a volume of fluid: mass - acceleration = sum of forces. To
proceed R; must be investigated so that the surface integral can be transformed to a volume integral. In
order to do that we have to define the stress tensor.

The stress tensor

Remove a fluid element and replace outside fluid by surface forces as in figure 1.7. Here R(n) is the surface
force per unit area on surface dS with normal n, see figure 1.8. Momentum conservation for the small fluid
particle leads to

D’U,l'
"Dt

J

dSdl = pF;dSdl + R; (”3) dS + R; (nEI) ds + Z R; (nl‘”(’“)) As® di
k
Letting dl — 0 gives

0= R; (n}) dS+ R; (n}) dS

Now n; = nE = —n;-l which leads to

R (n;) = —Ri (—ny)

implying that a surface force on one side of a surface is balanced by an equal an opposite surface force
at the other side of that surface. Note that it is a general principle that the terms proportional to the
volume of a small fluid particle approaches zero faster than the terms proportional to the surface area of
the particle. Thus the surface forces acting on a small fluid particle has to balance, irrespective of volume
forces or acceleration terms.
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Figure 1.9: Definition of surface force components on a surface with a normal in the 1-direction.
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Figure 1.10: Definition of surface force components on a surface with a normal in the 2-direction.

We now divide the surface forces into components along the coordinate directions, as in figures 1.9 and
1.10, with corresponding definitions for the force components on a surface with a normal in the 3-direction.

Thus, T;; is the i-component of the surface force on a surface dS with a normal in the j-direction.
Consider a fluid particle with surfaces along the coordinate directions cut by a slanted surface, as in

figure 1.11. The areas of the surface elements are related by
de =e€;- ndS = Uz ds
where dS is the area of the slanted surface. Momentum balance require the surface forces to balance
in the element, we have
0= Rl ds — T11n1 ds — T12n2 ds — T13n3 ds
which implies that the total surface force R; can be written in terms of the components of the stress

tensor T;; as
Ri = Tiany + Tigng + Tigng = Tijn;

€2

4
'
'

1

€1

dS;
dSs

€3
Figure 1.11: Surface force balance on a fluid particle with a slanted surface.



Here the diagonal components are normal stresses off-diagonal components are shear stresses.
Further consideration of the moment balance around a fluid particle show that 7}; is a symmetric tensor,
ie.

Ty =Ty

Momentum equation

Using the definition of the surface force in terms of the stress tensor, the momentum equation can now be
written

Du; oty
/th av = /pFZdV—i—/TUanS— / [sz-i-axj:| av
V(t) Vi(t) S(t) V(1)

The volume is again arbitrary implying that the integrand must itself equal zero. We have

th =phit al'j

Pressure and viscous stress tensor

For fluid at rest only normal stresses present otherwise fluid element would deform. We thus divide the
stress tensor into an isotropic part, the hydrodynamic pressure p, and a part depending on the motion of
the fluid. We have

p
Tij = —pdij + 7ij
hydrodynamic pressure, directed inward
viscous stress tensor, depends on fluid motion

p -
Tij -

Newtonian fluid

It is natural to assume that the viscous stresses are functions of deformation rate e;; or strain. Recall that
the invariant symmetric parts are

..fl aui_Fa’U/j 2% .. +1%5
€ = 2\0z; Ox; 30z, * 39z,

€ij €ij

where €;; is the volume constant deformation rate and aj is the uniform rate of expansion. For an
isotropic fluid, the viscous stress tensor is a linear function of the invariant parts of e;;, i.e.

Tij = Aeij + 214Ei;
where we have defined the two viscosities as

@ (T):  dynamic viscosity (here T is the temperature)
A(T):  second viscosity, often=0

For a Newtonian fluid, we thus have the following relationship between the viscous stress and the strain
(deformation rate)

9,5 Ou; ~ Ouj 2 0u,
Tij = 2€55 = —— t 55— — 55750
’ Heig = H oxr; Ox; 30x,. "
which leads to the momentum equation

Dus_ 0p , 0 [ (Du 0y 200 ], o
"Dt Ox; Ox;j a ox; Ox; 30x,. "7 P




1.5 Energy equation

The energy equation is a mathematical statement which is based on the physical law that the rate of change
of energy in material particle = rate that energy is received by heat and work transfers by that particle.
We have the following definitions

p [e + %uzul] dV  energy of particle, with e the internal energy

pu; F; dV work rate of F; on particle
————

force - velocity
u; R; dS work rate of R; on particle

n;q; d.S heat loss from surface, with ¢; the heat flux vector, directed outward

Using Reynolds transport theorem we can put the energy conservation in integral form as

D 1 0
Dt / P [6 + 5%‘%} dV = / pFiu; dV + / [niTijuj — nigi] S = / [pFiUi Ry (Tiju; —qi)| AV
T4
V(t) V(t) S(t) V(t)

Compare the expression in classical mechanics, where the momentum equation is mu = F and the
associated kinetic energy equation is

5 % (uru) = F-u
work rate = force - velocity
( work = force - dist. )

From the integral energy equation we obtain the total energy equation by the observation that the
volume is arbitrary and thus that the integrand itself has to be zero. We have

D 1 0 9] 0q;
PDi (6 + iuiui) = pFiu; — oz, (pui) + ErR (Tijuz) — Ere
The mechanical energy equation is found by taking the dot product between the momentum equation

and u. We obtain
D /1 Op 0Ti;
P i <§Uzuz> = pFiu; — Ui G +u; 81:5
Thermal energy equation is then found by subtracting the mechanical energy equation from the total
energy equation, i.e.

De  Ou Ou;  Og;

"Dt = Pz oz, om

The work of the surface forces divides into viscous and pressure work as follows

B 0 (pui) = - ou; B Op
8561' b o pa:cz i 8171
O] ®

Dy O Oy

8171' Tijti = T 8CCJ‘ Ui 8561

where following interpretations can be given to the thermal and the mechanical terms

D: thermal terms
( force - deformation ): heat generated by compression and viscous dissipation
®: mechanical terms
( velocity - force gradients ): gradients accelerate fluid and increase kinetic energy



The heat flux need to be related to the temperature gradients with Fouriers law

_or
Kal'i

where k = k (T') is the thermal conductivity. This allows us to write the thermal energy equation as

qi =

= )
th pazi + + 8:61 Kaﬁci

where the positive definite dissipation function @ is defined as

Ou; 1 [ Ouy 2
@ = Z"—:2 i'i'__
TJB:Ej ,ulejej 3<8wk>]
18uk 2
= 2 ij — 57— 0ij
,u<ej 36mk53> >0

Alternative form of the thermal energy equation can be derived using the definition of the enthalpy

De Ou; 0 ( (9T)

hze—&—]—?
p
‘We have

Dh  De 1Dp p Dp
Dt Dt pDt p> Dt
~~

which gives the final result

Dh  Dp e 0 oT
th - Dt 6:101- Hal'i

To close the system of equations we need a

i)  thermodynamic equation e=e(T,p) simplest case: e =c,T or h=c,T

ii) equation of state p = pRT

where ¢, and ¢, are the specific heats at constant volume and temperature, respectively. At this time
we also define the ratio of the specific heats as
C_P

’y:
Co

1.6 Navier-Stokes equations

The derivation is now completed and we are left with the Navier-Stokes equations. They are the equation
describing the conservation of mass, the equation describing the conservation of momentum and the equation
describing the conservation of energy. We have

Dp | O0ux _,
Dt pal'k B
Dui 8]) 8Tij
p Dt 6:101- + 6£Ej + p
De ou; 0 ( 3T)

= _—_p— [0)) - -
th p@:vi + + 6:51 Hal'i

where



6ui

o ou; n ou; 2 8uT5__
T = M Ox; Oz; 30z, *

and the thermodynamic relation and the equation of state for a gas

e=e(T,p)
p = pRT

We have 7 equations and 7 unknowns and therefore the necessary requirements to obtain a solution of
the system of equations.

unknown equations

p 1 continuity 1
U; 3 momentum 3
P 1 energy 1
e 1 thermodyn. 1
T 1 gas law 1

2.7 2.7

Equations in conservative form
A slightly different version of the equations can be found by using the identity

Dtij_g(t“)_’_i( t“)
P Dt - ot Plij 8Ik Uk Plij

to obtain the system

op 0

? : O (u(;p) - 19) 0

Zpus) - 2 N _9P Tij ,
8t (pUl) + 8Ik (pUkUl) 8171 + 817]' + sz

2 e—i—lu-u- +i U e—i—lu-u- = Fu—i(u)—l-i(Tu)—l—i H(?T
ot 2 ) T g [P gUitli )| = pritti = g W) T g T T 5\ on,

These are all of the form
a_U_;’_aG(i)—J 6_U+6_G+6_G+6_G_
ot dx; ot Ox dy 8z

where

U = (p, pus, pus, pus, p (e + i /2))"

is the vector of unknowns,

J = (0, pF1, pFy, pF, pu; F;)"
is the vector of the right hand sides and

PG
_ puit; + pori — Tii
GO = | pugu; 4 pdai — 7o

pusu; + pdzi — T3i
p (e +uu;/2) u; + pu; + Kg—g; — ;T

is the flux of mass, momentum and energy, respectively. This form of the equation is usually termed
the conservative form of the Navier-Stokes equations.



1.7 Incompressible Navier-Stokes equations

The conservation of mass and momentum can be written

Dp ou;
= =0
Dui 8]) 8Tij

th 6£Ei+6$j +P

(o ow 20w
Tig =M Ox;  Oxz; 3 0uy *

for incompressible flow p = constant, which from the conservation of mass equation implies

8’&1'

6:@»
implying that a fluid particle experiences no change in volume. Thus the conservation of mass and
momentum reduce to

du; Ou; B 1 0p

j =— V2u; + F;
gt +u‘78:cj p(?:ci—H/ ui
ui g
8171'

since the components of the viscous stress tensor can now be written

8 8UZ 8’&]' 2 8uk - 8211,1' - 2
9, <amj * 5 30w, ) = Dmyom, Vv

We have also introduced the kinematic viscosity, v, above, defined as

v=pu/p

The incompressible version of the conservation of mass and momentum equations are usually referred
to as the incompressible Navier-Stokes equations, or just the Navier-Stokes equations in case it is evident
that the incompressible limit is assumed. The reason that the energy equation is not included in the
incompressible Navier-Stokes equations is that it decouples from the momentum and conservation of mass
equations, as we will see below. In addition it can be worth noting that the conservation of mass equation
is sometimes referred to as the continuity equation.

The incompressible Navier-Stokes equations need boundary and initial conditions in order for a solution
to be possible. Boundary conditions (BC) on solid surfaces are u; = 0. They are for obvious reasons usually
referred to as the no slip conditions. As initial condition (IC) one needs to specify the velocity field at the
initial time u; (t = 0) = u?. The pressure field does not need to be specified as it can be obtained once the
velocity field is specified, as will be discussed below.

Integral form of the Navier-Stokes eq.

We have derived the differential form of the Navier-Stokes equations. Sometimes, for example when a
finite-volume discretization is derived, it is convenient to use an integral form of the equations.

An integral from of the continuity equation is found by integrating the divergence constraint over a
fixed volume Vr and using the Gauss theorem. We have

T
\%4 S

An integral form of the momentum equation is found by taking the time derivative of a fixed volume
integral of the velocity, substituting the differential form of the Navier-Stokes equation, using the continuity
equation and Gauss theorem. We have

9 ou; . 9] 1 dp 0?u; B
Vr VF Ve

— / 6_% {ujui + ;péij — l/a—x]:| dV = —/ |:’U,1'anj + ;nz — I/%jnj] dS
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Figure 1.12: Examples of length, velocity and temperature scales.

Note that the integral from of the continuity equation is a compatibility condition for BC in incom-

pressible flow.

Dimensionless form

It is often convenient to work with a non-dimensional form of the Navier-Stokes equations. We use the
following scales and non-dimensional variables

4 t* F = = = E— g
T L “TU YT 0z Lowr ot Lot

_% % Ujg % P 0 1 0 6_U06

where * signifies a non-dimensional variable. The length and velocity scales have to be chosen appropri-
ately from the problem under investigation, so that they represent typical lengths and velocities present.
See figure 1.12 for examples.

If we introduce the non-dimensional variables in the Navier-Stokes equations we find

U_02 ouy Us ,0uf _po Op* | vl 0?u}

L o LYo pLow; | I 0x0s
Up Ou 0
L oxr

K3

Now drop * as a sign of non-dimensional variables and divide through with U2 /L, we find

du; Ou; po Op |
i . - _ ——V?u,;
ot +u] 8Ij pUg 8171 + UOL u
8ui

=0
8171'

We have defined the Reynolds number Re as

UL UZ/L “inertial forces”
v vUy/L? “viscous forces”

Re =

which can be interpreted as a measure of the inertial forces divided by the viscous forces. The Reynolds
number is by far the single most important non-dimensional number in fluid mechanics. We also define the

pressure scale as

po = pUj

which leaves us with the final form of the non-dimensional incompressible Navier-Stokes equations as

8ui+u_8ui7 Op 1
ot 70x;  Ox;  Re
8ui
8CCZ'

=0



Non-dimensional energy equation

We stated above that the energy equation decouple from the rest of the Navier-Stokes equations for in-
compressible flow. This can be seen from a non-dimensionalization of the energy equation. We use the
definition of the enthalpy (h = ¢,T') to write the thermal energy equation as

DT Dp

- = 2
Py Dt—i—@—&-/iVT
and use the following non-dimensional forms of the temperature and dissipation function
T-T, L?
T"= —— = _——0
Ty —To Udu
This leads to
DT* U? Dp*
Dt* pUoL  pcy cp (Tw —To) | Dt pUoL
1 1 2 U2 Dp* 1
Re Pr +cp(TW—T0) (Dt*+R )
—_———
]\4@2L
cp(Tw—Tp)

U
where ag speed of sound in free-stream and Ma = =Y is Mach number. We now drop * and let Ma — 0

ag
to obtain
DT 1 1 9
AV
Dt Re Pr v
where the Prandtl number Pr = “—;p, which takes on a value of ~ 0.7 for air.

As the Mach number approaches zero, the fluid behaves as an incompressible medium, which can be
seen from the definition of the speed of sound. We have

Y 1 dp
ap = —, Q= —-=

po pOp|p

where « is the isothermal compressibility coefficient. If the density is constant, not depending on p, we
have that o — 0 and ag — oo, which implies that Ma — 0.

1.8 Role of the pressure in incompressible flow

The role of the pressure in incompressible flow is special due to the absence of a time derivative in the
continuity equation. We will illustrate this in two different ways.

Artificial compressibility

First we discuss the artificial compressibility version of the equations, used sometimes for solution of the
steady equations. We define a simplified continuity equation and equation of state as

—_— = d =
ot Tog, 0 md p=hp
This allows us to write the Navier-Stokes equations as
Ju; 0 Op 1,
— (uju;)) = — — V7 u;
ot * O0x; (ujus) Ox; * Re ' "
4 - 0
ot o,
Let
p Pu , pu pw
| u p+u _ U . uw
i €= U f= p+ v2 &= vw
w uw vw p+ 3



be the vector of unknowns and their fluxes. The Navier-Stokes equations can then be written

Ou oOde of O0g 1 _,
8t+8:c+8y 82’_ReVDu

oo —+A—+B—+C— ==V?Du
X R

where the matrices above are defined

0 B 00 00 B8 0
Oe 1 20 0 0 of 0 v uw O
A‘%_ 0 v w 0 ’B_% 1 0 20 0
0 w 0 wu 0 0 w v
00 0 3 0000
og 0 v u 0 0100
C_%_ 102 0"P=l00 1 0
0 0 w v 00 0 1

the eigenvalues of A, B, C are the wave speeds of plane waves in the respective coordinate directions,
they are

(u,u,u:l: u2+,6), (v,v,v:t v2+,8) and (w,w,w:ﬁ:\/wQ——i-,@)

Note that the effective acoustic or pressure wave speed ~ /3 — oo for incompressible flow.

Projection on a divergence free space

Second we discuss the projection of the velocity field on a divergence free space. We begin by the following
theorem.

Theorem 1. Any w; in § can uniquely be decomposed into

Ip
W=t o
where Ou; =0, wu;-n;=0 on 0.
6:@»

i.e. into a function wu; that is divergence free and parallel to the boundary and the gradient of a function,
here called p.

Proof. We start by showing that u; and (f P

is orthogonal in the Lo inner product.
T

op\ Ip B a B e
<u17 8_:vz> = /uza—xl dV = / oz, (ugp) AV = jlépumZ dS=0
Q Q

[219]

The uniqueness of the decomposition can be seen by assuming that we have two different decompositions
and showing that they have to be equivalent. Let

(1) ap2
o Op
wi = U+ ox; Ut ox;

The inner product between

u® @y ai (P -5®)  and o~
;

gives

0
0= / {(uz(-l) - u§2))2 + (ugl) - ugz)) O, (p(l) —p(2))} dV = ! (ugl) - ul@))2 dv

Q

Thus we have



Gradient fields

Divergence free vectorfields // to boundary
Figure 1.13: Projection of a function on a divergence free space.

We can find an equation for a p with above properties by noting that

ow; 0
Vip = Wi in Q with @ _ w;n; on Of)
8$i on
has a unique solution. Now, if
i 7 6$i
we have
_Oui 0w p 0 — e P
dx; Ox; Ox;0x; T T O
O
. . Op
To sum up, to project w; on divergence free space let w; = u; + 3
Zq
ow; dp
1) solve for p: =V?, —=0
) solve for p 92, P o
Jp
2) let i = W; —
) let u; = w oz,

This is schematically shown in figure 1.13. Note also that (w; — u;) Lu;.

Apply to Navier-Stokes equations

Let P be orthogonal projector which maps w; on divergence free part u;, i.e. Pw; = u;. We then have the
following relations

Jp
i = Pw; + ——
w. w+8xi

Ip
8$i
Applying the orthogonal projector to the Navier-Stokes equations, we have

ou; op\ ‘8ui i 2

J

IF’ui = Uj, P =0

Now, w; is divergence free and parallel to boundary, thus



6ui - 6ui
ot ot

However,

PV2u; # VZu,

since V2u; need not be parallel to the boundary. Thus we find an evolution equation without the
pressure, we have

Ou; Ou; 1
i Pl —u. % _VQ .
ot K O0x; * Re' "

wq

The pressure term in the Naiver-Stokes equations ensures that the right hand side w; is divergence free.
We can find a Poisson equation for the pressure by taking the divergence of w;, according to the result
above. We find

i —u; 6ui + iv2u1 6’11,]' 8ul
8171' :

2, - —
v p= 8CCJ‘ Re 8171 8CCj

wq

thus the pressure satisfies elliptic Poisson equation, which links the velocity field in the whole domain
instantaneously. This can be interpreted such that the information in incompressible flow spreads infinitely
fast, i.e. we have an infinite wave speed for pressure waves, something seen in the analysis of the artificial
compressibility equations.

Evolution equation for the divergence

It is common in several numerical solution algorithms for the Naiver-Stokes equations to discard the diver-
gence constraint and instead use the pressure Poisson equation derived above as the second equation in the
incompressible Naiver-Stokes equations. If this is done we may encounter solutions that are not divergence
free.

Consider the equation for the evolution of the divergence, found by taking the divergence of the mo-
mentum equations and substituting the Laplacian of the pressure with the right hand side of the Poisson

equation. We have
2 8’&1 _ LVQ 8uz
ot \ Oz; Re ox;

Thus the divergence is not automatically zero, but satisfies a heat equation. For the stationary case the
solution obeys the maximum principle. This states that the maximum of a harmonic function, a function
satisfying the Laplace equation, has its maximum on the boundary. Thus, the divergence is zero inside the
domain, if and only if it is zero everywhere on the boundary.

Since it is the pressure term in the Navier-Stokes equations ensures that the velocity is divergence free,
this has implications for the boundary conditions for the pressure Poisson equation. A priori we have none
specified, but they have to be chosen such that the divergence of the velocity field is zero on the boundary.
This may be a difficult constraint to satisfy in a numerical solution algorithm.







Chapter 2

Flow physics

2.1 Exact solutions

Plane Pouseuille flow - exact solution for channel flow

The flow inside the two-dimensional channel, see figure 2.1, is driven by a pressure difference py—p; between
the inlet and the outlet of the channel. We will assume two-dimensional, steady flow, i.e.

0]

Z -0

at
and that the flow is fully developed, meaning that effects of inlet conditions have disappeared. We have

U3:0

uy = u (z2), us =ug (x2)

The boundary conditions are u; = ug = 0 at xo = +h. The continuity equation reads

0
= % L0 _
8.172 €T3 B

where the first and the last term disappears due to the assumption of two-dimensional flow and that
the flow is fully developed. This implies that uys = C' = 0, where the constant is seen to be zero from the
boundary conditions.

The steady momentum equations read

Ou;  0Op 9
g —|—ng2— (?91'1+MVU1
2 __ OD 2.
Pg 2+ pu 202, Oy + uV:uz — pg

pULZ—

which, by applying the assumptions above, reduce to
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[ F. | i h
Po > p1 P1 | > T

Figure 2.1: Plane channel geometry.
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Figure 2.2: Volume of fluid flowing through surface dS in time At

The momentum equation in the zo-direction (or normal direction) implies

dp dP
= —pgxo + P (x = @ — =——
p = —pgas + P (z1) 0 da
showing that the pressure gradient in the z;-direction (or streamwise direction) is only a function of
1. The momentum equation in the streamwise direction implies

0= dpP L d?uy
T dn H d:c%
Since P (x1) and uy (z2) we have
d? 1 dP
?u%l = L dn = const. (independent of 1, x2)
We can integrate u; in the normal direction to obtain
1 dP ,
= —— C C
U1 2 d x5 + Crae + Co

The constants can be evaluated from the boundary conditions uy (+h) = 0, giving the parabolic velocity

profile
h? dP ) (xz )2
Ul = — « — — J—
! 2 dxy h
Evaluating the maximum velocity at the center of the channel we have
B h? dP
Umax = 2M dZCl

if flow is in the positive x1-direction. The velocity becomes

U Z2\2
e
umaX h

Flow rate

From figure 2.2 we can evaluate the flow rate as dQQ = u-ndS. Integrating over the channel we find

h 3
2h dP 4
Q= /umi dS = {channel} = /_h uy dzy = _E B ghumax
s
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Figure 2.3: Stokes instantaneously plate.
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‘Wall shear stress

The wall shear stress can be evaluated from the velocity gradient at the wall. We have

~ dur 2p Upax - T2
T12 = T21 —,Md—m = _T
implying that
_ _ 2Mumax
Twall = T|y, )y =~

Vorticity

The vorticity is zero in the streamwise and normal directions, i.e. w3 = we = 0 and has the following
expression in the zg-direction (or spanwise direction)
Ous  Oug duq 2Umax * L2

R PO P P

Stokes 1:st problem: instantaneously started plate

Consider the instantaneously starting plate of infinite horizontal extent shown in figure 2.3. This is a time
dependent problem where plate velocity is set to u = ug at time t = 0. We assume that the velocity can be

written u = u(y,t) which using continuity and the boundary conditions imply that normal velocity v = 0.
The momentum equations reduce to

ou 10p 0%u
— = =4
ot p Oz Oy?
190p
0 = ————g
p Oy
The normal momentum equation implies that p = —pgy + pg, where pg is the atmospheric pressure at

the plate surface. This gives us the following diffusion equation, initial and boundary conditions for u

ou 0u
E v
u(y,0) = 0 0<y<oo
u(0,t) = wg t>0
u(oo,t) = 0 t>0

We look for a similarity solution, i.e. we introduce a new dependent variable which is a combination of
y and t such that the partial differential equation reduces to an ordinary differential equation. Let



fy=— n=C-y-t*

where C and b are constants to be chosen appropriately. We transform the time and space derivatives
according to

0 on d p—1 @
- T ottt
ot ot dn Cby dn
0 on d p d
— = 1= o=
dy dy dn ¢ dn
8_2 — OQthd_Q
Oy> dn?

If we substitute this into the equation for v and use the definition of 7, we find an equation for f
17} d?
btiln—f = Z/C'Qth—f
dn dn?

where no explicit dependence on y and ¢ can remain if a similarity solution is to exist. Thus, the
coefficient of the two n-dependent terms have to be proportional to each other, we have

bt = kv C?20

where k is a proportionality constant. The exponents of these expressions, as well as the coefficients in
front of the t-terms have to be equal. This gives

1 1
b = —— O =
2 V—2kv
We choose k = —2 and obtain the following
Y

ff+2mf'=0  n=

where ' = d%. The boundary and initial conditions also have to be compatible with the similarity
assumption. We have
u(y, 0 u(0,t u(oo, t
WO _ jogy=0 M0 _poy=1 MU g =g
U U Uug

This equation can be integrated twice to obtain

T
sz’l/ €Ed§+c’2
0

Using the boundary conditions and the definition of the error-function, we have

f=1- %/(Jne£2d£ =1 —erf(n)

This solution is shown in figure 2.4, both as a function of the similarity variable  and the unscaled
normal coordinate y. Note that the time dependent solution is diffusing upward.

From the velocity we can calculate the spanwise vorticity as a function of the similarity variable n and
the unscaled normal coordinate y. Here the maximum of the vorticity is also changing in time, from the
infinite value at ¢ = 0 it is diffusing outward in time.

ov  Ou (-
W3 =W, == — — = e

dr Oy mut

The vorticity is shown in figure 2.5, both as a function of the similarity variable n and the unscaled
normal coordinate y. Note again that the time dependent solution is diffusing upward.

2.2 Vorticity and streamfunction

Vorticity is an important concept in fluid dynamics. It is related to the average angular momentum of a
fluid particle and the swirl present in the flow. However, a flow with circular streamlines may have zero
vorticity and a flow with straight streamlines may have a non-zero vorticity.



Figure 2.4: Velocity above the instantaneously started plate. a) U as a function of the similarity variable
n. b) U(y,t) for various times.
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Figure 2.5: Vorticity above the instantaneously started plate. a) w.v/mvt/ug as a function of the similarity
variable 7. b) w.(y,t) for various times.

Vorticity and circulation

The vorticity is defined mathematically as the curl of the velocity field as

w=Vxu
In tensor notation this expression becomes
3uk
Wi = €ijk 35—
J 6£Ej

Another concept closely related to the vorticity is the circulation, which is defined as

FZ% uidxi:% uitids
C C

In figure 2.6 we show a closed curve C. Using Stokes theorem we can transform that integral to one over

the area S as 5
I'= / eijkniﬂdS:/wmi ds
s D s
This allows us to find the following relationship between the circulation and vorticity dI' = w;n; dS, which

can also be written
dr

ds
Thus, one interpretation is that the vorticity is the circulation per unit area for a surface perpendicular to
the vorticity vector.

= Wwiny

Ezample 1. The circulation of an ideal vortex. Let the azimuthal velocity be given as ug = C'/r. We can
calculate the circulation of this flow as

2
FZ%UQT‘dHZC/ do = 27 C
c 0

Thus we have the following relationship for the ideal vortex

T
ug = ——
o 2mr



Figure 2.6: Integral along a closed curve C with enclosed area S.

The ideal vortex has its name from the fact that its vorticity is zero everywhere, except for an infinite value
at the center of the vortex.

Derivation of the Vorticity Equation

We will now derive an equation for the vorticity. We start with the dimensionless momentum equations.

We have 5 9 5 )
gui O 9P L 2,
ot U Oz ox; + Rev i

We slightly modify this equation by introducing the following alternative form of the non-linear term

8ui 0 1 4
Uy = — | su;u; €ijkWjilL
Jaxj dx; \2 9 gk Uk

this can readily be derived using tensor manipulation. We take the curl (epq —82 ) of the momentum
q
equations and find

9] Ou; o 1 0 o 1 ou;
ot <€pqi Oz > - <§uﬂ'“j> + €pgim — (€ijrwjur) = P Vi —
q

ot P D, 01 01, TP 92,0 | Re P 9z,

The second and the fourth terms are zero, since €,4; is anti-symmetric in ¢, ¢ and dz,0x; is symmetric in
iq
o2
€ — =
P 9w, 0
The first term and the last term can be written as derivatives of the vorticity, and we now have the following

from of the vorticity equation
ow 0 1,
B T epqia—%(@jkw‘juk) ==V

Re
The second term in this equation can be written as

0 0 0 0
€ipg€ijk 7— (Wjtk) = (Opjdgk — Opkdy;) 57— (wiuk) = m— (wpur) — 7—(wjup) =
ipg Ukazq( iuk) = (Opj Ok Pk ‘”)axq( iUk) 3zk( pUk) 3zj( jUp)
Owp, Ouy, Ow; Ouyp
Uy o F Wpm— — Upo— — Wj o —
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) 2
Due to continuity % = equ% =0 and we are left with the relation
J J P
Owp Ouy,
€ipg€ijk 5— (Wjlk) = Up5— — Wj=—
ipgCijk 3zq( JUk) ka:ck ]3Ij

Thus, the vorticity equation becomes

Owp, Owp, Ou, 1 _,
et 4 i s AR v/
at Oxy, s Ox; * Re ' P

or written in vector-notation



Components in Cartesian coordinates

In cartesian coordinates the components of the vorticity vector in three-dimensions become

ST G (ow _ovY (0w dw\ (O Du
w_aifi’fj_ay 9z )" 9z oz )Y oz 3yez

For two-dimensional flow it is easy to see that this reduces to a non-zero vorticity in the spanwise direction,
but zero in the other two directions. We have

9] 0
we =0, wy =0, wz——v——u

0x Oy

This simplifies the interpretation and use of the concept of vorticity greatly in two-dimensional flow.

Vorticity and viscocity

There exists a subtle relationship between flows with vorticity and flows on which viscous forces play a
role. It is possible to show that

V Xw #0 <= viscous forces # 0

This means that without viscous forces there cannot be a vorticity field in the flow which varies with the
coordinate directions. This is expressed by the following relationship

8Tij 2 (?wk
6£Ej H Y Heijk al'j
This can be derived in the following manner. We have
P A
HEijk 817]' - HEijk€kmn 817]' 8CCm n
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Terms in the two-dimensional vorticity equation
In two dimensions the equation for the only non-zero vorticity component can be written

8w3 8w3 aLU3 - 2
8t + “ 8171 + 2 8562 o I/v ws

We will take two examples elucidating the meaning of the terms in the vorticity equation. First the diffusion
of vorticity and second the advection or transport of vorticity.

Ezxample 2. Diffusion of vorticity: the Stokes 1st problem revisited.
From the solution of Stokes 1st problem above, we find that the vorticity has the following form

W3 = Wy :w(y7t)

and that it thus is a solution of the following diffusion equation

ow 0w
i
ot oy?
The time evolution of the vorticiy can be seen in figure 2.7, and is given by
w= 2 e_”2, where 1 = g

vt 2\/vt

where the factor /vt can be identified as the diffusion length scale, where we have used the following
dimensional relations )
L
M= W=T = =L



Figure 2.7: A sketch of the evolution of vorticity in Stokes 1st problem.
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Figure 2.8: Stagnation point flow with a viscous layer close to the wall.

In this flow the streamlines are straight lines and therefore the non-linear term, or the transport/advection
term, is zero. We now turn to an example where the transport of vorticity is important.

Ezample 3. Transport/advection of vorticity: Stagnation point flow.

The stagnation point flow is depicted in figure 2.8, and is a flow where a uniform velocity approaches a
plate where it is showed down and turned to a flow parallel two the plates in both the positive and negative
z-direction. At the origin we have a stagnation point.

The inviscid stagnation point flow is given as follows

o U =cr Jdv  Ou
inviscid: = wy=w=—-——=0
{ v=—cy Oxr Oy
Note that this flow has zero vorticity and that it does not satisfy the no-slip condition (v = v = 0,y = 0).
In order to satisfy this condition we introduce viscosity, or equally, vorticity. Thus close to the plate we
have to fulfill the equation
Ow Ow Pw  Pw
o = (5 5)
The two first terms represent advection or transport of vorticity. We will try a simple modification of the
inviscid flow close to the boundary, which is written as

Lo

This satisfies the continuity equation, and will be zero on the boundary and approach the inviscid flow far
above the plate if we apply the following boundary conditions

{u—v—(), y=20

U X CT, VX —CcYy, Y — 00

The vorticity can be written w = —z f”(y). We introduce this and the above definitions of the velocity
components into the vorticity equation, and find

_f/f// + ff/// + Vf//// — 0
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Figure 2.9: Solution to the non-dimensional equation for stagnation point flow. F' is proportional to the
normal velocity, F’ to the streamwise velocity and F” to the vorticity.

The boundary conditions become
{f—f—o y=0

focey, floce, y—o0

An integral to the equation exists, which can be written
f?—ff"—vf” = K = {evaluate y — oo} = ¢*

This is as far as we can come analytically and to make further numerical treatment simpler we make the
equation non-dimensional with v and c¢. Note that they have the dimensions

~
[ V)
—

[V]Z?a [C]ZT

and that we can use the length scale \/v/c and the velocity scale \/vc to scale the independent and the
dependent variables as

<

~

A

=
Q

F(n) =

H

This results in the following non-dimensional equation
F/2 _FF"_F" =1

with the boundary conditions
F=F'=0, n=0
F o, 17— 00

In figure 2.9 a solution of the equation is shown. It can be seen that diffusion of vorticity from the wall
is balanced by transport downward by v and outward by u. The thin layer of vortical flow close to the wall

has the thickness ~ \/v/c.

Stretching and tilting of vortex lines

In three-dimensions the vorticity is not restricted to a single non-zero component and the three-dimensional
vorticity equation governing the vorticity vector becomes

Owi o Owi  Oui 1 o
ot i ox; “i Ox;  Re wi
N—_——

advection of vorticity diffusion of vorticity
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Figure 2.10: A closed material curve.

The complex motion of the vorticity vector for a full three-dimensional flow can be understood by an
analogy to the equation governing the evolution of a material line, discussed in the first chapter. The
equation for a material line is

D Ouy;

—dr; = dry

Dt T B,

Note that if we disregard the diffusion term, i.e. the last term of the vorticity equation, the two equations
are identical. Thus we can draw the following conclusions about the development of the vortex vector

i) Stretching of vortex lines (line || w) produce w; like stretching of dr; produces length

ii) Tilting vortex lines produce w; in one direction at expense of w; in other direction

Helmholz and Kelvin’s theorems

The analogy with the equation for the material line directly give us a proof of Helmholz theorem. We have
Theorem 1. Helmholz theorem for inviscid flow: Vortex lines are material lines in inviscid flow.
A second theorem valid in inviscid flow is Kelvin’s theorem.

Theorem 2. Kelvin’s theorem for inviscid flow: Circulation around a material curve is constant in inviscid
flow.

Proof. We show this by considering the circulation for a closed material curve, see figure 2.10,

Fm = % Uj dTi
C(t)

We can evaluate the material time derivative of this expression with the use of Lagrangian coordinates
as follows

DTy, D
—_— = - U; d’l’i

Dt Dt Jou

Lagrange coordinates
= { BomED =i
= ri(af,1) = ri(2f(m),1)

B E% i
gL

The last term of this expression will vanish since

o ([ Or; Ouy; _ 0 1 _
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Figure 2.11: A streamline which is tangent to the velocity vector.

Thus we find the following resulting expression

Dr,, Du;
Dt Jow Dt

dTi

Op 1 s
»%C(t) |: 6:51 Re

1
—7{ V2ui dr; — 0, Re — ¢
Re C(t)

Which shows that the circulation for a material curve changes only if the viscous force # 0 O

Streamfunction

We end this section with the definition and some properties of the streamfunction. To define the stream-
function we need the streamlines which are tangent to the velocity vector. In two dimensions, see figure
2.11, we have

d d d
ot 2% udy —vdz =0
dy v U v
and in three dimensions we can write
dr  dy dz
v v w

For two-dimensional flow we can find the streamlines using a streamfunction. We can introduce a
streamfunction ¢ = ¢(x,y) with the property that the streamfunction is constant along streamlines. We
can make the following derivation

oY oY
dy = —d —d
v oz " + dy Y
= assume u = 8_1/}7 v = _8_1/} and check for consistency
Jy ox
udy —vdz
0, on streamlines

We can also quickly check that the definition given above satisfies continuity. We have

u 00w v
or Oy 0xdy Oydr

Another property of the streamfunction is that the volume flux between two streamlines can be found
from the difference by their respective streamfunctions. We use figure 2.12 and figure 2.13 in the following
derivations of the volume flux:
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Figure 2.13: The normal vector to a line element.
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2.3 Potential flow

Flows which can be found from the gradient of a scalar function, a so called potential, will be dealt
with in this section. Working with the velocity potential, for example, will greatly simplify calculations,
but also restrict the validity of the solutions. We start with a definition of the velocity potential, then
discuss simplifications of the momentum equations when such potentials exist, and finally we deal with
two-dimensional potential flows, where analytic function theory can be used.

Velocity potential

Assume that the velocity can be found from a potential. In three dimensions we have

_ 99

C_ v/
Us; oz, or u 10}
with the corresponding relations in two dimensions
o¢
U =
Ox
9¢
vo=
dy

There are several consequences of this definition of the velocity field.



i) Potential flow have no vorticity, which can be seen by taking the curl of the gradient of the velocity
potential, i.e.
- 8uk - (92(;5 -
Wi = eijk(?Tj = €ijkm =
ii) Potential flow is not influenced by viscous forces, which is seen by the relationship between viscous
forces and vorticity, derived earlier. We have

(9Tij 2 &uk
= uV2u = —ue i —2
8Ij BV UG HEijk 8CCJ‘

iii) Potential flow satisfies Laplace equation, which is a consequence of the divergence constraint applied
to the gradient of the velocity potential, i.e.
(?ui - 82(25

=V2p=0

Bernoulli’s equation

For potential flow the velocity field can thus be found by solving Laplace equation for the velocity potential.
The momentum equations can then be used to find the pressure from the so called Bernoulli’s equation.
We start by rewriting the momentum equation

ou; ou; 1 Op 9
ot e or; p Oz VI = gois

using the alternative form of the non-linear terms, i.e.

gukuk — €ijkU;WE

U5 = —
J
al'j 8:51

and obtain the following equation

+ ! +2y e 22
—UkU - x = €;ikU;W VE€;;
ot (%cl 2 kUE P grs3 ijkUjWk ijk

)

This equation can be integrated in for two different cases: potential flow (without vorticity) and sta-
tionary inviscid flow with vorticity.

i) Potential flow. Introduce the definition of the velocity potential u; = % into the momentum equation
above, we have

0 (99,1 4P s -0 =
oz, \ o " gUkUE 9%s ) =
99

P
3 ( +u§+u§)+;+gx3=f(t)

ii) Stationary, inviscid flow with vorticity. Integrate the momentum equations along a streamline, see
figure 2.14. We have

0 (1
/tia—mi (Eukuk + % +QI3> ds = /ngk ” ujwpds =0 =

(u? 4 ul 4 u3) + % + gx3 = constant along streamlines

N =

Thus, Bernoulli’s equation can be used to calculate the pressure when the velocity is known, for two
different flow situations.

Ezxample 4. Ideal vortex: Swirling stationary flow without vorticity. The velocity potential u = V¢ in
polar coordinates can be written

_ %
Ur = or
194

Ug =

r 00



Figure 2.14: Integration of the momentum equation along a streamline.

Figure 2.15: Streamlines for the ideal vortex.

The velocity potential satisfies Laplace equation, which in polar coordinates becomes

20y L0 (100 106
v¢_r6r r Or +r892_0

The first term vanishes since % = u, = 0. Integrate the resulting equation twice and we find
¢p=C0+D
The constant D is arbitrary so we can set it to zero. Using the definition of the circulation we find
C r
up = —, C=_—
r 2T

We can easily find the streamfunction for this flow. In polar coordinates the streamfunction is defined

_ 1oy
Ur = r 00
_o

He or

Note that the streamfunction satisfies continuity, i.e. V -u = 0. We use the solution from the velocity
potential to find the streamfunction, we have

9] r r

—7’[]:—— = wz—z—lnr

or 2nr 7T
The streamfunction is constant along streamlines resulting in circular streamlines, see figure 2.15
We can now use Bernoulli’s equation to calculate the pressure distribution for the ideal vortex as
1'\2

1
SUj+ P =P = P=Px~ 255

2

Note that the solution has a singularity at the origin.

Two-dimensional potential flow using analytic functions

For two-dimensional flows we can use analytic function theory, i.e. complex valued functions, to calculate
the velocity potential. In fact, as we will show in the following. Any analytic function represents a two-
dimensional potential flow.



We start by showing that both the velocity potential and the streamfunciton satisfy Laplace equation.
Velocity potential ¢ for two-dimensional flow is defined

uw = 2
- Oz
. 0
= %
Using the continuity equation gives
Ju  Ov
— =V =0
Oor By ¢=
The streamfunction v is defined
w =
dy
v = ¥
N Ox
By noting that potential flow has no vorticity we find
ov Oy 9
@ Or + dy v

Thus, both the velocity potential ¢ and the streamfunction ¢ satisfy Laplace equation.
We can utilize analytic function theory by introducing the complex function

F(Z) = ¢($7y) + “ﬁ(%y)

where
i0

z=1x+ iy =re* =r(cosf + isinf)

which will be denoted the complex potential.
We now recall some useful results from analytic function theory.

F'(z) exists and is unique <= F(z) is an analytic function

The fact that a derivative of a complex function should be unique rests on the validity of the Cauchy—
Riemann equations. We can derive those equations by requiring that a derivative of a complex function
should be the same independent of the direction we take the limit in the complex plane, see figure 2.16.
We have

L (F(z + A2) - F(2)]

F(z) = Al,;go Az
1
= zAl;,Hio ay [Py +AY) = oo y) + iv(e,y + Ay) = (e, y)]
% = g—j real part
=
8_1/) 1 8¢) = oY = —% imaginary part

Yor T i By or oy
Thus we have the Cauchy-Riemann equations as a necessary requirement for a complex function to be

analytic, i.e.
o 99 N
—=— and — =-——
dr Oy dy or
Using the Cauchy-Riemann equations we can show that the real ¢ and imaginary part v of the complex
potential satisfy Laplace equations and thus that they are candidates for identification with the velocity

potential and streamfunction of a two-dimensional potential flow. We have
o _ 0 (o0)_ 0 () _ &%
022 Oz \ Oy 8y or ) oy

Py D (0N 0 (d¢\ _ 0%
oy? ay(a_x>‘%(a_y)‘_@
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Figure 2.16: The complex plane and the definitions of analytic functions.

In addition to satisfying the Laplace equations, we also have to show that the Cauchy-Riemann equations
are consistent with the definition of the velocity potential and the streamfunciton. The Cauchy-Riemann
equations are

002
0xr Oy
o0 _
Oy Ox

which recovers the definitions of the velocity potential and the streamfunction. Thus any analytic complex
function can be identified with a potential flow, where the real part is the velocity potential and the
imaginary part is the streamfunction.

We can now define the complex velocity as the complex conjugate of the velocity vector since

dF  0¢ o
Wi=—=—+t—=u—1w
(2) dz Oz ox

It will be useful to have a similar relation for polar coordinates, see figure 2.17. In this case we have

U = Uy, cosf — ugsinf
v = U, sin @ + ug cos 0

W(2) = u—iv = [uy(r.6) — iug(r,6)] ¢ %

cos 0—isin @

We will now take several examples of how potential velocity fields can be found from analytic functions.

Example 5. Calculate the velocity field from the complex potential F = Ue~*z. The complex velocity
becomes

W(z)=F =Ue " =U(cosa — isina)
which gives us the solution for the velocity field in physical variables, see figure 2.18, as

u=Ucosa
v=Usino

Ezxample 6. Calculate the velocity field from the complex potential F = Az™. In polar coordinates the

complex potential becomes
Arme™® = Ar™ cos(nf) + i Ar™ sin(nf)

Thus the velocity potential and the streamfunction can be identified as

¢ = Ar™ cos(nd)
1 = Ar™ sin(nd)
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Figure 2.17: The definition of polar coordinates.
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Figure 2.18: Constant velocity at an angle o.
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U =0

Figure 2.19: Flow towards a corner.

U =0

Figure 2.20: Uniform flow over a flat plate.

and we can calculate the complex velocity as

W(z) = F =nAz"""
— nATn—leinGe—iG

nAr"[cos(nd) + isin(nd))e
This gives us the solution for the velocity in polar coordinates as

ur = nAr"! cos(nf)
up = —nAr"~1sin(nf)

This is a flow which approaches a corner, see figure 2.19. The streamfunction is zero on the walls and on
the stagnation point streamline. By solving for the zero streamlines we can calculate the angle between a

wall aligned with the x-axis and the stagnation point streamline. We have
k

Y =Ar"sin(nd) =0 = 0= =

n

Figure 2.20 shows the uniform flow over a flat plate which results when n = 1.
Figure 2.21 shows the stagnation point flow when n = 2. Here the analysis can be done in Cartesian
coordinates

F = A2
W(z) = F =24z
2A(z + 1y)
u=2Ax
= { v=—2Ay

Figure 2.22 shows the flow towards a wedge when 1 < n < 2. The velocity along the wedge edge (x axis
in figure 2.22) is
u, = nAr" tcos(nf) = {0 =0} = u = u, = nAr"t = Ca" !
The wedge angle is

2 -1
90:27r——7T:27rn
n

n

s

r 2

Figure 2.21: Stagnation point flow when n = 2.
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Figure 2.22: The flow over a wedge when 1 < n < 2.

Figure 2.23: Line source.

We now list several other examples of potential flow fields obtained from analytic functions.

FEzxample 7. Line source.
m
F = —1
(2) —lnz
= % In(re')
= % [Inr + i6)]
The velocity potential and the streamfunction become

qS:%lnr

m
=—90
v 2
The complex velocity can be written as
W(z)=F = mo_ N b

=—=—c¢
2z 27mr
which gives the solution in polar coordinates, see figure 2.23, as

m
Up = ——
2rr

u9:O

We can now calculate the volume flux from the source as

2m
Q:/ 2 rdf=m
0

2mr

FEzxample 8. Line vortex.



Figure 2.24: Ideal vortex.

The velocity potential and the streamfunction become

r

b=
r
P = o Inr
The complex velocity can be written as
r .
1774 — F/ I —160
(2) ig—e

which gives the solution in polar coordinates, see figure 2.24, as

u, =0

Uy = ——

Ezample 9. The dipole has the complex potential

F(z)= me

Tz

Ezxample 10. The potential flow around a cylinder has the complex potential
r2
F(z)=Uz+U=2
z

Ezample 11. The potential flow around a cylinder with circulation has the complex potential

r
lni

2w 1o

T2
F(2)=Uz4+U=2 —i
z

Ezxample 12. Airfoils. The inviscid flow around some airfoils can be calculated with conformal mappings
of solutions from cylinder with circulation.

2.4 Boundary layers

For flows with high Reynolds number Re, where the viscous effects are small, most of the flow can be
considered inviscid and a simpler set of equations, the Euler equations, can be solved. The Euler equations
are obtained if Re — oo in the Navier-Stokes equations. However, the highest derivatives are present in
the viscous terms, thus a smaller number of boundary conditions can be satisfied when solving the Euler
equations. In particular, the no flow condition can be satisfied at a solid wall but not the no slip condition.
In order to satisfy the no slip condition we need to add the viscous term. Thus, there will be a layer close
to the solid walls where the viscous terms are important even for very high Reynolds number flow. This
layer will be very thin and the flow in that region is called boundary layer flow.



Figure 2.25: Estimate of the viscous region for an inviscid vorticity free inflow in a plane channel.

Y,v

L

Figure 2.26: Boundary layer profile close to a solid wall.

We begin this section by estimating the thickness of the viscous region in channel with inviscid inflow
(zero vorticity), see figure 2.25.

By analogy to the Stokes solution for the instantaneously starting plate, we can estimate the distance
the vorticity has diffused from the wall toward the channel centerline as § ~ \/vt;. Where ¢, is time of a

L
fluid particle with velocity U has travelled length L, i.e. t5 = i Thus we can estimate §/L as

5§ vt 1 (vINY? vz

We will now divide the flow into a central/outer inviscid part and a boundary layer part close to walls,
where the no slip condition is fulfilled. Since we expect this region to be thin for high Reynolds numbers,
we expect large velocity gradients near walls.

We choose different length scales inside boundary layer and in inviscid region as indicated in figure 2.26,

as
Inviscid : U  velocity scale for w,v

L length scale for z,y

velocity scale for u
velocity scale for v
length scale for T
length scale for y

BL :

Sl N

The pressure scale is assumed to be pU? for both the inner and the outer region. The unknown velocity
scale for the normal velocity « is determined using continuity

ou v
— + — =0
Or dy
<~ <
U ol
T M
which implies that
U « )
f = g = o= ZU

In this manner both terms in the continuity equation have the same size.
Let us use these scalings in the steady momentum equations and disregard small terms. We obtain the
following estimates for the size of the terms in the normal momentum equation
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where the last line was obtained by dividing all the terms on the second line by U?/6. When R — oo
and §/L is small, only pressure term O(1), which implies that

op

oy
Thus, the pressure is constant through the boundary layer, given by the inviscid outer solution.
Next we estimate the size of the terms in the streamwise momentum equation as

0 = p=p(z)

ou N ou 10p N 0%u N 0%u
T u— V— = ——— V— V—
ox Oy p Ox ox? Oy?
U? oU U U? v v
T L% T v 2V
1 1 [(L\?
1 1 1 — — (=
Re Re <5>

The first three terms are order one and the fourth term negligible when the Reynolds number become
large. In order to keep the last term, the only choice that gives a consistent approximation, we have to
assume that

0 1

L v Re

which is the same estimate as we found for the extent of the boundary layer in the channel inflow case.
Thus we are left with the parabolic equation in x since the second derivative term in that direction is
neglected. We have

ou Ou  10p 0%u

“or TVay T poz Vo

In summary, the steady boundary layer equations for two-dimensional flow is

ou @ ~ 10p 0%u

“or oy T por oy
Oou n ov 0
oxr Oy
with the initial (IC) and boundary conditions (BC)
IC: u(z=wz0,y) = uin(y)
BC: wu(z,y=0) = 0
v(z,y=0) = 0
u(r,y — 00) = ue(x) outer inviscid flow

where the initial condition is at * = x¢ and the equations are marched in the downstream direction.
There are several things to note about these equations.

First, viy, cannot be given as its own initial condition. By using continuity one can show that once the
up is given the momentum equation can be written in the form

which can be integrated in the y-direction to give the initial normal velocity.

Second, the system of equations is a third order system in y and thus only three boundary conditions
can be enforced. We have the no flow and the no slip conditions at the wall and the u = u, in the free
stream. Thus no boundary condition for v in the free stream can be given.



Figure 2.27: Boundary layer flow over a flat plate with zero pressure gradient.

Third, ue(x) = winy (2, y = 0), i.e. the boundary layer solution in the free stream approaches the inviscid
solution evaluated at the wall, since the thickness of the boundary layer is zero from the inviscid point of
view.

Fourth, the pressure gradient term in the momentum equation can be written in terms of the edge
velocity u. using the Bernoulli equation. We have

1
p(x) + =pu? (z) = const

2
which implies that
1 dp due
e
p dx dx

Blasius flow over flat plate

Consider the boundary layer equations for a flow over a flat plate with zero pressure gradient, i.e. the outer
inviscid flow is e () = ug. The boundary layer equations become

U%—Fvayzya—zﬂ
o o
or 0Oy
IC: wu(x==x0,y) = uo
BC: wu(zx,y=0) = 0
v(z,y =0) = 0
u(z,y —o0) = ug

We introduce the two-dimensional stream function W

oV ow

_8_y7 'U——%

which implicitly satisfies continuity. The boundary layer equations become

u

v o ov o o
Oy Ox0y Ox Oy? _V6y3

with appropriate initial and boundary conditions.

Similarity solution
We will now look for a similarity solution. Let
ov
U= — =
Ay

which by integration in the y-direction implies

uof' (n), 0= %m)

U (x,y) = uob (x) f ()

We can now evaluate the various terms in the momentum equation. We give two below

o 0
v= -5 = o (574675 ) = ua (87 = 479) = luf' - 1)9
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Figure 2.28: Similarity solution giving the Blasius boundary layer profile.
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If these and the other corresponding terms are introduced into the momentum equation we have the
following equation for f

/16/ "
R f 0w of - ) = V“Of—z
1) 1) 1
which can be simplified to
updd’
f/// + 0]/ ff// -0

For a similarity solution to be possible, the coefficient in front of the ff” term has to be constant. This
implies

/!
updd :% N /55’dx:l vdzx N 152711/50

v 2 i 2 _Eu_o

which implies that 0 (z) = 1/ﬁ, where we have chosen the constant of integration such that § = 0
Up
when z = 0. We are left with the Blasius equation and boundary conditions

1
" 1
- =0
"5t
J ) = f(0)=0
po:{ 10 2
The numerical solution to the Blasius equation gives the self-similar velocity profile seen in figure 2.28.

The boundary layer thickness can be evaluated as the height where the velocity has reached 99% of the
free stream value. We have

5
£ (199) = 0.99 = 9 _49 = 599=4.91/Z—j

M99 =
[vz
uQ

where it can be seen that the boundary layer thickness grows as /z.

Displacement thickness and skin friction coefficient

Another measure of the boundary layer thickness is the displacement §* of the wall needed in order to have
the same volume flux of the inviscid flow as for the flow in the boundary layer. With the help of figure 2.29

we can evaluate this as
Yo y y
/ udyE/ uody:/ ug dy — §*ug
0 * 0

which implies that
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Figure 2.29: The displacement thickness §*

<— Pressure force

Separation point

Figure 2.30: Boundary layer separation caused by a pressure force directed upstream, a so called adverse
pressure gradient.

5*—/000(1—%) dy—\/g/()oo[l—f’(n)]dn

If we evaluate this expression for the Blasius boundary layer we have 0* = 1.72 Z—:

A quantity which is of large importance in practical applications is the skin friction coefficient. The
skin friction at the wall is

Ju B L, pud ., 0.332pu?
r=ngl, = G5 O = Ty = 2R

where the last term is the expression evaluated for Blasius flow. This can be used to evaluate the skin
friction coefficient as

e 0.664
ipud  Re,

where the last terms again is the Blasius value.

Cr =

Boundary layer separation

A large adverse pressure gradient (% > 0) may cause a back flow region close to wall, see figure 2.30.

The boundary layer equations cannot be integrated past a point of separation, since they become
singular at that point. This can be seen from the following manipulations of the boundary layer equations.
If we take the momentum equation

Y9: oy T a2

take the normal derivative and use continuity we have

ou ou 1dp 0%u
_|_ —

P P o
Oxdy oy o3

If we again take the normal derivative and use continuity we can write this as

Lo (on\ P ot o ot
20x \ Oy 0xdy?  Ox Oy? oy3 Oyt

This expression evaluated at the wall, with the use of the boundary conditions, become



which can be integrated to yield

2
=+k2z+C
y=0

du
dy

At the point of separation z = x;, i.e. where <g—z = O) this expression is
¥,
Ju
8_ = R\/Ts — X
Yly=o0

We can see that the boundary layer equations are not valid beyond point of separation since we have
a square root singularity at that point. In addition, the point of separation is the limiting point after
which there is back flow close to the wall. This means that there is information propagating upstream,
invalidating the downstream parabolic nature of the equations assumed by the downstream integration of
the equations.

In practical situations it is very important to be able to predict the point of separation, for example
when an airfoil stalls and experience a severe loss of lift.

2.5 Turbulent flow

Reynolds average equations

Turbulent flow is inherently time dependent and chaotic. However, in applications one is not usually
interested in knowing full the details of this flow, but rather satisfied with the influence of the turbulence
on the averaged flow. For this purpose we define an ensemble average as

1 o~ ()

where each member of the ensemble ul(-") is regarded as an independent realization of the flow.
We are now going to derive an equation governing the mean flow U;. Divide the total flow into an
average and a fluctuating component u; as

U = T + u; p=7+p
and introduce into the Navier-Stokes equations. We find

ou, om; 0w _ Oul
- -

LT _ Ou; ,8’&/-
at ot | oz, 0w,

10p 10p
Ujo— + U = —— - -
T 0x; 7 Ox, pox; poz;

+ V2 + vV,

We take the average of this equation, useing

which gives

ou; _ Ou; 1 0p 0 —
g L ()
ou;
6:@»

where the average of the continuity equation also has been added. Now, let U; = %;, as above, and drop
the /. We find the Reynolds average equations
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where ;45 is the Reynolds stress. Thus the effect of the turbulence on the mean is through an additional
stress R;; which explicitly written out is
w? uv uw
[RZJ] = [uluj] = uv v vw
YW W

The diagonal component of this stress is the kinetic energy of the turbulent fluctuations

F= Ruf2=Tm/2 = 3 (7 + 7 + )

N | =

Turbulence modelling

One may derive equations for the components of the Reynolds stress tensor. However, they would involve
additional new unknowns, and the equations for those would in turn involve even more unknowns. This
closure problem implies that if one cannot calculate the complete turbulent flow, but is only interested in
the mean, the effect of the Reynolds stress components on in the Reynolds average equations have to be
modelled.

The simplest consistent model is to introduce a turbulent viscosity as a proportionality constant between
the Reynolds stress components and the strain or deformation rate tensor, in analogy with the stress-strain
relationship in for Newtonian fluids. We have

2
Rij = gkéu - 2VTEZ'J'

The first term on the right hand side is introduced to give the correct value of the trace of R;;. Here
the deformation rate tensor is calculated based on the mean flow, i.e.

— 1 /0U; 0U; 20U¢ ...
Eij = 2 (8:cj + ox; - 55507« 5”)

where we have assumed incompressible flow. Introducing this into the Reynolds average equations gives
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where the last equality assumes that v is constant, an approximation only true for very simple turbulent
flow. It is introduced here only to point out the analogy between the molecular viscosity and the turbulent
viscosity.

The turbulent viscosity v, must be modelled and most numerical codes which solved the Navier-Stokes
equations for practical applications uses some kind of model for v,.

For simple shear flows, i.e. velocity fields of the form U(y), the main Reynolds stress component becomes

_ ou
U= —Vp—
T 8y
where, in analogy with kinetic gas theory, v,
vr = uzl

Here, u, is a characteristic turbulent velocity scale and [ is a characteristic turbulent length scale. In
kinetic gas theory [ would be the mean free path of the molecules and u, the characteristic velocity of the
molecules.
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Figure 2.31: Prantdl’s mixing length [ is the length for which a fluid particle displaced in the normal
direction can be expected to retain its horizontal momentum.

Zero-equation models

The simplest model for u, and [ is to model them algebraically.

In simple free shear flows like jets, wakes and shear layers we can take v, as constant in normal direction
or y-direction and to vary in a self-similar manner in z.

In wall bounded shear flow we can take [ as Prandtl’s mixing length (1920’s). This is a normal distance
over which the particle retains its momentum and is depicted in figure 2.31.

We can thus evaluate u, and find v,

dU

= vy =12 Gy

Define 7, as the shear stress at the wall and u, = /7, /p as the skin friction velocity. With

Ur = Ur, l=k- Yy
as Prandtl’s estimation of mixing length we get

dU U 1
R = —=—lny+C.
dy l Ky Ur K
k is the von Karman constant, approximately equal to 0.41. Thus the mixing length is proportional to
the distant from the wall and the region close to the wall in a turbulent flow has a logarithmic velocity

profile, called the log-region.

One-equation models

Instead of modelling the characteristic turbulent velocity algebraically, the next level of modelling uses the

assumption that
= 1
Ur = \/_: A/ 5 tithi

and a differential equation is used to calculate the turbulent kinetic energy. We can derive such an
equation by taking the previously derived equation for U; 4+ u; and subtracting the equation for U, the
Reynolds average equation. We find

iy — w2t s -
ot + ‘78:cj u']aCCj u]aCCj 817]'

We now take the average of the inner product between the turbulent fluctuations w; and the above
equation, and find

(LN oy O (LN U 0w A vd .\ uouw
7Y J ‘. 7Y - 1 jamj . (e 2ad] 2amj 7Y amj ax7

6ui 6ui 6U1 6ui 0 ( P 8ul )
——61']‘ + v +uu;
P 817]'

€

where € is the mean dissipation rate of the turbulent kinetic energy. We have now introduced a number
of new unknowns which have to be modelled.



First, we model the Reynolds stress as previously indicated, i.e. w;u; = %E(Sij —VUr (gmU? + gg? )
¥ i

Second, the turbulent dissipation is modelled purely based on dimension using k and I. We have

E3/2

€=cp—y
since the dimension of € is [¢] = %2 Here ¢, is a modelling constant.
Third, a gradient diffusion model is used for the transport terms, i.e.

1 1 v, Ok

Uittty — ;Puj = P—rka—zJ

where Prj is the turbulent Prandtl number.
For simplicity we write the resulting equation for the turbulent kinetic energy for constant v,.. We find

Dk —
- 2 au;
T = (v+vy)VE — Uill 5 — €
rate of increase diffusion rate generation rate dissipation rate

Two-equation models

The most popular model in use in engineering applications is a two equation model, the so called k-e-model.
This is based on the above model for k but instead of modelling € a partial differential equation is derived
governing the turbulent dissipation. This equation has the form as the equation for k, with a diffusion
term, a generation term and a dissipation term. Many new model constants need to be introduced in order
to close the € equation.

Once k and € is calculated the turbulent viscosity is evaluated as a quotient of the two, such that the
dimension is correct. We have

—2
=vp =0, —
€

o~

where C), is a modelling constant.






Chapter 3

Finite volume methods for
incompressible flow

3.1 Finite Volume method on arbitrary grids

Equations with 1st order derivatives: the continuity equation

In finite volume methods one makes approximations of the differential equations in integral form. We start
with an equation with only first order derivatives, the continuity equation. Recall that the integral from of

this equation can be written
/(9 k( ) /LLTLdS:U

S

Evaluating the normal vector n; to the curve [ for two-dimensional flow, see figure 3.1, we have the
normal with length dl as ndl = (dy, — dz). This implies that

/uknkdl:/(udy—vdz) =0

S S

We now apply this to an arbitrary two-dimensional grid defined as in figure 3.2.
We make use of the following definitions and approximations

Uah = Uiy 1 j A (Wir1,j + uij) /2 ATy = Tp — Ty

Vab = Vi 35 X (Vi1 +0i5) /2 AYab = Yp — Ya

A ;o

Figure 3.1: Normal vector to the curve [.
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Figure 3.2: Arbitrary grid. Note that the grid lines need not be parallel to the coordinate directions.

with analogous expressions for the quantities on the bc, cd and da faces. We can now evaluate the
integral associated with the two-dimensional version of the continuity equation for the surface defined by
the points abed. We have

/ (udy —vdz) ~ s ;AYab — Vg1 jATab + 51 1 AYbe — V; 51 L ATbe +
5

ui—%,jAycd - Ui_%)jA{I;cd + ui,j—%Ayda - _%A:Eda

J

On a cartesian grid we have the relations

Azgy = Aeqg = Aype = Ayge = 0 and Ayeq = —AYap, ATpe = —AZgq

which implies that the approximation of the continuity equation can be written

/(udy —vdz) = (uH%J— — ui,%yj) Ayap + (UW-JF% + vm—,%) Azgq =
s
1 1
5 (i1 = uiz1,5) Ayap + 5 (Vijr1 = vij-1) Ada
Note that dividing with Ay - Azg, gives a standard central difference discretization of the continuity

equation, i.e.

Uit — Uim1,j | Vig+1 — Vij-1

=0
2A$da 2Ayab

Equations with 2nd derivatives: the Laplace equation

We use the Gauss or Greens theorem to derive the integral from of the two-dimensional Laplace equation.

We find
0*® 0o o o
= dV = | =—/—n;dS ={2D} = —-dy— —+—d
0 / O0x;0x; v Oz n; dS = {2D} / (896 Y Oy I>
5 5

\%4

If we approximate this integral in the same manner as for the continuity equation we have

0P 0P 0P 0P

|:_:| Ayab - |:_:| Afzjab + |:_ Aybc - |:_:| Axbc +
9z |11 W lir1; 9z J; 441 Ylij+i

0P 0P 0P 0P

|:_:| Aycd - |:_:| A5[/'011 + |:_:| Ayda - |:_:| A:Edu,
Iz |; 1 ; li1, Oz |, ;1 L1



First derivatives are evaluated as mean value over adjacent control volumes (areas in the two-dimensional
case). We use Gauss theorem over the area defined by the points a'b'c¢'d’, see figure 3.2. For the three-

dimensional case we have
1 0P 1
— [ —dV == [ &n,;dS =
% / oz, % / "
Vv

S

which in the two-dimensional case is approximated by

{a—q)] ,[a—q)] ~o L / (® dy, —® dx)
Ox i+3.,4 8y i+3.4 Aa/b’c/d’

a’b’c'd’

where

Qdy & Cit1,jAyary + PoAyy e + i jAYcar + PAYarar
a’b’c'd

and the area evaluated as half magnitude of cross products of diagonals, i.e.

1
Aab = Aarvrcrar = 3 Azagy - AYarer — AYary - AZgrer
and the value @, is taken as the average

1
®, = 1 (i + Pig1,; +Pij—1+ Piv1,-1)

Evaluating the derivatives g—i, ?9_:1; along the other cell faces and substituting back we obtain a 9 point

formula which couples all of the nine points around the point i, j, of the form
Aij®it1j1 +  Bij®ip;  + Ci P10+ Dij®iji + Ei®i +
Fij® ;1 + Gij®i 15010 + Hij® 1, + Li;®i1;1 = 0
If we have a total of N = m x n interior nodes, we obtain N equations which in matrix form can be
written
Ax=Db

Here xT' = (®11, @12, @13, ..., Psnn) and b contains the boundary conditions. The matrix A is a N x N
with the terms A;;, Bjj, etc. as coefficients.

Rather than showing the general case in more detail, we instead work out the expression for cartesian
grids in two-dimensions. We find

0%d 9% o0d o0d
/(@w—yz) dwdy—/(%dy‘a—ydx)’“

{3 I = I S (B o P
817 i+%,j+ 817 if%,j 8y i,j+% 8y i,jf%

We can evaluate the derivatives as

1

0P
{ = (Piy1,; — Pij) Ay Az Ay

O ] itij
and so on for the rest of the terms, which implies that

0P 0P Ay Ax
/ (8_56 dy — 8_y dx) ~ ((I)H-Lj —2®; ; + (I)i—l,j) Ar + (‘I)i,j-q—l —2®; ; + (I)i,j—l) A_y

Dividing with the area Ax - Ay we obtain the usual 5-point Laplace formula, i. e.

Cit1) = 2005 + Pic1y | Pijr = 2005+ Pij
Ax? Ay?

which of course also can be written in the matrix form shown for the general case above.

=0
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Figure 3.3: Cartesian finite-volume grid where the velocity components and the pressure are co-located.

3.2 Finite-volume discretizations of 2D NS

Co-located Cartesian grid

We will apply the finite volume discretizations to the Navier-Stokes equations in integral form, which in
two-dimensions can be written

/(udy—vdx) =0
ou B 9 1 [0u ou
//EdS——/[u dy—uvdx—kpdy—ﬂ <%dy—a—ydx)}

v B 9 1 [ov v
/ adS——/[uvdy—v dx—pdz—§<%dy—a—ydx)]

where we have used the earlier derived result n = (dy, —dz). We start with a co-located grid which
means that the finite volume used for both velocity components and the pressure is the same, see figure 3.3.
In addition we choose a Cartesian grid in order to simplify the expressions. Recall that the finite volume
discretization of the continuity equation becomes

1 1
5 (Wit1y = ui-15) Ay + 5 (vij1 = vij-1) Az =0

which is equivalent to the finite difference discretization

Ujt1,j — Ui—1,j Vi j+1 — Vij—1
or i+1,5 v J+ %,J+ %,J =0

2Ax 2Ay
The discretization of the streamwise momentum equation needs both first and second derivatives. We
have seen that the finite volume discretizations of both are equal to standard second order finite difference
approximations. Thus we obtain the following result for the u-component

Ouij uii1y —uiiy 4 (o)1 = (W0)i5 0 | piy1y —pi1y
ot 2Ax 2Ay 2Ax

(g Z 205 F iy Mg — 20 F o)
Re Az? Ay?

In a similar manner the discretization for the v-component becomes

2 2
Ovij | (W0)ipy; — (W) y 4 Vgt Vg1 Pigat — il
ot 2Azx 2Ay 2Ay
L (viny = 2V £ 0oy Vit 205 o)
Re Az? Ay?
This simple discretization cannot be used in practice without some kind of modification. The reason is

that one solution to these equations are in the form of spurious checkerboard modes. Consider the following
solution to the discretized equations

wij=vi; =" g@), p=(-D", Az=Ay
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Figure 3.4: Cartesian finite-volume grid where the velocity components and the pressure uses staggered
grids.

which satisfies the divergence constraint. If it is input into the equation for v and v we find the expression

dg 8 0 = g—e moa?

dt + N

Thus we have a spurious solution consisting of checkerboard modes which are damped slowly for velocity
and constant in time for the pressure. This mode will corrupt any true numerical solution and yields this
discretization unusable as is. These modes are a result of the very weak coupling between nearby finite
volumes or grid points, and can be avoided if they are coupled by one sided differences or if they are damped
with some type of artificial viscosity.

Staggered cartesian grid

To eliminate the problem with spurious checkerboard modes, we can use a staggered grid as in figure 3.4,
where the control volumes for the streamwise, spanwise and pressure are different.

The control volume for the continuity equation is centered abound the pressure point and the discretiza-
tion becomes

O%+aj‘”%—aj Ay4—(%J+%_‘WJ—%)A$::0

Yitsg — %i-35  Vigts " Yii-3
or +
Ax Ay
The control volume for the streamwise velocity is centered around the streamwise velocity point and

the discretization becomes

Qiy1)2, +_“3+1J —ui; +_(“10i+1/zj+1/2"(“10i+1/2j41/2 4 P Py
ot Az Ay Az
1 Uiggej — 21725 + Ui—1/2,5 1 Ui — 2125+ Uiv1/2,5-1 0

Re Az? Re Ay?
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Figure 3.5: Staggered grid near the boundary.

where the uf,, ;,u7 ;, (u0); 41725412 > (W0); 41 /2,512 terms need to be interpolated from the points
where the corresponding velocities are defined.

The control volume for the normal velocity is centered around the normal velocity point and the dis-
cretization becomes

9v; j41/2 (uv)i+1/2,j+1/2 - (U”)i—1/2,j+1/2 " Ui2,j+1 - vi2,j i Pij+1 —Pij
ot Ax Ay Ay

1 Vi jy1/2 — 205 54172 +Vi—1,j41/2 1 Uijys2 — 205 54172 + Vi 5-1/2
Re Az? Re Ay?

=0

where the (uv); 15 j41/2 (U0);_1/2 j41/2 ,uf ;. q,uf; terms need to be interpolated from the points
where the corresponding velocities are defined.

For this discretization no checkerboard modes possible, since there is no decoupling in the divergence
constraint, the pressure or the convective terms.

Boundary conditions

To close the system we need to augment the discretized equation with discrete versions of the boundary
conditions. See figure 3.5 for a definition of the points near a boundary.

The boundary conditions on the solid wall, BC in figure 3.5, consists of the no flow and the no slip
conditions, i.e. w = v = 0. The normal points are located on the boundary so that the no flow condition
simply become

’UL% :’UQ)% ::0
The evaluation of the u-equation at the point (%, 1), for example, requires us g We can find this value
as follows

1

OZU%)%:g(U%J —i—u%)o) = Ug g = —U3
The boundary conditions on the inflow, AB in figure 3.5, consist given values of u and v, i.e. so called

Dirichlet conditions. The streamwise points are located on the boundary so that the boundary condition

is simply consist of the known values

U1 U1
5,10 %3,2

The evaluation of the v-equation at the point (1, %), for example, requires Vg3 We can find this value
as follows

1
v = = |v v, U,
175 ( 13+ o) = 0,3

1
2



If AB in figure 3.5 is an outflow boundary, the boundary conditions may consist of % = % =0, i.e.

so called Neumann conditions. These conditions should be evaluated at i = % For the streamwise and
normal velocity we find

:’Ul

e

)

Note that no reference is made to the pressure points outside the domain, so that in this formulation
no boundary conditions for p is needed so far. However, depending on the particular discretization of the
time derivative and other the details of the solution method one may need to augment the the above with
boundary conditions for the pressure. If this is the case particular care has to be taken so that those
conditions do not upset the divergence free condition.

3.3 Summary of the equations

The discretized equations derived for the staggered grid can be written in the following form

‘9ui+%,j A n Pit1,j = Pij _
ot it3. Az B
iits Pij+1 —Pij _
ot "Bt TR =0
D;;=0
where the expression for the A; 1,4 can be written
Ai+%,j =
2 2 _
Ui, — Us (uv)i+%,4j+% (m})i+%,j—%
Az Ay
L Ui 2ui+%,j tu L e e 2ui+%,j UL o1
Re Ax? Re Ay?

= {expand and interpolate using grid values}

1 1 2 1 1
= |aag Witta T Yi-a) T ay (ienied T Vi T Ve T Via-3) T g \ RgE T a2 )| ik
1 1 1 1
* A7z T3 T ReAg? ) Mitsd + AAz 1739 T ReAg? ) “im3id
1 1 1 1
+ 1Ay (Wit1j4d +2i1) = Rely? ) ittt + 1Ay (Vig1j-1 +0p5-1) = ReAy? ) Vitha—1
=a(u, )1 Uiy 5+ Za(uvv)nbunb
nb

The last line summarizes the expressions, where the sum over nb indicates a sum over the nearby nodes.
The expression for B, ;. 1 can in a similar way be written

B

i+ =

Wirgjry = Wiy jay W — vy

= +
Ax Ay
L Uil T2l F Uiy TV~ i) g
R Az? R Ay?

= {expand and interpolate using grid values}

b(u, v)i,jJr%vi,jJr% + Z b(u, V) nbvnp
nb



where the expressions for b(u,v); ;1 and b(u,v)n are analogous to a(u,v);. 1 ; and a(u,v)ns, and
therefore not explicitly written out. The expression originating from the continuity equation is

Uipl g — ULy Vig+l — Vij-1

D; ;= 2
7 Ax + Ay
These equations, including the boundary conditions, can be assembled into matrix form. We have
a [« A(u,v) 0 G, u fu
| Y + 0 B(u,v) Gy v | =1 fo
0 D, D, 0 P 0

Here we we have used the definitions

- vector of unknown streamwise velocities

- vector of unknown normal velocities

- vector of pressure unknowns

non-linear algebraic operator from advective and viscous terms of u-eq.
non-linear algebraic operator from advective and viscous terms of v-eq.
linear algebraic operator from stremwise pressure gradient

- linear algebraic operator from normal pressure gradient

- linear algebraic operator from x-part of divergence constraint

- linear algebraic operator from y-part of divergence constraint

- vector of source terms from BC

S
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With obvious changes in notation, we can write the system of equations in an even more compact form

as S()-( )(2)-(4)

If this is compared to the finite element discretization in the next chapter, it is seen that the form of
the discretized matrix equations are the same.

3.4 Time dependent flows

The projection method

For time-dependent flow a common way to solve the discrete equations is the projection or pressure correc-
tion method. Sometimes this method and its generalizations are also called splitting methods. We illustrate
the method using the system written in the compact notation defined above.

We start to discretize the time derivative with a first order explicit method

n+1 n

utl — oy
N+ G = ()
Dyt =0

Then we make a prediction of the velocity field at the next time step u™ not satisfying continuity, and
then a correction involving p such that Du™*! = 0. We have

Nt = £ )
un-l—l _ ’U,*
G n+l _ 0
N
Dyt =0

Next, apply the divergence operator D to the correction step
DGp"t! = iD u*
At

Here DG represents divgrad = Laplacian, i.e. discrete version of pressure Poisson equation. The
velocity at the next time level thus becomes



u" =t — AtG p Tt

Note here that u™*! is projection of u* on divergence free space. This is a discrete version of the
projection of a function on a divergence free space discussed in the section about the role of the pressure
in incompressible flow.

In order to be able to discuss the boundary condition on the pressure Poisson equation we write the
prediction and correction step more explicitly. Using the staggered grid discretization the prediction step
can be written

ul o, —ul g
CHad e oan g
. At N it+3,]
vEo — ot
i,j+3 i,j+% LB =0
At ,J+ 35
and the projection step as
n+1 *
u. o —u? . n+l _  n+l
i+l i+5,] n Pit1,5 — Pij 0
At Az
n+l % n+1 n-+1
Yij+rdt T Vij+l 4 Pigt1 —Piy 0
At Ay
By solving for u?:f i and vl";: , above and using this, and the corresponding expressions for uz“rll ; and
3 Jts -3
v?;r_l 1, in the expression for the divergence constraint D; ; we find the following explicit expression for the
2 2

discrete pressure Poisson equation

+1 +1 +1 +1 +1 +1
Py, —2pi; + Pty N Pij =20, +pija D
Ax? Ay? At

where D7 ; is D; ; evaluated using the discrete velocities at the prediction step, u* and v*.

When the discrete pressure Poisson equation is solved we need values of the unknowns which are outside
of the domain, i.e. we need additional boundary conditions. If we take the vector equation for the correction
or projection step and project it normal to the solid boundary in figure 3.5 we have

n+1 n+1
Da1 —DPa2p 1

_ - n+1l |
Ay At (”27% ”F)

where vf. = v}, is an unknown value of the velocity in the prediction step at the boundary. In general

it is important to choose this boundary condition such that discrete velocity after the correction step is
divergence at the boundary, see the discussion in the end of the section on the role of the pressure. However,
for this particular discretization it turns out that we can choose vf: arbitrarily since it completely decouples
from the rest of the discrete problem. To see this we write the pressure Poisson equation, centered abound
the point (2,1), close to the boundary. We find

R o S e ey S S B

Az + Ay = At

if we substitute the value of pgjl - pgfal from the boundary condition obtained for the pressure into the

above equation we can se that v{ cancels in the right hand side of the pressure Poisson equation. Since the

discretization of the time derivative is explicit there is no other place where the values of v* or v* on the

boundaries enter. Thus we find that we can choose the value of vf: arbitrarily. In particular, we can choose

;Lél, in which case we obtain a Neumann boundary condition for the pressure. Note, however, that
this is a numerical artifact and does not imply that the real pressure gradient is zero at the boundary.

A number of other splitting methods have been devised for schemes with higher order accuracy for the
time discretization. In general it is preferred to make the time discretization first for the full Navier-Stokes
equations and afterward split the discrete equation into one predictor and one corrector step. See Peyret
and Taylor for details.

*
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Time step restriction

For stability it is necessary that prediction step is stable, numerical evidence indicates that this is sufficient.
In the predictor case the momentum equations decouple if we linearize them abound the solution Uy, Vj.
It thus suffices to consider the equation

ou ou ou 1
E‘FUO%‘FVO(?—ZJ =~ T

For simplicity we will here consider one-dimensional version

Viu

ou n ou 1 9%u
ot 9z ~ Re 022
which in discretized form can be written
Uien — Ui L ouiy, —2up tup,

2Azx Re Az?

u?“ =uj + At | =Uop

where we have chosen to call the discrete points where the u-velocity is evaluate for x;.
We introduce

’U,;l — Qn . ei»wwj
into the discrete equation, together with the definitions

)\_UQAt _2At
T Az’ “= Re Ax?’

This implies that the amplification factor @) can be written

E=w-Ax

Q =1 —i\sin (£) — 2asin? (g)

We find that the absolute value of @) satisfies

Q] = 1-4(XN-0a*)s"+4(N —s)s
= 1-4s[(-a?)s— N +a] <1

where s = sin? (%) This implies that

@(s):—(AQ—a2)5+A2—a§O Vs:0<s<1
® (s) is linear function of s and thus the the limiting condition on @ (s) is given by its values at the two
end points of the s-interval. We find
d0)=XA-a<0, dP(1)=a?>—-a<0

which implies that

= M<a<l

substituting back the definitions of A and a we find the following stability conditions

1
5UgAtRe < 1
2At
ReAx?

For the two dimensional version of the predictor step Peyret and Taylor [8] find the following stability
limits

< 1

1

1 (U6 + V) At-Re < 1
4At < 1
ReAz? —

Note that this is a stronger condition than in the one-dimensional case.



3.5 (General iteration methods for steady flows

Distributive iteration

For steady flows we can still use the methods introduced for unsteady flows, and iterate the solution in time
to obtain a steady state. However, in many cases it is more effective to use other iteration methods. We will
here introduce a general distributive iteration method and apply it to the discretized steady Navier-Stokes
equations.

For the steady case the discretized equations can be written in the form

N(u) G ul _ [ f
D 0 p ) \0
which is of the form Ay = b. Now, let y = B ¢ which implies that

ABy=5b
and use the iteration scheme on this modified equation. We divide the matrix AB in the following
manner
AB=M-T = My=Tj+b

and use this to define the iteration scheme

MB 'y*™ =TB 'y + b= MB ' y* +b— Ay*

which can be simplified to

yk+1 _ yk +BM_1 (b_Ayk)
—_———
rk
where 7% is the residual error in the k:th step of the iteration procedure.
If B = I we obtain a regular iteration method where residual r* is used to update y* by inverting M,
a simplified part of A, as in the Gauss-Seidell method for example. For this method we have

Ax=0b
A=L-U
(L-U)z=0b

L™t =Uax" +b

Application to the steady Navier-Stokes equations

When the distributive iteration method is applied to the steady Naiver-Stokes we have

~(% 9)

we can obtain AB in the following block triangular form

AB = ( NJ(DU) —DN?u)*lG )

if the matrix B has the form

(4 ) (4 )

where N (u)~! is a simple approximation of the inverse of the discrete Navier-Stokes operator. We now

split AB =M — T where
_(Q 0
M_<D R

and where (Q is an approximation of N(u) and R is an approximation of —DN ~1G. Note that R is a
discrete Laplace like operator.



The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) by Pantankar and Spalding (1972)
can be thought of as a distributive iteration method. Wesseling [10] indicates that by choosing

N(w)™ = [diagh (u")]™!
Q = N(u")
R = —D[diagN(u")]"'G

we have a method which is essentially the original version of the SIMPLE method. Thus we have the

following iteration steps

1. First, we calculate the residual

(008 9)()-(1)

2. Second, we calculate M ~'* which implies
Qéu=ry = bu=Q 'rf

Rép=1r¥—Dou

3. Third, we have the distribution step BM ~! r* which becomes

du_p(d0a\_(du-N"Gdp
Sp ) op ) op

4. Fourth, there is an under relaxation step, where the velocities and the pressure is updated

{ wkb =k + W, du
PP =p* o+ wpdp

The under relaxation is needed for the method to converge, thus w, and w, is usually substantially

lower that one.



Chapter 4

Finite element methods for
incompressible flow

The finite-element method (FEM) approximates an integral form of the governing equations. However,
the integral form—called the variational form—is usually different from the one used for the finite-volume
method. Moreover, different integral forms may be used for the same equation depending on circumstances
such as boundary conditions. We introduce FEM first for a scalar advection—diffusion problem before
discussing the Navier—Stokes equations.

4.1 FEM for an advection—diffusion problem

We consider the steady flow of an incompressible fluid in a bounded domain 2, and we assume that its
velocity field U; is known (from a previous numerical solution, for instance). We assume that the boundary
I' of the domain can be decomposed into two portions 'y and I'y, as in figure 4.1 for instance. We are
interested to compute the temperature field v in the domain, modeled by the advection—diffusion problem

Uja—xj —vwWu=f inQ (4.1a)
u=0 on Iy, (4.1b)

ou
e 0 on I';. (4.1c)

The coefficient v > 0 is the thermal diffusivity. Incompressibility yields that gg?' = 0. We assume that
J

I'y is a solid wall, so that n;U; = 0 on I'y. This simplifies the analysis but is not essential. The Dirichlet
boundary condition u = 0 on I'g is called an isothermal condition, whereas the Neumann condition % =0
on I'7 is an adiabatic condition.

Deriving the integral form that is used to form the finite-element discretization requires some vector

calculus. The product rule of differentiation yields

0 ou Ov Ou 9
oz, (U&’ci) = 9z, or, +vV-u. (4.2)
n
Iy
Q

D,

Figure 4.1: A typical domain associated with the advection—diffusion problem (4.1).
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Recall the divergence theorem
ow;
81; a0 = / niw; dT. (4.3)

Q r

Integrating expression (4.2) and applying the divergence theorem on the left side yields

ou ov Ou
dr dQ ZudQ. 4.4
/5 /awiawi + foe (44
r Q
(Note that
Ou _  0Ou )
871 M 8171 '

Let v be any smooth function such that v = 0 on I'y. Multiplying equation (4.1a) with v, integrating
over ), and utilizing expression (4.4) yields

0

ou 9 Ov Ou 19
/fUdQ—/ v dQ—l//vV udQ = / ]817de+ /8—17]8—%(19 /Uandl",
Q Q Q

Q

where the last term vanishes on 'y due to the requirements on v, and on I'; due to boundary condition (4.1c)
We have thus shown that a smooth (twice continuously differentiable) solution to problem (4.1) (also
called a classical solution) satisfies the varational form

ou ov
/ Uja% aQ + v /T%a—%dQ /fde (4.5)
Q

for each smooth function v vanishing on I'g
We will now “forget” about the differential equation (4.1), and directly consider the variational form (4.5).
For this, we need to introduce the function space

Jv 0
V= v:/ v dQ) < +00,v =0 on I'y
6:101- 6:101-
Q
The space V' is a linear space, that is, u, v € V = au + v € V Va,3 € R. The requirement that the
gradient-square of each function in V' is bounded should be intepreted as a requirement that the energy is
bounded.
The variational problem will thus be

Find u € V such that

ou Ov Ou (4.6)
/ e -dQ + /8 a1, -dQ = /fde YveV.
Q

Q

A solution to variational problem (4.6) is called a weak solution to advection—diffusion problem (4.1). The
derivation leading up to expression (4.5) shows that a classical solution is a weak solution. However, a weak
solution may not be a classical solution since functions in V' may fail to be twice continuously differentiable.

Note that the boundary conditions are incorporated into the variational problem. The Dirichlet bound-
ary condition on I'y is explicitly included in the definition of V' and is therefore referred to as an essential
boundary condition. The Neumann condition on I'y is defined implicitly through the variational form and
is therefore called a natural boundary condition.

4.1.1 Finite element approximation

Let us triangulate the domain €2 by dividing it up into triangles, as in figure 4.2. Let M be the number of
triangles and N the number of nodes in Q2 UT';, that is, the nodes on I'y are excluded in the count. Let h
be the largest side of any triangle.

Let V3 be the space of all functions that are

- continuous on 2,



Figure 4.2: A triangulation. Here, the number N are Figure 4.3: The “tent or “hat basis function associ-
the black nodes. ated with continuous, piece-wise linear functions.

- linear on each triangle,
- vanishing on I'y.

Note that Vi, C V. We get a finite-element approximation of our advection-diffusion problem by simply
replacing V' by V}, in variational problem (4.6), that is:

Find uy € Vj, such that

0 Jup, 0

/vhUjﬂ dQ+v [ E220 g0 = /fvh dQ  Vu, € V. (4.7)
6in 6in 6in

Q Q Q

Restricting the function space in a variational form to a subspace is called a Galerkin approximation. The

finite-element method is a Galerkin approximation in which the subspace is given by piecewise polynomials.

4.1.2 The algebraic problem. Assembly.

Once the value of a function uj in Vj is known at all node points, it is easy to reconstruct it by linear
interpolation. This interpolation can be written as a sum of the “tent” basis functions &™) (figure 4.3),
which are functions in V}, that are zero at each node point except node n, where it is unity. Thus,

N
up (2;) = Z u™M @) (), (4.8)

where u(™ denotes the value of u; at node n. Note that expansion (4.8) forces u; = 0 on Ty since it
excludes the nodes on I'y in the sum.
Substituting expansion (4.8) into FEM approximation (4.7) yields

N N
oo™ vy, 0™
> u™ [ o U ——dQ+ v > ul —h—dQ:/ Q2 Yo, € Vi 4.9
_lu /vh T +v lu 92, 01 Sfon vp, € Vi, (4.9)
n Q : n= Q ’ ’ Q
Since each basis function is in V},, we may choose v, = ®("™) € V}, for m = 1,..., N in equation (4.9), which

then becomes

N N
D™ 0™ 9P
§ ) [ emy.Z— 40 § (n) dQ:/ o™ dQ,m=1,..., N. 4.10
‘ u / 7 (9xj + v ‘ u 6(Ej 6(Ej f am ) b ( )
n= Q ’ n= Q

This is a linear system system Au = b, where A = C + vK and

od (™) 9p(n) op ()
Kppn = dQ o = | DU dn 4.11
/ al'j al'j ’ O / Uj al'j ’ ( )

Q
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Figure 4.4: An example mesh that gives a particular simple stiffness matrix K

1)
e S{f(l) dQ
u(™ f fOMN) dQ
Q

The union of all triangles constitutes the domain  and that the triangles do not overlap. Thus, any
integral over () can be written as a sum of integrals over each triangle,

9p(™) §Pp(n 9p(™) §Pp(n
Ko = [ B a0 =S o a0 =YK
Q

Note that K,(,f% vanishes as soon as m or n is not a corner node of triangle p. Thus Ky, (p ) contributes to the
sum only when m and n both are corner nodes of triangle p. Matrix K can thus be computed by looping
all M triangles, calculating the element contribution K ,(,f% for m, n being the three nodes of triangle p and
adding these 9 contribution to matrix K. Note that the derivatives of ®(™) are constant on each triangle,
SO K#Z,)l is easy to compute exactly. Matrix C' and vector b can also be computed by element assembly,
but numerical quadrature is usually needed, except if U; and f happen to be particularly “easy” functions
(such as constants).

4.1.3 An example

As an example, we will compute the elements of K, the “stiffness matrix” (a term borrowed from structural
mechanics), for the particular case of the structured mesh depicted in figure 4.4.

Let M be the number of internal nodes in the horizontal as well as the vertical direction (the solid
nodes in figure 4.4.) The width of each “panel” is then h = 1/(M + 1), and the area of each triangle is
|Ty| = h?/2. The components of K are

(m) o)
Ky = / 0P 0P 4 (4.12)
8CCJ‘ 8CCj
Q

Note that K,,, vanishes for most m and n. For instance, K, m+2 = 0, since basis functions &™) and
®(m+2) o not overlap (figure 4.4). In fact, K,,, # 0 only when m and n are associated with nodes that
are nearest neighbors.

To compute matrix element (4.12), we need expressions for the gradients of basis functions ®(m) and
®(m+1)  Since the functions are piecewise linear, the gradient is constant on each triangles and may thus
easily be computed by finite-differences in the coordinate direction (figure 4.5). By the expressions in



(£,0) on Ty, Ty
-1 o .
(O, —%) on T3, T

Ve = ¢ (-10) onTy,
(-4 4) onTs " &
(O7 %) on Tg,
0 on all other triangles. Ts

Figure 4.5: The gradient of test function ®(™) for m being the (black) middle node.

(~3:3) on T i
Vo = ¢ (=+0) on T, Pm+D)
0 on all other triangles E
F L
o _[(0)  nTh
(£,—7) onTa.

Figure 4.6: The support for basis functions ®™ and ®™*! are marked with vertical and horizontal stripes
respectively.

figure 4.5, we have
oo™ 990m™) oP(m) oD\ 2
Kmm = = §
/ Ox;  Ox; / ( ) < dy >
Q

|T1|+2 |Ts| + 2|T3|+ |T4|+2 |T5| + 2|T6|

ihﬁ
2 2

dQ

=4

The common support for basis functions ®™ and ®™*! is only the two triangles marked in figure 4.6;
that is, it is only on these two triangles that both functions are nonzero at the same time. Utilizing the
gradient expressions given in figure 4.6 yields

2 h?

=-1
TR 2 ’

Komi1 = / vom . velmt g0 = Z/v@ m) g emtl) qQ — _h2 |Ty| — h2 |Ta| =
k= lTk

and in the same manner,
Km,m—l = Km,m-l—M = Km,m—M =-1
Altogether, K becomes the block-tridiagonal M 2-by-M? matrix

T -1
-1 T -I
-1 7T -I
-1 T
where [ is the M-byM identity matrix, and T the M-byM matrix

Thus, a typical row in the matrix—vector product Ku becomes

Ay — Ui+l — Up—1 — Ut M — Umm— M (4.13)



that is, after dividing expression (4.13) with h2, we recognize the classical five-point stencil for the negative
Laplacian —V?2.

Thus our finite-element discretization is for this particular mesh equivalent to a finite-volume or finite-
difference discretization. However, for a general unstructured mesh, the finite-element discretization will
not give rise to any obvious finite-difference stencil.

4.1.4 Matrix properties and solvability

Matrix A is sparse: the elements of martix A are mostly zeros. At row m, matrix element A,,, # 0 only
in the columns where n represents a nearest neighbor to node m. The number of nonzero elements on
each row does not grow (on average) when the mesh is refined (since the number of nearest neighbors in a
mesh does not grow). Thus, the matrices become sparser and sparser as the mesh is refined. A common
technique in finite-element codes is therefore to use sparse representation, that is, to store only the nonzero
elements and pointers to matrix locations.

It is immediate from expression (4.11) that K., = K, that is, K is a symmetric matriz (KT = K).
Integration by parts also shows that matric C is skew symmetric (CT = —C).

Theorem 1. K is positive definite, that is, vI' Kv > 0 for each v # 0.
Proof. Let v, € Vj,. Then vy, = Ef:[:l v ®™) | Denote v = (v, ..., oNT,

N N
9d(") 9p(m)

T (n) (m)

v Kv = E E v o Oz, om dQuo

m=1n=1
N N
_ / 3 9 (v(m)q)(m)) 3 K (v<m>q><”>) o :/ on 9V 4y >
Q=1 8:51 1 6:101- Q 6:101- 6:101-
with equality if and only if g%’; = 0, that is, if v5, = Const. But since v |r, = 0, vy, = 0. O

From Theorem 1 also follows that A is positive definite. To see this, note that the skew-symmetry of C'
yields that

vI'Co = (UTCv)T =oTCTy = =T Cw
that is, vZ' Cv = 0 for each v. Thus
v Av =0T (K 4+ C)v =v'Kv+v"Cv=v"Kv >0

for each v # 0, that is, A is positive definite. However, A is not symmetric whenever U; # 0.

Recall that a linear system Au = b has a unique solution for each b if the matrix is nonsingular. A
positive-definite matrix is a particular example of a nonsingular matrix. We thus conclude that the linear
system resulting from the finite-element discretization (4.7) has a unique solution.

4.1.5 Stability and accuracy

We have defined the finite-element approximation and showed that the finite-element approximation yields
a linear system Au = b that has a unique solution. Now the question is whether the approximation is any
good. We will study the stability and accuracy of the numerical solution. FEM usually uses integral norms
for analysis of stability and accuracy. We start by reviewing some mathematical concepts that will be used
in the analysis.

Basic definitions and inequalities

The most basic integral norm is

1/2
loll 2 = ( / 2 d@)
Q

For the current problem, a more fundamental quantity is the energy norm

1/2 o Ov 1/2
- 2q0) = / LEAPTY)
HUHV </Q |Vv| ) < o Ox; 0x;

and associated inner product

(u,v)V:/Vu~Vde:/ u v 4. (4.14)
Q

o Oz; Ox;



The Cauchy-Schwarz inequality for vectors a = (a1,...,a,) is

ja- b] < |allb| = |a - a|"/*|b-b]'/,

1/2 1/2
fg dﬂ‘ < < 72 dQ> </ ¢ dQ> , (4.15)
Q Q Q

(f, 92 < Ifle2@llgllzzo)
The Cauchy—Schwarz inequality (4.15) implies that, for each nonzero, square-integrable g,

1/2
(/ f2dQ> > Holodd] fgdgl‘ﬂ.
@ (Jog?d)

Choosing g = f yields equality in above expression. Thus

1/2 fgdQ dQ2

g fg
Il = ( [ 7200) = e = ‘M*‘
0 P (fgg dQ) gllL2(Q)

whereas for functions it reads

which can be denoted

“

The rightmost expression is a “variational characterization” of the L2(£2) norm, that is, it expresses the
norm in terms of something that is optimized. By inserting derivatives in the nominator and/or denominator
of the variational characterization, various exotic norms can be defined. A norm, different from the L?(Q)
norm and of importance for the Navier—-Stokes equations is

6’[1}1'
/Qp (8171) dQ‘
1/2°
(/ |sz|2dQ>
Q

This norm will be of crucial importance when we analyze the stability of FEM form the Navier—Stokes
equations.
The Poincaré inequality relates the energy and L?(£2) norms:

(4.16)

HpHexotic = max
w;

Theorem 2 (Poincaré inequality). There is a C > 0 such that

Jv Ov
2 < -
/Q’U dQ < C 9. 0, dQ,

that is,
[v]|720) < CllvlIT

for each v e V.

Remark 1. Theorem 2 says that the energy norm is stronger than then L?(2) norm. The smallest possible
value of C grows with the size of 2. The Poincaré inequality holds only if {2 is bounded in at least one
direction. Also, the inequality does not hold if fl“o dI" = 0. However, the inequality

/v2dQ§C</ ag 4 [ 209 dQ)
Q Q Q&IlaIl

holds also when fl“o dr = 0.

Stability

Choosing v, = wuy, in equation (4.7) yields

/ unUj ‘;“h dQ+v g“h Dun L0 - / Fup, Q. (4.17)

Q

Note that

/ upUj guh dQ = u?'Cu =0,
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Figure 4.7: An orthogonal projection on a line. Note that the vector u — uy is the shortest of all vectors
u — vy, for v, € Vi, that is, [[u — up|| < ||Ju — v Yo € V.

since C = —C7 (using the notation of § 4.1.4).
Expression (4.17) thus becomes

8uh 8uh
dQ = dQ
V/Q 8$i afl'l Q fUh

llun I3,

1/2 1/2
(Cauchy—Schwarz) < ( f? dQ) (/ uy dQ)
Q Q

1/2 Oup, Ou 1/2
. 7 < 2 h —h
(Poincaré) < C' ( ; f dQ) </Q Ox; Ox; dQ)

< Ol fllz2)llunllv-

Dividing with [|us||y shows that
C
lunlly < 1 fllz2(0)
where the constant C' does not depend on h. That is, we have shown that uj; cannot blow up as the
discretization is refined, which is the same as saying that the numerical solution is stable.
Error bounds

Choosing v = v, € Vj, C V in variational problem (4.6) and subtracting equation (4.7) from(4.6) yields the
“Galerkin orthogonality”,

v, 0 9
V/Q 319)6}2 or; (u—up)dQ + /Q vhUﬁ%j (uw—up) d2=0 Vo, € Vj.

This is a “true” orthogonality condition when U; = 0:

” 6vh 0
q Ox; 0x;

(u — uh) dQ2 =0 Yoy, € Vi; (4.18)

that is, the error u — uy, is orthogonal to each vj, € V}, with respect to the inner product (4.14). Cf. two
orthogonal vectors: a-b = 0 . Orthogonality relation (4.18) means that wp is an orthogonal projection
of u on Vj. As illustrated in figure 4.7, the orthogonal projection on a subspace yields the vector that is
closest to the given element in the norm derived from the inner product in which orthogonality is defined.
Orthogonality property (4.18) (cf. figure 4.7) implies that the FE approximation is optimal in the energy
norm when U; = 0:

lu —unllv < |lu—wvnllv Yoy, € V. (4.19)

The matrix A is symmetric in this case (since C' = 0).
When U; # 0, the FEM approximation is no longer optimal in this sense. However, there is a C' > 0
such that Cea’s lemma holds,

C
||u—uh||V < ;HU—U}IHV Yop € Vi (420)

Matrix A is nonsymmetric in this case. Note that the approximation may be far from optimal when v is
small, as the next example illustrates.
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Figure 4.8: Under-resolved standard Galerkin finite-element approximations may yield oscillations for
advection-dominated flows.

Figure 4.9: An interpolant II;v interpolates v at the nodal points.

Ezample 1. Let us consider the above FEM applied to the 1D problem

1
—mu" +u' =1 in (0,1).

u(0)=u(l)=0

(4.21)

The problem is advection dominated, that is, the viscosity coefficient in equation (4.21) is quite small:
v =1/500. A boundary layer with sharp gradients forms close to z = 1. The solid line in figure 4.8 shows
the FE solution h = 1/1000, whereas the dashed line shows the FE approximation for h = 1/200. O

The result of example 1 is typical: under-resolved standard Galerkin methods may generate oscillations
for advection-dominated flows in areas of sharp gradients.

An explanation of this phenomenon is that the directions of flow is not accounted for in the standard
Galerkin approximation. Galerkin approximations correspond to finite-difference central schemes. Upwind-
ing is used to prevent oscillations for finite-difference methods. Various methods exist to obtain similar
effects in FEM, for instance streamline diffusion and discontinuous Galerkin. Both these methods modify
the basic Galerkin idea to account for flow-direction effects.

Approximation and mesh quality

Estimates (4.19) and (4.20) are independent of the choice of V! We only used that Vj, C V. Next step
in assessing the error is an approzimation problem: How well can functions in V}, approximate those in
V? This step is independent of the equation in question. Interpolants are used to study approximation
properties. The interpolant is the function II,v € V} that interpolates the function v € V' at the node
points of the triangulation, as illustrated for a 1D case in figure 4.9.

Approximation theory yields that, for sufficiently smooth v,

v = pv| 2y < Ch® “second order error”

4.22
lv = pollv < Ch “first order error” (4.22)

The constant C' contains integrals of the second derivatives of v.

A mesh quality assumption is needed for (4.22) to hold. The essential point is: beware of “thin” triangles;
do not let the shape deteriorate as the mesh is refined. A strategy to preserve mesh quality when refining
is to subdivide each triangle into four new triangles by joining the edge midpoints (figure 4.10).

Each of the conditions below is sufficient for approximation property (4.22) to hold:



Figure 4.10: A subdivision that preserves mesh quality.

(i) (“Maximum angle condition”). The largest an-
gle of any triangle should not approach 180° as
h — 0.

(ii) (“Chunkiness parameter condition”).  The
quotient between the diameter of the largest
circle that can be inscribed and the diameter
of the triangle should not vanish as A — 0.

Condition (ii) implies (i), but not the reverse.

Accuracy of the FE solution

Error bounds (4.19) and (4.20) together with approximation property (4.22) implies
[u—wunllv < Ch
Further analysis (not provided here) yields
lu—unllr2) < Ch2.

This second-order convergence rate requires a mesh quality assumption and a sufficiently smooth solution u
(since the constant C' contains second derivatives of u). The convergence rate is of optimal order: it agrees
with approximation property (4.22) and is the best order that in general can be obtained for, in this case,
piecewise-linear functions. However, the solution may still be bad for a particular, too-crude mesh; recall
example 1.

Improving Accuracy

Accuracy is improved by refining the mesh (“h-method”). This may be done adaptively, where it is needed
(say, in areas of large gradients), to prevent the matrices to become too large. Automatic methods for
adaptation are common.

An alternative is to keep the mesh fixed and increase the order of the polynomials at each triangle
(“p-method”). For instance, continuous, piecewise quadratics yields a third-order-accurate solution (in the
L?(Q) norm).

These strategies may be combined in the “h—p method”, where the mesh is refined in certain regions
and the order of approximations is increased in other.

4.1.6 Alternative Elements, 3D

A quadrilateral is a “skewed” rectangle: four points connected by straight lines to form a closed geometric
object. Nonoverlapping quadrilaterals can be used to “triangulate” a domain, as in figure 4.11.

An example of a finite-element space V}, on quadrilaterals is globally continuous functions varying linearly
along the edges. As in the triangular case, the functions are defined uniquely by specifying the function
values at each node. The functions are defined by interpolation into the interior of each quadrilateral. This
space reduces to piecewise bilinear functions for rectangles with edges in the coordinate directions:

vp(z,y) =a+bx+cy+day

Quadrilaterals on a “logically rectangular domain” (a distorted rectangle, as in figure 4.11) yields a regular
structure to the matrix A. This may



\

Figure 4.11: A logically rectangular domain triangulated with quadrilaterals.

Figure 4.12: In 3D, triangular and quadrilateral elements generalize to tetrahedral (left) and hexahedral
(right) meshes.

e give high accuracy (particularly if the mesh is aligned with the flow), and
e allow efficient solution of the linear system (particularly for uniform, rectangular meshes).

Compared to triangular mesh, it is harder to generate quadrilateral meshes automatically for compli-
cated geometries.

Triangular and quadrilateral meshes generalize in 3D to tetrahedral and hezahedral meshes (figure 4.12).
Advantages and limitations with tetrahedral and hexahedral meshes are similar to corresponding meshes
in 2D.



Lo

Figure 4.13: A simple example of a domain.
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Figure 4.14: The black nodes are the degrees of freedom for the velocity components, which are fewer than
the number of triangles.

4.2 FEM for Navier—Stokes

We now turn to the Navier—Stokes equations for the steady flow of an incompressible fluid, and consider
a situation with flow in a bounded domain 2. A simple example domain is depicted in figure 4.13. The
mathematical problem in differential form is

) 8UZ 8]) 1

— —V?u; = f; in 4.2
Uj 7z, + 0z, Rev u; = f, in €, (4.23a)
g“i =0 in Q. (4.23b)
z;
U; = G5 on FO (423(3)
“Reds, n;+pn; =0 onTy. (4.23d)

The boundary condition on T'y = 992\ Ty is of no obvious physical significance, but is useful as an
artificial outflow condition.

The Navier—Stokes equations is a system of nonlinear advection—diffusion equations together with
the incompressibility condition (4.23b). This condition introduces new complications not present in the
advection—diffusion problem of section 4.1. Naive approximations of the Navier—Stokes equations are bound
to produce disappoing results, as the following example indicates.

Ezample 2 (“the counting argument”). Cousider a case with only Dirichlet boundary conditions—that is,
I'1 = 0—and the mesh of figure 4.14. Assume that we use continuous, piecewise-linear approximations up,
vp, for the x- and y-components of the velocity field. There are I number of panels in each direction and
therefore 2(I — 1)? degrees of freedom (two times the number of black dots) for the velocity vector field.
The left side of equation (4.23b), that is

8uh (%h

Ox dy
is here constant on each triangle. Thus, demanding equation (4.23b) to be satisfied on each triangle yields
212 equations, which is more than the degrees of freedom for the velocity! Thus uj, = vy, = 0 is the only FE
function satisfying the incompressibility condition (4.23b)! O



Following strategies can be used to tackle the problem of example 2.

(i) Use more degrees of freedom for the velocity—for instance continuous, piecewise quadratics on each
triangle—to balance the large number of equations associated with the incompressibility condition.

(ii) Accept that the discrete velocities only is approximately divergence-free.

(iii) Associate the velocity with the midpoints of edges instead of the vertices. This also gives more degrees
of freedom for the velocities. (There are ~ 312 edges, but only ~ 212 vertices).

Strategies (i) and (ii) are the “standard” methods, whereas (iii) leads to “non-conforming” approxima-
tions related to finite-difference and finite-volume approximation with “staggered mesh”.

4.2.1 A variational form of the Navier—Stokes equations

To derive the variational form, we need new integration-by-part formulas. The product rule of differentiation

yields

8_xj Zi@xj B 6£Ej al'j

+ 2V, (4.24)

and 5 9
9 oy = 9P 9%

Integrating expressions (4.24) and (4.25) and applying the the divergence theorem (4.3) on the left sides
yields

(4.25)

8ui o 8zi 8ul 2
/nJZZZ)Tj dI' = 9z, O dQ—i—/le u; d€) (4.26)
r Q Q
and 5 9
p Zj
/njsz dI’ = /zZ oz, dQ + /pami dQ, (4.27)

r Q Q

which are the integration-by-parts formulas needed to derive our variational form.
Now, let z; be a smooth vector-valued function on 2 that vanishes on I'y. Multiply both sides of
equation (4.23a) with z;, integrating over , and utilizing (4.26) and (4.27), we find that

ou; Op

1
/Zifi dQ = /Zin 8Ij dQ) + Zia_xi dQ) — ﬁ /ziV2ui dQ
Q Q Q Q

8ui 1 (921 8ui 1 8ui (921
= /Ziuj(?Tj dQ + Re Dz, O, dQ — §/ n]zz(?Tj dr' — /paxi dQ) + /n]szdI‘ (4.28)
Q Q r Q r
Ou; 1 0z; Ou; 0z
/Zi’u]‘ 8Ij dQ + % arj 8Ij dQ) — /pa_CCZ dQ7
Q Q

where, in the last equality, the boundary integrals vanish on I'¢ since z; = 0 on I'g and on I'; due to boundary
condition (4.23d). Moreover, multiplying equation (4.23b) with a smooth function ¢ and integrating yields
8ui

q
o Ox;

Q

Q=0 (4.29)

Thus, we conclude that a classical solution (a twice continuously differentiable solution) to the Navier—
Stokes equations satisfies the variational forms (4.28) and (4.29) for all smooth functions z; and ¢ such that
z; vanishes on I'g.

Similarly as for the advection—diffusion problem, the variational form will be used to define weak solu-
tions, without explicit reference to the differential equations. A difference with advection—diffusion problem
is that we here need different function spaces for the velocity components and the pressure. Also note that
u; = g; on I'g whereas z; vanishes on I'g. To avoid this last complication and simplify the exposition, we
will only consider homogeneous boundary conditions, g; = 0. Thus, the equations will be “driven” only by
the right-hand side f;, which, for instance, could be gravity or magnetic forcing for a electrically conducting
fluid.

The pressure space is

H:LQ(Q):{q|/Qq2dQ<+oo},



and the space of velocity components is

V= u|/%a—ud9<+oo andu=0onTy .
o Ox; Ox;

For the analysis in section 4.2.4, it will be convenient to work with the space V' of the velocity vector
u = (u1,u2). Saying that u € V is equivalent to saying that that each velocity component u; € V. The
energy norm for elements of V' is denoted

ou; Ou; 1/2
— 7 ldQ
v = ([ )

1/2
llwlr20) = (/ UiUg dQ) .
Q

We assume that both boundary conditions really are active. In the case of only Dirichlet boundary
condition, that is, that I'g constitute the whole boundary, the pressure is only possible to specify uniquely
up to an additive constant.

The variational problem defining weak solutions to equation (4.23) is

whereas the L?(Q) norm is

Find uw; € V and p € H such that

iU dQ+ — dQ — dQ = i fi dQ2 i
/Z i Ox; + Re J Oz; Oz; /paxi /Z 4 vaev
Q

Q

Q
/qauidQ:() Vge H
al'i

Q

This is a variational problem of mized type: two different spaces are involved. As for the advection—diffusion
problem, the boundary conditions are incorporated in the variational formulation. The essential boundary
conditions are here that u; = 0 on I'g and is explicitly assigned through the definition of V. The natural
boundary conditions are the boundary conditions on I';, implicitly specified through the variational form.
Note that the natural boundary condition is different than for the advection—diffusion problem.

Remark 2. The mathematical properties of the Navier—Stokes equations are complicated, and important
issues are still unresolved. In fact, there is a $ 1 000 000 prize for the person that can develop a theory
that can satisfyingly explain their behavior in three space dimensions! A short summary of what is known
is the following.

For the unsteady problem on a given, finite time interval (0,7'), and

e in two space dimensions:

— a unique weak solution exists for any square-integrable f and for any Re,

— smooth data yield smooth solutions, so that weak solutions are classical solutions if data is
smooth enough;

e in three space dimensions:

— a weak solution exists for any square-integrable f and for any Re.

— It is not known whether the weak solution always is unique (besides during some initial interval
(0,7™), where the size of T* is unknown).

— It is not known whether smooth data always yields a smooth solution, or if singularities can

evolve from smooth data.

The steady problem has at least one weak solution, in 2D as well as 3D. Note that the steady problem
may have several solutions, even in 2D. ]

Note that the natural boundary condition here not just is a Neumann condition, but the more compli-
cated condition (4.23d).



4.2.2 Finite-element approximations

To obtain a FEM, we choose subspaces V}, C V', H, C H of piecewise polynomials, and replace V' with V},
and H with H}, in the variational form. In 2D and in components, we obtain

Find up, vy € V3, and pp € Hp, such that

Ouy, Ouy, 1 Ozp, Oup, Oz,

dQ+ — [ ——dQ — —dQ = dQ 4.

/Zh < (9 —+ vp — ay > + Re (9£Ej (9£Ej /ph o /thl Vzp € Vp, ( 30&)
Q Q

[on () [ 58 - [ [ v o
Q

B on Oy dx; Ox;
8uh 8’Uh -

We postpone for a while the question on how to choose the subspaces V}, and Hy,.

4.2.3 The algebraic problem in 2D

Expanding pj, in basis for Hj,, we obtain

NP
n=1
Likewise, expanding up, vy in basis for Vj, yields
Nu Nu
un (2,y) = Y uMe™ (2,y), Z (M ( (4.32)
n=1 n=1

Now insert expansions (4.31) and (4.32) into equations (4.30). In (4.30a) and (4.30b), choose zj, = (™)
for m =1, ..., Ny; in (4.30c), choose g, = (™ form =1, ..., N,. Then, equations (4.30) become

D™ gp(m)

N
= dp(m) () Ho(m) p(n)
) [ (m) © © a0+ L (n) / '™ Dy 49
Zlu / 7 (uh ox +n dy ) + Z or O + dy Oy
n= Q

N, (9 (m
n=1 Q Q
=) [ (o 00 90 o LAy [ (98 099t gt
Z:10 /tp <Uh oz T dy > +%z:1v /( or  ox T dy Oy ) (4.33)
n= n= Q
’ (m)
_me)/a‘p P dQ /“")fzdﬂ m=1,...,Ny
n=1 Q Q
N (n) N
Zu“)/w(m)aw dQ+Zv(")/¢(m)aw d2 =0 m=1.., Ny
n=1

Placing the coefficients into column matrices,

T T
u = (u(l),...,u(N“)) , v = (U(l),...,v(N“))
T
p=(p(1),-..,p(NP>) :

we can write the system (4.33) in the matrix—vector form

p(@)
()

IS

Clun,vn) + go K 0 G
0 Clun, o) + K GW
—_G@)T —_GWT 0 ) 0

(4.34)

S
I



where the matrix and vector components are

(m) (n) (m) (n) (n) (n)
Ko / (acp 9™ 9™ 9y > A0, Coun(un, o) = /(p(m) (Uh Ay o Ay > a0,
Q

Jor O dy Oy Ox
Q

(m) (m)
6= [vmZEan, o —- [v0 2 aa o = [ompae, o = o™ a0
X
Q Q Y Q Q
(4.35)

Matrix K represents an approximation of the discrete negative Laplacian —V?; C(uyp,vs) the discrete
advection operator ua% + Ua%? G®) and GW the discrete gradient V; and G®7T and GWT the discrete
divergence. That is, the structure of the Navier—Stokes equations are directly reflected in the nonlinear
system (4.34). We obtained the same structure of the nonlinear equation for the finite-volume discretization,
except that here, it is guaranteed the the last block row of the matrix is the negative transpose of the last
block column.

4.2.4 Stability

So far, the approximating spaces V}, and H}, have not been specified. The counting argument of example 2
indicates that not any choice is good. We will limit the discussion to the Stokes equations, whose finite-
element formulation reads

Find uf € Vi and pp € Hy, such that

h 9,,h h
ZCZCZ g’l‘;z do — /ph giz d0 = /Zzhfz dQ sz € W, (4363)
Q J 7 Q ! Q
h
o 21;1 49 — 0 VY € Hy. (4.36b)

Q

The Stokes equations is a limit case of the Navier—Stokes equations for very low Reynolds numbers and
assume that inertia can be neglected compared to viscous forces. The Stokes equations may be used to
model very viscous flow, creeping flow, lubrication, but also flow of common fluids (like air and water) at
the micro scale. Due to the lack of nonlinear advection, these are linear equations. Mathematically, the
Stokes equations are much easier to analyze than the full Navier—Stokes equations. Indeed, there exists a
unique weak solutions for each square-integrable f; both in two and three space dimension. The reason
to start the analysis on the Stokes equation is that a stable Stokes discretization is necessary to obtain a
stable Navier—Stokes discretization.

As for the Navier—Stokes equations, we require that V;, C V and Hj;, C H. Recall that each function in
V and H is required to be bounded in the energy and the L?(Q) norm, respectively. Thus, in makes sense
to require that the velocity and pressure approximations satisfy the same bounds, that is,

1/2 1/2
ol = < [ vt dﬂ) <c < [ 51 dﬂ) — Ol eon. (4.37a)
Q Q
oul duh 1/2
= —t 40 < 2 4.37b
funly = ([ G 5mta2) < Clfluoca, (4.370)

where the constant C' should not depend on h. This implies that the approximations will not blow up when
the mesh is refined.

; h — o h
Choosing z;' = u

%

in equation (4.36a), we obtain

oulr dul oult oulr dul
L L dQ - LdQ = LA = [ ujfidQ,
8CCJ‘ 8Ij Ph 8171 8CCj 8Ij /ulf
Q Q Q Q

where the first equality follows from equation (4.36b). Thus,

lunly, = /QU?fi dQ < lull2@l[fll2@) < CllullvIfllcz@ (4.38)

where the Cauchy—Schwarz inequality yields the first inequality, and the Poincaré inequality the second.
We thus conclude from expression (4.38) that

unllv < Cllfllz2(0) (4.39)



that is, any Galerkin approximation of the velocity in the Stokes equations is stable! For bad choices of
subspaces, we will of course obtain inaccurate velocity approximations, but they will not blow up as the
mesh is refined, since their energy norm is bounded by the given data f;.

Regarding the pressure, the situation is more complicated. Not any combination Hj and V7, yield
stable pressure approximations in the sense of (4.37a). We will derive a compatibility condition between
the velocity and pressure spaces, the LBB condition, necessary to yield stable pressure approximations.

4.2.5 The LBB condition

Rearranging equation (4.36a) implies that for each zzh eV,

h h h
/phazi dQ:/ 02 %dg—/zﬁfidﬂ
Q a(Ei Q 6(EJ al'] Q

h 9.k 1/2 h 9, h 1/2 1/2 1/2
(Cauchy Schwarz) < ( 9z7 07 dQ) ( Ouy’ Ouy dQ) + ( / 2hah dQ) ( / il dQ)
Q Q

Q 8CCJ‘ 8CCJ‘ Q 8CCj 8CCj

= [lznllvllunllv + [[2all L2 @) [ £l 220
(Poincaré) < [|znllv [lurllv + [|znllv[[fllz20)
(by (4.39)) < CllizullvIfllLz) + zellv I £ll2()-

(4.40)
Dividing expression (4.40) with ||z ||y yields that
1 ozl
= ——dQ < (C+1
|zh|V/Qphami ( FAIEI)
for each 2! € V,, from which it follows that there is a C' > 0 such that
1 Ozl
25 Tenlly JoP 0w, 40 =€ : 141
0£z€V || zh|v /Qph ox; < Cllflleze) (4.41)

We have thus found a bound on the discrete pressure in the “exotic” norm (4.16). However, we were aiming
for the bound (4.37a). Thus, if it happens that

(6% 2 max 4.
DPrilL Q) = 042 €V, H hH 0 Ph 7

for some a > 0 independent of &, then it is immediate that ||pn||z20) < C|/fllz2(q) for some C' > 0.

Condition (4.42) says that our exotic norm is stronger than the L?(Q)-norm for p,. The LBB-condition
is a condition on the pairing of spaces V};, and Hj, that requires the exotic norm to be stronger than the
L2(Q)-norm for each function g, € Hj. The derivation above proves thus that the LBB-condition is
sufficient for the pressure to be stably determined by data:

Theorem 3. Assume that the LBB-condition holds for the spaces Hy, Vi,. That is, assume that there is
an o > 0 independent of h, such that, for each qn € Hp,

< / 2 dQ) v a 1 / 0% 4 (4.43)
o max -——— — , .
o = ormev [zl Jo M 0z

then there is a C > 0 such that
1/2 1/2
</ pidﬁ) sc( |f|2d9>
Q Q

The LBB condition (4.43) is satisfied for V}, = V and Hj, = H. That is, the pressure (before discretiza-

h
tion) is stably determined by data. The expression fQ qn gi? d) represents the discrete gradient of g, (see

§ 4.2.3). The LBB condition thus means that a zero discrete pressure gradient implies a zero value of the
pressure. Conversely, if the LBB condition is not satisfied, it means that the discrete pressure gradient
may be small even when the pressure is not small: The discrete gradient cannot “feel” that the pressure is
large, an effect that usually manifests itself as wild pressure oscillations.

holds, independently of h.
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Figure 4.15: A checkerboard mode for equal-order interpolation on a regular triangular mesh.

4.2.6 Mass conservation

The integral fr pn;u; AT yields the total flux of mass(in kg/s) through the boundary. There is no net
mass-flux through the boundary for a constant-density flow, so fF pnju; dl’ = 0. A velocity approximation

h
/ nlu? dl’ =0,
r

h
9ul 40 — o,
Q 8CCZ

uy is is globally mass conservative if

or, equivalently, if

by the divergence theorem (4.3). Recall from equation (4.30c) that

K3

oul
/Qh 8’“1 dQ2=0 Yan € Hy,.
Q

A Galerkin approximation is thus globally mass conservative if 1 € Hy, that is, if constant functions can
be represented exactly in Hy. All reasonable FE approximation satisfy this.
A finite-element approximation is locally mass conservative if

h
/ 9ul 40 — 0,
K 0z

for each element K in the mesh. Not all finite-element approximations are locally mass conservative. If
the pressure approximations consist of piecewise constants on each element, the FE approximation will be
locally mass conservative. However, it will not be locally mass conservative if the pressure approximations
are continuous and piecewise linear.

4.2.7 Choice of finite elements. Accuracy

Now we consider a regular triangulation of a 2D domain €2, that is, a triangulation satisfying a mesh quality
condition of the sort discussed in section 4.1.5.

“Equal-order interpolation”

Let us start by trying the approximation space we used for the advection—diffusion problem (section 4.1.1).
That is, we use continuous functions that are linear on each triangle both for the functions in H;, and V.

This pair does not satisfy the LBB condition and yields an unstable discretization. In particular, the
system matrix (4.34) is singular: the discrete gradient matrix G has linearly dependent columns. Thus,
there is at least one nonzero Np-vector p¢ such that Gp® = 0. Corresponding function pj € Hj, whose
nodal values are equal to the elements of p© is called a checkerboard mode.

Figure 4.15 depicts the nodal values of a checkerboard mode for equal-order interpolation. To see this,
consider the element contribution, associated with a triangle T),, to the ith row of vector Gp¢ (notice from
the expressions in figure 4.5 that % is constant on each triangle):

—/ pcad’i a0 = — 2% Tn/ p5dQ =0,
n Tn

h o ox



Figure 4.16: The evaluation points at each triangle for the continuous, piecewise quadratic velocity approx-
imations of the Taylor—-Hood pair.

since the mean value of the function p§ vanishes on each triangle, as can be seen from figure 4.15. The right
side of the LBB condition (4.43) vanishes for ¢, = pf,, which immediately implies that the LBB cannot
hold for a space Hj, that includes p§. This (and other) checkerboard mode will pollute the solution of the
Stokes as well as Navier—Stokes equations..

Constant pressure, (bi)linear velocities

Now we consider a triangulation either of triangles or rectangles. Let the functions in Hj be piecewise
constant on each element. In case of triangular elements, the space V}, will be continuous functions, piecewise
linear on each element, whereas for quadrilateral elements, continuous functions that are piecewise bilinear
on each rectangle comprise Vj,.

Remark 3. The pressure approximations need not to be continuous in order for H, C H. However, if
Vi, C V, the velocity approximations cannot be discontinuous, since Vv is not a function for discontinuous
.

This choice leads to a locally mass-conserving approximation. However, for triangular elements, the
counting argument of example 2 applies here and indicates problems with this choice of elements. Indeed,
the LBB conditions is not satisfied for this unstable discretization. Checkerboard modes similar as in fig-
ure 4.15 exist. Still, the constant pressure—bilinear velocity space on rectangles is in widespread engineering
use! “Fixes” have been developed to take care of pressure oscillations. For instance, the checkerboard mode
can be filtered out from the discrete pressures. Moreover, common iterative methods to solve the resulting
discrete equations (such as the projection schemes) implies a stabilization of the discretization.

The Taylor—-Hood pair
Here, the functions in Hy and V}, are globally continuous and, on each triangle,

e py € Hy, is linear, whereas

e uy, vy € Vy, is quadratic.
Thus, on each triangle, we have

up =a+bx+cy+dry+ex®+ fy?

The six coefficients a—f are uniquely determined by wup’s values at the triangle vertices and midpoints
(figure 4.16).

Ny . . . . . .
A Dbasis {¢(m)($i)}m:1 of continuous, piecewise quadratic functions interpolates the nodal values of

iX“Zl u; @™ (z;). There are two kinds of basis

figure 4.16, so that up € V), can be expressed as up(x;) = >
functions here, illustrated in figures 4.17 and 4.18.

The LBB condition is satisfied for the Taylor—Hood pair, and the following error estimates holds for a
smooth solution to the Navier—Stokes equation:

llu—unllr2) < CH?
Ip = phllr2) < CR?
The Taylor—-Hood pair is globally, but not locally mass conservative.
The Taylor—-Hood pair can be generalized to higher order. Then, the pressure and velocity approxima-

tions will be continuous functions, consising of piecewise polynomials of degree k for pressure and k + 1 for
velocity (k > 1) on each triangle.



Figure 4.17: The basis function ¢(™ (x;) when Figure 4.18: The basis function ¢(™) (x;) when
m corresponds to an edge-midpoint node m corresponds to a corner node

. ) ) ) Figure 4.20: Isoparametric elements use polynomials
Figure 4.19: Approximating a curved boundary with  of the same order as used for the FE approximations

a triangle sides leads to an O(h?) error of the bound- ¢ approximate the shape of the boundary.
ary condition.

Remark 4. Inaccuracies in approximations of the domain boundary may reduce the convergence rate of
higher-order approximations. For instance, a straight-forward triangulation of a domain with a curved
boundary will lead to a boundary-condition error at the mid nodes of O(h?) (figure 4.19). This is fine
for piecewise-linear approximations since the error anyway is O(h?). However, this inaccuracy at the
boundary results in a half-order reduction of the convergence rate of piecewise quadratic approximations.
Using curved elements restores convergence rate. The most common strategy for curved elements is known
as Isoparametric Elements: piecewise polynomials of the same degree as used in the FE approximation are
used to approximate the shape of the boundary (figure 4.20).

A stable approximation with piecewise-linear velocities and pressures

Instead of using different approximation orders, as in the Taylor—-Hood pair, we here consider different
meshes for velocity and pressure. Both the velocity and pressure approximations consist of continuous,
piecewise-linear functions on triangles, but each pressure triangle is subdivided into four velocity triangles
as in figure 4.21.

This is a stable approximation satisfying the LBB condition, and the following error estimates holds for

P e ——

. o . ) Figure 4.22: Subdividing a pressure rectangle into
Figure 4.21: Subdividing a pressure triangle into four foyy velocity rectangles yields a stable approximation

velocity triangles yields a stable approximation with  with continuous piecewise-bilinear functions for both
continuous, piecewise-linear functions for both veloc- velocity and pressure.

ity and pressure.



Figure 4.23: The basis functions associated with the Figure 4'24: A.pproximatic?ns spz%nned. by

velocity approximation for a nonconforming but sta- t.he basis fur}ctlons (4.23) y1eld§ piecewise-

ble discretization. linear functions thaF are cont'lnuous only
along at the edge midpoints, in general.

a smooth solution to the Navier—Stokes equation:

lw — wn | L2 < Ch?
P —prllL2@) < Ch

These approximations use the same number of unknowns and the same nodal locations as for the Taylor—
Hood pair, but are one order less accurate. Calculating the matrix elements (4.35) is however somewhat
easier than for the Taylor-Hood pair.

There is also a version of this discretization for rectangular meshes: Each pressure rectangle is then
subdivided into four velocity rectangles, as in figure 4.22. Both the velocity and pressure approximations
consist of continuous and piecewise-bilinear functions.

A nonconforming method

The discussion after example 2 suggested a strategy to address the problem with the overdetermined incom-
pressibility condition, namely to use nodal points on the edge mid points for the velocity. To accomplish
this, consider basis functions, associated with the edges, of the type depicted in figure 4.23. Basis function
¢; is linear on each triangle and continuous along edge j (but discontinuous along four edges!). If z?, y*
are the coordinates of the mid point of edge ¢, we have

i o)1 fori=y,
(Mx’y)_{o for i # j.

Now define the space of the velocity components V}, from all possible expansions

N

N
€ y) = Zuj(bj(xvy)v ’Uh(xvy) = Zvj¢j(x7y)a

j=1

Here, N is the total number of edges, excluding those on I';. Note that uy will be continuous only at edge
mid points in general. Thus, V}, ¢ V since Vuy is not a square-integrable (in fact, constant) function.
Violating a property like V;, C V is called a wvariational crime. However, Vuy, restricted on each element is
a square-integrable function. Letting H} be piecewise constant on each triangle and V}, defined as above,
we define the nonconforming FE approximation:

Find up, vy € V3, and pp € Hy, such that

1 8Zh 8uh 82}1
Z/zhuh—dﬂ—l-Z/zhvh—dQ Rez 6% e —Z/ph—dQ /zhfldﬂ Yz € Vi,

n= lTn Q
Z/zhuh—dQ—f—Z/zhvhavh a0+ Z/gzh 0 a0 - Z/ph%dﬂz/zhfgdﬂ Ven € Vi
n=1j Lj Oxy J
Z/ (6“h 6”h> A0=0 V€ Hy,
n=1 y

Ty

where M is the number of triangles.



The fact that V, ¢ V complicates the analysis of this discretization. Nevertheless, the approximation
is stable, although not as accurate as the Taylor—Hood pair, for instance. Other nice properties with this
method is that it is locally mass conservative, and quite easy to implement.

But maybe the most interesting with this discretization is that it allows for a construction of a divergence
free velocity basis. In all types of discretizations discussed so far, including the present, we have used the
same basis for the u; and vy, components. By a clever combination of basis functions of the type illustrated

= (4)

in figure 4.23, it is possible to construct a new vector-valued basis functions 1, = (2, ,wh ) for the velocity

having the property
v B Bz,(lj ) 8w§lj )
= Or oy

=0.

Expanding the velocity in this basis,
up = uh, ’Uh ZU’JT’J’ (444)

yields that V - up = 0. Inserting expansion (4.44) into equations (4.30), and choosing (zp,wp) = n;, the
continuity equation and the pressure variable vanishes, and equations (4.30) reduce to

M dNu
Zuj/m up-V)n dQ—l—VZuJ/an VanQ—l—Zuj/ni-(uh-V)nde:/m-fdQ
Jj=1 j=1 Q Q
(4.45)
for i = 1, ..., M. The Navier-Stokes equations then reduces to a vector-valued, non-linear advection—

diffusion problem, quite similar to equation (4.10). This leads to a substantial simplification when designing
an algorithm to solve the discretized equations; in fact, one of the great challenges for any solver of
the Navier—Stokes equations is how to treat the incompressibility condition (4.30c). Unfortunately, the
construction of the basis functions n; is not straightforward.

Stabilization of unstable discretizations

Stability of the choices of elements presented in sections 4.2.7—4.2.7 relied on manipulations of the local
polynomial order, the meshes, or the conformity of the method. These manipulations complicate the
implementation. An alternative is to use the same approximations for velocity and pressure (equal-order
interpolation) combined with a stabilization method. This circumvents the LBB condition.

We will present a very simple idea of this sort for the Stokes equations. First choose the same type
of approximations for the pressure and the velocity components, for instance continuous, piecewise-linear
functions on a triangular mesh, and replace equations (4.36) with

Find uf € Vi and pp, € Hy such that

Ozl oul ozl N .

Oz Ox; h o dfr = /ZZ fidQ Yzt eV, (4.46a)
dqn Opn / oul

s -d2 = Hp,. 4.46b

G/ani o, W | g, =0 Vo€ (4.46b)

Q

for some small € > 0. Equation (4.46b) formally inconsistent by O(e) with corresponding variational form.
More advanced stabilization methods avoids this inconsistency by using a term that vanishes as h — 0.

The main advantage with stabilization methods is the simplified implementation, but the method intro-
duces an extra parameter that may need judicious tuning. Note also that the increased number of pressure
unknowns, as compared with the discretization in section 4.2.7, does not increase the accuracy. The added
resolution introduced is filtered away by the introduction of the stability term.

To see that approximation (4.46) is stable, choose z!' = ul ¢, = p, and add equations (4.46a)



and (4.46b),

oul dul Opn Opn,
740 dQ = hfdQ
o O0z; Ox; e /Q Ox; Ox; /Q uit

1/2 1/2
(Cauchy-Schwarz) < ( /Q ulul dQ> < i fifi dQ>
oul oul 1/2 1/2
Poincaré) < C /—Z—l dQ> ( i idQ)
( ) < o Ox; Ox; ssz

/2 1/2
dpn, Ipn / oul oul '
d L L dQ i f; dQ2 .
¢ <€ o O0x; Ox; + q Oz; Oz; Q fif

Dividing and squaring yields the stability estimate

h h
/8“1' Ou; dQ+e/ W I0h 4y < ¢ [ 1.5, a6,
o Oz; Ox; < 0 Q

IN

) 6:51 ZTi

Since C' > 0 does not depend on h, both the velocity and pressure approximations cannot blow up as h — 0,
even though the discretization is unstable for € = 0.






Appendix A

Background material

A.1 Iterative solutions to linear systems

Gauss-Seidel method

The Laplace equation on a Cartesian grids can be discretized as

Diy1; — 20+ Pic1j + 8% (Pijr1 — 285+ Dij_1) =0
where 0 = Az/Ay. We can solve for &, ;,
Piy1j+ Picrj + 5% (Piyrr +Pijj1)
2(1+ 3%

Gauss-Seidel uses this expression to update ®;; (using the already updated values calculated in same
iteration), i.e.

P ;=

OF; + O+ 57 (PF 0+ 910L)

EH1 _ i—1,j i1
2(1+ )
‘ ] + 1 /4 -xOQ
@) : to be updated &
7/ 7 y
: new values h . L :{,'QOQ
: old values g&&
i j—1

i—1 i 1+ 1
This iteration method has a slow convergence, it is possible to show
| — @F|| < p™||® — @7
where
pzl—(’)(h2) h=Az=Ay

e.i. the error is reduced by O (h2) each iteration. Requiring an error reduction to O (hz) the number of
iterations must satisfy

P =0 (hz)

which implies that

=0 (i) = © (wr— gy ) = © C#mm)

To proceed we note that we have N = n? unknown interior nodes, see Figure A.1. Thus

95



~nl=N"1/2

which implies that

and that the total work is

since the work per iteration is O (V).

Figure A.1: Domain for the solution of the Laplace equation.

Multigrid method

A general way to accelerate the convergence of e.g. the Gauss-Seidel method is provided by the Multigrid
method. We note that the Gauss-Seidel provides good smoothing of the local error, but converges slowly
since it takes time for boundary information to propagate into the domain. The idea behind the multigrid
method is that a slowly converging low-frequency on a fine grid is a fast converging high-frequency on a
coarse grid. Let

Pit1,; —2Pi; + i1 n Pijr1 — 295+ P51
Ax? Ay?

and define the correction to the solution to the true discrete solution in the following manner

L®;; =

;= OF+AD
f)j — solution at iteration level £
A®; ; — correction to <I>§ ; to true discrete solution

This implies that

LA®; j = —L®F . = —R,;

i =

since L®; ; = 0. Thus we are left with an equation implying that the Laplace operator on the correction is
equal to the negative of the residual. This residual equation is solved on a coarser grid and the correction
is interpolated onto finer grid.

In order to define the algorithm we use the following definitions

1 transfer operator between grids: - .

- : . A le of t tor 17 is t
I? - restriction operator from grid 1 to grid 2 1 example of a restriction operator [j 1s to
I} - prolongation operator from grid 2 to grid 1

define it as an injection, i.e. we use every other value in each direction. The prolongation operator I3
may be defined by linear interpolation for the intermediate values, i.e. an average of right and left values
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Figure A.2: Two level grid.

and top and bottom values. The values marked with X in figure A.2 are then taken as an average of the
averages of the intermediate values.
Now we can define the following two level scheme:

1. L®;; iterated k times = L®F, = Ry
2. LA®, ; = —I?R; ; iterated k times, A®) ; = 0 (starting value) (here A®; ; is definied on grid 2)
3. 9, ;= @ﬁj + LAD; and goto 1.

at the end of 1. convergence is checked.
Wesseling [10] estimated the work of the multigrid method to be W = O (N 1In N), a substantial im-
provement over the Gauss-Seidel method.
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Figure A.3: Cartesian coordinate system.
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Figure A.4: Two different coordinate systems.

A.2 Cartesian tensor notation

Tensor notation is a compact way to write vector and tensor formulas. Vectors and tensors are objects
which are independent of the coordinate system they are represented in.
In the Cartesian coordinate system in Figure A.3 we have the unit vectors

lex| =1 k=1,2,3
The scalar product of two unit vectors is the Kronecker’s delta, g

1 k=1

ey -e =0 = 0 k£

and the position vector r is
3
r =1x1€e; + x2eg + xr3€3 = E Tr€r = Tp€fk.
k=1
The last expression make use of Finstein’s summation convention: when an index occurs twice in the same
expression, the expression is implicitly summed over all values for that index.
Example

5kk = 511 = 511 +522 +533 =3

dija; = dirar + dizaz + dizaz = a;.

A.2.1 Orthogonal transformation

Consider two arbitrary oriented coordinate systems as in Figure A.4. Assume identical origin, a = 0. The
unit vectors are orthogonal
e;C . e; = 5kl
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€1
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el - eywy = cos (xh, 1) 1 = co111

Figure A.5: Projection of e121 on €.

and a position vector is independent of coordinate system,
r =€, = 1)€].
Component k of r can be written as
e, T =mxe) e =€) e, =x0 =) = Ty, =€) - ew = ey
where we have the transformation tensor
Cr'l = e% e = COS(.T;C, :Z?l).
Since cos(xh, x1) # cos(x), z2) in general, we have (for k = 1,1 = 2)
crk = e - ey = cos(z), T) # il

From
/ / / / / /
€T =T€ € = T€e € = Tk =€ ek = Crpd; = Cip;

we conclude that first index refer to primed system!

Example

/ / / /
Ty = CuT = Cpix1 + Cpaa + cpaxs = cos(xy, x1)xy + cos(xy, T2)ra + cos(xy, T3)x3

/ / /
€, -e1x1 + e exTs + € -e3xs

which for component 2 reads
/ !/ /! /!
Ty = €5 €171 + €5 - €T + €, - €373

*. 4, is projection of e1x1, €222, €313 on €5, A visualization of the projection of e1z1 on € can be seen
in Figure A.5.

The relation between cg; and ¢,,; can be studied through

/ / /
T =Cgl T = CKICmITy, = (Cklcml — 5km) Z,, = 0.
~~ ~
Srem Ty, Crmi T,

In the same manner we have

!
Tp =Ck T} = CQkCimTm = (CikCim — Okm) Tm = 0.
N~~~ N~~~
5kmxm ClmTm

A.2.2 Cartesian Tensors

Def. a Cartesian tensor of rank R is a set of quantities Tk;,,... which transform as a vector in each of its
R indices.

/
Tklm... = CkrCisCmp - - - Trsp.,.



Example
For scalars the rank is R =0
a-b= aﬁc b;C = CkICkm albm = albl,
———
Oim
for vectors R =1
a;C = Cr1Qy

and for a tensor of second order we have R = 2

!
5kl = Ckmclnémn = CkmCim = 5kl-

Ok is isotropic, i.e. identical in all coordinate systems.
An outer product generates a tensor

! !
T3 Srs = ChmCinCrpCsqLmnSpq
and an inner product generates a tensor

/ !
Tlels = Ckm CinCip quTmnSpq = Ckmcqumnan
——

Smp
A.2.3 Permutation tensor
1 even
Ehim =< —1 3 ifkilmis { odd permutation of (1,2, 3)
0 no

As examples of permutations of 1,2,3 we have

(1,2,3), (3,1,2), (2,3,1) even permutation e193 = 1
(2,1,3), (3,2,1), (1,3,2) odd permutation  e913 = —1
at least 2 subscripts equal no permutation 991 =0
A.2.4 Inner products, crossproducts and determinants
The inner product of the vectors a and b is
a-b= 5ijaibj = a;b; = a1by + azbs + asbs.
The cross product of a and b can be written as

€] ey €2
axb=|a a a3z |= (a2b3 — a3b2)e1 + ((Igbl — a1b3)e2 + (albg — agbl)eg = Eijkeiajbk
by by bs

and the determinant of the tensor a;; is

ai1p  ai2 a13

|{aij}| = @21 G22 A23 | = E4jkA1;A2;03k
asy ag2 as3
1
—eijk(@i1aj2ar3 + ai3a1a82 + Q203081 — 02051083 — A;30j20k1 — Qi10;30k2 = —EijkEpqrGipijqQkr-
6 6
We have the permutation relation
EklmEksp = 5l55mp - 5lp5ms- (Al)

If we set s =1 in (A.1) we get
ExtmErip = (3 — 1)dmp = 20mp
and if we also use p = m we end up with
EkimEklm = 6

The permutation tensor can also be used to derive the following vector relation

(a X b) . (C X d) = €ijkajbk5ilmcldm = (5jl5km — 5jm5lk)ajbkcldm
= ajcibrdr — a;d;bre, = (a-c)(b-d) — (a-d)(b-c)



A.2.5 Second rank tensors

All second rank tensors can be decomposed into symmetric and antisymmetric parts, Tx = T(x1) + Tiris

where the antisymmetric part is
1
Ty = —Tx) = 3 (Th — Tix)

and the symmetric part

1
Ty = Tary = 3 (Tt + Tix) -

The symmetric part can be decomposed into isotropic and traceless part, T(z) = T+ ?kl, the isotropic
part being

= 1
Ty = ngmékl
and the traceless part is
—_ 1
Ty =Ty — §Tmm5kz-

If we project the isotropic, traceless and entisymmetric parts we get

1 1
SonTiw = 5 (Soen Ty + Saw Tuw) = 5 (Seen Ty = St Tiway) = 0

= _ 1 1 1 1
STy = gsmm(skl (T(kl) - —Tmm5kl) = gSmm (Tkk - ngkéll) =0

3
=
STy = STy
STy = SwnyTir
ST = SuTw
ST = SwuTw,
and each part is invariant under transformation
T[Ikl] = CkrclsT[rs] = _CkrclsT[sr] = _ClrcksT[rs] = _T[/lk]

o _ _
T, = crpCrqlpg = OpgTpg = Tpp

_y _ 1 1
Ty = ckpCigT'pg = CrpClq (T(pq) - gTrr‘qu) = T(IptI) - §TT’“5“ :

Since we only need three components to completely describe an antisymmetric tensor of rank R = 2 it
can be represented by its dual vector

di = ijrTjr = bRy + €Tk
The first term on the right hand side is zero since ¢;;;, is antisymmetric in any two indecies. Multiply both
sides by €iim

1
€itmdi = €am&ijkTik = (010mrk — O1k0myj) Tk = Tim — Tt = 2Tim) = Tim) = §5ilmdi

Note: There are 3 independent components in 7y, and d;.

In order to sum up, an arbitrary tensor of rank 2 can be divided into the following parts

Ty =Tty + Tigy) = Tht + Tt + Ty = gTrr(Skl + 1wy — §Tw5kz + gfikldi
—_—— —,———— ——

isotropic traceless antisymmetric

Properties of the above parts are invariant under transformation. In the Navier-Stokes equations we have

the velocity gradient g;? . The antisymmetric part of this tensor describes rotation, the isotropic part the
J

volume change and the traceless part describes the deformation of a fluid element.



Example
‘We have the second rank tensor

1 2 3
{Tu}t=1|4 5 6
7 8 9
which can be divided into a symmetric part
1 3 5
{T(kl)} =3 5 7
5 79
and an antisymmetric part
0 -1 -2
{T}=]1 0 -1
2 1 0

The symmetric part can then be divided into a isotropic part

_ 5 0 0
{Tuf=]0 5 0
0 0 5 |
and a traceless part ;
_ -4 3 5
{Tkl} = 3 0 7
5 7 4 ]
The dual vector of the antisymmetric tensor is
-2
{di} = | 4
-2

A.2.6 Tensor fields
We have the tensor field T;;(x1, z2, z3) = Tj;(x)) with the following properties
e partial derivative transforms like a tensor
d  Oxp O

_ _ !
o = 9n Do Cpk Er. where (Tk = cpry)
P P

e gradient adds one to tensor rank

0
o
e divergence decreases tensor rank by one
R e P
e curl D
(Vxu), = Eijk({)?j

which can be compared with the expression for the determinant.

Example
Show that V - (V x ®¥) = 0.

2
o v, ) 0

V- (VxW) = 8—zk€klm—8zl = Eklmi@xkazl U, =

. . . o s o2 . P
since gy, 18 antisymmetric in kI and Fo,0m 18 symmetric in kl.



dS =ndS

Figure A.6: Volume V bounded by the close surface S.

Example

Show that ¥V f(r) = L f'(r) where {r}, =z and r = |r| = \/Tpzy .

r Tpxy) /2
(VI = gt =L~y A

T odr 9z Ay,

1 0 1 1 1
I B} (zpyp) 2 6—2% (zpzp) = f! o (OpkTp + Tplpk) = ;f/33k‘ = {;f/r}k

Example
Show that V x (V xF)=V(V-F) - AF.

) ) o 9 o 9
(V x (V% F))l = €ijk @Eklma_xlFm = Eijkf:‘klma—xja—xlFm = EkijEklma—xja—xlFm =

(5il5jm_5im5jl)6 0 0 0 0 0 0 0 0 BF*(V(V'F)—AF)Z.

T Ll e e et el e ol et P

Example
= V xu ) 0
Show that if uw = Q X T then Q = . This means, show that ;1 6—uk = 2Q);.
Lj
Eljk 813j Uk {uk Ekim l'rm} €zgk 813j (5klm le) gzjkfklm 813j 1T"m

0 0
Ekijfklm%Qle = (0:10jm — 6im5jl)%ﬂlrm =
J J

0 0 ) Orm or; or
%Qirm - 6—9”(217"1- = {Q independent of x} = Q;

Oy 0w

m_q4141-3 I

ot o 01 =

3Q; — Q16 = 29,

A.2.7 Gauss & Stokes integral theorems

Let n be the outward pointing normal to the closed surface S bounding the simply-connected volume V',
see Figure A.6. Gauss integral theorem then states

]{a-ndS:/V-adV
v

S

}(aknde:/%dV
Bxk
J

S

or



dl
C

Figure A.7: The open surface S enclosed by the contour C.

for a differentiable vector field a. This can be generalized to

0
kalmnp ds = / a—xkalm dv.
S \%4

Example

Z{fnds_V/Vfdv.

%a xndS = /V x adV if Tklmnm = EklmAIMm.
S \%4

Stokes theorem states that for a differentiable vector field a if an open simply-connected surface S is
enclosed by a closed curve C, of which dl is the line element as in Figure A.7, then

fa-dlz/(vXa)-nds

C S

or

dam

Q. dxk = /EklmndeS
8CCk

C S

this can be generalized to

0
Tklmdx = /Ei' ni—T mdS
j{ p G, Kl
c s

Example
Let Tk = f. In the generalized Stokes theorem we then get f sijpni% dS in right hand side
S J

](fou:/nxvfds

C S

A.2.8 Archimedes principle

Gauss theorem can be used to calculate the buoyancy on an object immersed in a fluid (Archimedes circa
281-212 BC). Consider a water cylinder with volume dV and mass dm, Figure A.8.
The force from the water cylinder is

dmg= dVpg = z3pg dA
~——
pressure
where ¢ is the gravity constant and p the water density. The pressure at a distant z3 from the surface in
a fluid is then p = pgzrs + py where pg is the atmospheric pressure. Let IT be the buoyancy force resulting

from the pressure on the object, m the mass of equivalent volume of water and M the mass of the object
in Figure A.8. The force on a small element dS of the body resulting from the pressure is

dlly = —gpzani dS



DPo

dV| dm

dA
x3

Figure A.8: An object with mass M immersed in a fluid illustrating Archimedes principle.

mg

Mg

Figure A.9: The forces acting on an object immersed in a fluid. m is the mass of equivalent volume of
water and M the mass of the body.

where the minus sign stems from the outward pointing normal n. The buoyancy force can then be calculated
through

0

Oy = — j{pgzsnk ds = —pg/ I dV = —pgdr3V.

Zg
s v

This means that the object loses some weight as the water is displaced. The buoyancy force is

Uz = —pgV = —gm

see Figure A.9.

The moment of a force F at some arbitrary point with position vector r from the point of application of
the force is M = r x F. The moment around the center of gravity G of the homogenous body produced by
the pressure force dII acting on an element dS of the body is dM¢g = (r — rg) x dIT as in Figure A.10.
This can then be used to calculate the total moment around G form pressure forces on the body

8 8.173

Mg, = - ]{pgszm (x1 — zq,) 3Ny, dS = —pgszm/ [—(:Em) — TGy —
m
S 1%

o } av =

—PYGEkim / [0im3 + Omsx; — dmsza,] AV = —pgeps /wl dV —zg, V| =0
v \%

If a part of the fluid is frozen (without changing in density) this body is in equilibrium in the fluid:
F=M-=0.

Figure A.10: Moment around G from pressure forces acting on the object.
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Figure A.11: Cylindrical polar coordinates

A.3 Curvilinear coordinates

Cylindrical Polar Coordinates

The cylindrical polar coordinates are (r, 6, z), where 6 is the azimuthal angle, see figure A.11. The velocity
can be written as

u=u,e, +ugey+u,e,, (A.2)
where the unit vectors are related to Cartesian coordinates as

e, =e,cosf +e, sind,

e, = —e,sinf +e, cosf, (A.3)
e, =e,.
Non-zero derivatives of unit vectors 5 9
e ey
—_r — _— = — . A.4
o6 — %" ag (44)

Gradient of a scalar p
dp 10p dp

Vp = Eer + ;%ee + aez. (A5)
Laplacian of a scalar p
10 /[ Op 10% 0%
2 _ 19 (9P 8 ZF
Vir= T8T<T8T>+T2 892+8z2' (A.6)
Divergence of a vector u
v.ouo Lo 10U | Ou. (A.7)

r Or r 00 0z

Advective derivative of a scalar p

dp | ug dp dp
Ur or r 00 U= 0z

Curl of a vector u

_ (10u, Ou, Ou, Ou, 1/0(ruy) Ou,
VX“‘(F@@_E>er+(az_ar)ee+2< or 09 )% (A.9)

Incompressible Navier-Stokes equations with no body force

ou, u? 10p 9 u, 2 Ouy
8t +(UV)UT—T——;E+V<V UT—T—Q—T—QW), (AIO)
Ouy U, Ug 1 Jp 9 2 Ou Ug
i . L At - —_r__- A1l
ot (- Vyug + r pr69+y v u9+r2 00 2 )’ ( )
Ou, _1op 9
W + (u V)UZ = paz + vV U,. (A.12)



P(r,0, )

Figure A.12: Spherical polar coordinates

Spherical Polar Coordinates

The spherical polar coordinates are (r, 6, ¢), where ¢ is the azimuthal angle, see figure A.12. The velocity

can be written as
u=u.e, +uyey + U, e,

where the unit vectors are related to Cartesian coordinates as

e, =e,sinfcosp + e, sinfsinp + e, cos,
ey =e,cosbcosp +e, cosfsing —e,sinb,

e, = —e,siny+e, cosp.
Non-zero derivatives of unit vectors
Oe, Oe,. Oey Oey
=e,, — =e,sinfl, — =-—-e,, — =e, cosb,
a0~ " Ty ST gy S P
Oe,, )
T = —e,sinf — ey cosb.
Gradient of a scalar p
Op 19p 1 9p
Vp=—=—e,.+-—e+————e,.
P ot T e rsinf dp ¥

Laplacian of a scalar p
1.0 ( ,0p 1 9 (. ,dp 1 &p
2 2
= —— e _ 9— _
v r2 or (T 87’) tZsmo 06 (sm 89) + r2sin? § Op?
Divergence of a vector u

18(r2uT)+ 1 O(uysind) 1 Ou,
r2  or rsin ol rsind Op

Advective derivative of a scalar p

_Op  ugOp Uy, Op
(u v)p_uT8T+ r 89+Tsin98<p'

Curl of a vector u

L (Olugsind) du,\ ~ 1( 1 Ou, Olruy)
00 Op ) " r\sinf dp or

Jes

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)



Incompressible Navier-Stokes equations with no body force

% +(u-Vu, — ugtui (A.22)
B _%% +V<V2ur B % 2 jin@a(ui{;}ne) 2 in@%)’
% + (- V)uy + 20— Uy (;Ote (A.23)
= (e B e o)
%“’ + (- Vu, + UT:“’ + 2o u“‘;cow (A.24)
__prslineg_Z+V<VQ ot r2521n9%—1z ri(s:?;f@%—?:_ r2:i§29>'



Appendix B

Recitations 5C1214

B.1 Tensors and invariants

Tensor Notation

Scalar
p=Pp
Vector
U
(u);=wu; Hu=|v| thenus=v
w
Matrix

a1 a2 ais

(A)U = Aij If A= |as1 aos ao3| then Asz = aos

a3l a2 a33
Kronecker delta

1 ifi=j
51‘3‘:(1)@':{ 0 ifidt]

Einstein summation convention
3
i=1
Kinetic energy per unit volume
1112 — 10,2 2 2y _ 1
zplul? = 5p(u® +v* +w?) = 5pusu;

Matrix operations

a-b=aiby + asby + asbs = a;b; = d;;a;b; = a;b;
(AD); = Aijb;
(AB)i; = AirBr;
tr(A) = Ay
(A)ij = Aij <= (AT)y; = Ay
Permutation symbol

109



1 if ¢5k in cyclic order. ijk = 123, 231 or 312
Eijk = 0 if any two indices are equal
—1 if ¢jk in anticyclic order. ijk = 321, 213 or 132
- €1 €2 &3
axb=1|a1 ay a3z |= El(CLng — a3b2) — éQ(Cleg — agbl) + ég(albz — 0,21)1) = Eijkéiajbk
by by b3

€ijkEitm = 0j10km — Ojm Okl
€ijkEijm = {l = .]} = 36km - 5jm5kj = 35km - 5mk = 25km
Eijk€ijk = {m=k}=2-3=6

Rewrite without the cross product:
(d X B) . (E X J) = ((l X B)i(é X CZ)l = EijkQj breiimerdy, = €ijkEilm Ay brcd, =

(5jl5km — 5jm5kl) a; bredy, = ajcjbkdk — ajdjbkck = (L_l . 5)(1_7 . CZ) — ((_1 . d)(b . E)

Invariant parts of Tensors

Tij = T{? + T{;1 Symmetric and Anti-symmetric parts.
T = %(Tij + Tji) =T5  Symmetric
Ti? = %<Tz - Tj'> = —Tﬁ Anti-symmetric

The symmetric part of the tensor can be divided into two parts:
s -
T7 =Ty +Ti
Tij = Tg - %Tkk&j trace less

Ti; = %Tkkéij isotropic

This gives:
_ 7S A _ T 7 A
Tiy =T + T = Ty + Ty, + T35
Ou;
In the NS equations we have the tensor —. The anti-symmetric part describes rotation, the isotropic

Ly
part describes the volume change and the trace-less part describes the deformation of a fluid element.

Operators

0
(V X ﬂ)l = Eijk%juk
Gauss theorem (general)

Gauss theorem:



fﬁmw:/vﬁ@f
S Vv

or,
%FinidS:/ OF: 1
S v 8$i

In general we can write,

0
Ti; ds = — Tk dV
%5‘ gk ny /V 6(E[ ik

Example: Put ;. ni = T uymy

0
TyjwndS= | —(wTy)d
j{s i dS /1/5£Ez(ul 1)V

or,

j{T(a-ﬁ)dsz/ (V-@)T+ (w-V)T)dV
S

\4

Identities

Derive the identity

Vx(FxG) =(G-V)F+(V-G)F - (V-F)G—-(F-V)G

_ 0
(VX (Fx@), = Eijk(?TjEklmFl G, = EijkEklmaTjFl Gm = EkijEkzmaTjFl Gm =
0 0 0 OF; oG ; OF; 0G;
t0jm — Oim0jt) 2 —Fi Gy = =—F; G — =—F; Gy = = G + 52 Fy = =L G, + 2 - F; =
(5l5j 5 5ﬂ)8xj lG 6£Ej GJ 6£Ej J G 6£Ej GJ * 6£Ej al'j G + 6£Ej J
0F; 0G;j OF; G, = _ _ = o _ _
) g 21qG, —F; — W EF .G\F — .G — (F - i
Ci g+ g P g Gim By gt = (@ V)P 4 (V- Q)F — (V- F)G — (F- V)G
Show that:
V- (VxF)=0
_ 0 0 o 0
V- (V X F) = 8_%Eijk87ij = Eijka_xi(?Tij
o 0 0 .
Remember that 5, = —¢j;, and that oz, (’“)—x] = (’“)—x] oz, F}. and thus all terms will cancel.
0
Example
V xu

Show that if @ = Q x 7 then Q =

0
. This means, show that &;;, =—ur = 2.
6£Ej

0
ik Wk — — Ckim mJf — Cigk m m) — Cij ma_ m —
£ kaz_uk_{uk_fkl Yrm}=c¢ Ry (ektmUrm) = €ijkerl Yy, =

7 T 817]'
0 0
Ekijéklm%Qle = (0i0jm — 5im6jl)%ﬂlrm =
j j
0 0 Orm, or; Orm,
T T 92, i = {Q independent of x} o, law[ {5£Em +14 3

3Q; — 16, = 29

Derive the identity




B B ) 0 oOF 0Gy,
v. (FX G) = a—xlakaJ Gk :Eijka F Gk _Eljka ] Gk+613k 6 i F Ek”a
OF, oG = A & ~
Ekz‘j(?—zJ-Gk—FjEjika—;:(VXF)'G_F'(VXG)
Show that: B _ _
VX (VxF)=V(V-F)—AF
_ P P o 0 o 9

(V% (Vx ))1 ik 5, Hm oy SikER Oz Oz, SRITH Oz Oz

T Xy

o 0 o 0 9 0 0 9 0 9
(0i16jm — dimj1)

OF;

9w, 0m ™ " B, 0w, By 0w, O, 0x, 0 Dy 0y

oG
Gk +F Eijk O zk
(V(V-F) - AF)



B.2 Euler and Lagrange coordinates

Particle path (Lagrange’s representation)
Following a fluid particle as time proceeds the path is described by

or R
—~ = 77 rt=0)==x
Py a, T7( ) =T,

Streamline (Euler’s representation)

Instantaneously a fluid particles displacement dz is tangential to its velocity u:

dz @
dz|  |al
or if we put ds = |dZ|/|al:
ds

Exercise 1

Show that the streamlines for the unsteady flow
u=1ug, v==kt, w=0, wugk>0

is straight lines, while any fluid particle follows a parabolic path as time proceeds.
Streamline (fix t):

dz = +
— =u=u T =uUys +a
ds 0 0

d

Yeu=kt = y="kts+b
ds

Then we see that y(z) is a linear function,

kt
y=—z+d(t)
Ug

Particle path (fix Z,):

Ou = t+
— =u=u xT=u x
By 0 0 0
dy - 1 .
“=u=kt = xz=_ki*+
oi g T

Then we see that y(x) is a parabola,

1k
y= 5—2(552 — 2z02 + 3) + Yo
L)

Exercise 2

a) Separate the shear flow 4 = (8y,0,0) into its (i) local translation, (ii) rotation and (iii) pure straining
parts.

Lets denote the different parts as

In tensor notation it can be written as

P2 — Pl
u;? =yt + & de + ey dr

(i) Translation is simply @, = {ufl} = (By,0,0)



= 0 0 0 fij = — - = =

ol o
®
oo™
oo o

i = £d7 = (8dy, ~Pd, 0)

(iii)

b) Find the principal axes of the rate of strain tensor e;; and make a schematic sketch of the decomposition
of the flow.

H_l 8ui+8uj tri t of 8ui
€ij = 3 oz, " omi symmetric part o oz,
0 8 0
Cij = 5 6 0 0
0 0 0
Eigenvalues:
-A fB/2 0
det(e;;—Mdij) = |B/2 =X 0| ==X348°N/4= - AA-B/2)(\3/2) =0. = A\ = /2, A2 = —3/2,\3 = 0.
0 0 =X
We get the eigenvectors from e;jk; = Ak;:
ky = 1(110) ko = 1( 1,1,0), k3 =(0,0,1)
1= \/5 s LYy 2 — \/§ s Ly U)y 3 = s s

Now sketch the decomposition of the flow

(Bdy.0,0) = £ (Bdy, ~Bda,0) + 1 (Bdy, B, 0)

| B . SN
h

TZ2 NPDAN

-1 0 1 -1 0 1 -1 0 1




Exercise 3

a) Sketch the streamlines for the flow [u,v,w] = [ax, —ay, 0], where a > 0.
Streamlines in parametric form (z(s), y(s), 2(s)). We have a 2D flow since w = 0.

i,
" ods

Integrate w.r.t. s,
x(s) =ae*, y(s)=be .

Then we see that,

We have,
c c
z(s) = —, y(s) =——=
O YT
Streamlines:
d d
z>0,y>0 = —x>0,—y<0
ds ds
r<0,y>0 = d—x<0,@<0
ds ds
d d
r<0,y<0 = —$<0,—y>0
ds ds
d d
r>0,y<0 = —x>0,—y>0
ds ds
d d
Remember that Z—(S) = ax and % = —ay. This gives the direction of the flow:
S S
0.5} 5 | Jx )
0 —
-0.5pF V\ \ / =
_1 \ /

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

o

b) The concentration of a scalar is c(z,y,t) = Bz?ye~*. Does this concentration change for a particular

fluid particle in time?

Use the material time-derivative

D 0 0 0
Fj = 8_§ + ua—; + va—; = —afzye” ™ + aa2frye” ™ — ayfrie ™ = (=1 +2 — 1)Ba’ye * = 0.

Thus the concentration ¢(zx,y,t) is constant for a fluid particle.

c¢) Using the alternative (Lagrangian) description of the flow, show that

ou _ Da
ot Dt

and write the concentration as ¢ = c(zy, o, 1)



Particle path:

So we have

ox ot
= =Uu=Qar = I =ZIpe
ot
dy —ai
— =V =—U = = Yp€
i Y Y=o
%Zia—%za?xoea’gzoﬂx
ot Ot ot
Qv 00y 5 i o
of “oioi St TV
Du_8u+ 8u+ ou
Dt ot “ox Uay_ax
Dviav_k 8v+ v
Dt ot “or " Vay VY
ou _ D
ot Dt

Both terms describe the acceleration of a fluid particle.

Now rewrite the concentration

2 2ol

c(a,y) = Brye ot = Bade? yje ot 7 = Bady, = ¢(X)

2 Y

The concentration foes not change as we follow a fluid particle.

independent of ¢!



B.3 Reynolds transport theorem and stress tensor

Exercise 1

a) Consider a fixed closed surface S in a fluid. Show that conservation of mass implies

ap 0 B
ot + o2, (pu;) = 0.

The change of mass in the volume is described by the contribution from the mass flux and the change in
density and conservation means that this should be zero

dp j{
—dV + ¢ pu;n;dS =0
v Ot s

Using Gauss Theorem we can rewrite the surface integral

0
fpu n; dS / 9mi(pu)

op 0 B
,/V{E + (9.171 (pul)} dV = 0.

This must be true for an arbitrary volume and this implies

We have

ap 0
a + 8:51- (puz) =0.

b) Show that this can be written

Dp ou;
i T
Dt + p@:vi ’
0 _Op Ou;  Op ou;
o, ") = T P, = o, P,
This gives
dp dp Ou;  Dp Ju;
ot " ow, oz~ Dt o,
—_——
Dp
Dt
c¢) Explain what the following means
Ou; Dp
=0 = —=0
6:101- Dt

If we are following a fluid particle, the density and volume are constant. But in a fix position, the density
can change

dp dp

L

ot 6:101-

Remember the decomposition of gZ? in its invariant parts
J

ou; 1/0u; Ou; 1 Ouy, 1 Ou;  Ouy l%
38:Ck
————

— _ __61 _ _
8Ij + 8561 3 8Ik 7 + 2 8CCJ' 8171

817]' 2
deformation &;; rotation &;; volume change &;;




Exercise 2
a) Use Reynolds transport theorem to provide an alternative derivation of the conservation of mass equation

Ip
ot * 8:51-(

pu;) = 0.

Reynolds Transport Theorem:

D Ol 0
— =+ —(u; T d
/ Tigr d /V(t)< ot +5$z( : m)) v

D op 0
— pdV:/ (——l——pui)dV
Dt V(t) V(t) 8t 8:61( )

No flow through the surface. Valid for all V (¢):

Put T}, = p,

op 0
pr a—xi(Pui) =0
b) Use this result to show
D i
— FijpdV = / J’“ dv
Dt V(t)

Put T}, = pF};;, in Reynolds transport theorem

D 0 0
- pF,. dV = Z(pF,.) + —(upF,;,) | dV =
Dt Vi) ijk /V(t) (8t (p ’ij) + 8CCl (ulp 1gk))

OF, ;. dp 9 OF, .,
ijk tJ
/V(t) (P ot i +Fijk_8z (puy) + pu, oz, ) av

8p B OF, .. OF, ..
F. % Y d
/v(t) [ ar < ot Oz, (pUI)) * p( ot T Oz, ﬂ v
—_——— ~—_———

=0 _ DFy

- Dt

DF,
ijk
p————dV
/V(t) Dt

Exercise 3

Show that the stress tensor T;; = —pd,; for the flow
0= Xz,
where @ is constant.

Tensor notation:
U = EipWiy

The stress tensor:

3ui 6'U/j > _

T = —ps..
1] p 1) +‘u<6m] 6‘T,L

—pd;; + ﬂ(aixj(giklwkxl) + %(%‘kzwkxl)) =
Oz, Oz,
—pd;; + H‘%( 1kla Ly Egkla_mi) =
—pd;; + ka(giklélj + €j501) =
—pb; + pwy(Eins + Ejki) =
—pd;; + pwy (=455 + €11) = —D0;;



The stress tensor Tj;
The equation for the stress tensor was deduced by Stokes in (1845) from three elementary hypotheses.
Tij = —pdij + 2 pei;
Writing this on the form,
Tij = —pdij + T7ij

the following statements should be true for the viscous stress tensor 7;; in a Newtonian fluid.
u;
817]'

(ii) each 7;; should vanish if the flow involves no deformation of fluid elements.

(i) each 7;; should be a linear combination of the velocity gradients

s
(i) the relationship between 7;; and a—ul should be isotropic as the physical properties of the fluid
Ly
are assumed to show no preferred direction.

Exercise 4
If 7;; is a linear function of the components of e;; then it can be written
Tij = Cijkl €kl
It can be shown that the most general fourth order isotropic tensor is of the form
Cijki = Adij0pr + Bindji + Coudj

where A, B and C are scalars.

a) Use this to show that
Tij = )\ekkéi]‘ + 2ue;;

where A and p are scalars.
Tij = Cijki €kt = (Adij0r + Boidji + Coy1d i )er = Adijerr + Beij + Cej;
Say that A = A and that B = C = p, then since e;; = ej; we have

Tij = )\ekkdij + 2,ueij
1
b) Show that if we have a Newtonian fluid where p = _gTii then
2 Ouy Oou; Ou;
T;j = — e )i -
/ <p—|—3 Bmk> J+u<8mj+8xi>

Tij = —pdij + Tij = —pdi; + Aeprdij + 2pe4;

‘We have

Then

This gives A\ = —%u, and thus

2
Ti;j=-p— gﬂekkisij + 2pe;;

2 Ouy Oou; Ou;
Tiyj = — SHA— | 0ij .
/ <p—|—3 6mk)5j+u<8mj+8xi>

or




B.4 Rankine vortex and dimensionless form

The Rankine vortex

A simple model for a vortex is that it is a rigid body rotation within a core, and a decay of angular velocity
outside. This can be described by

wr, r<a,

Up = wa2 Up = Uz = 0
— r>a,
r
and is called a Rankine vortex.
3 I
\
2 T !
| \
| \
| 2
\
A Q
\
|
| 1
\
0 |
0 1 2 3
r 0
0 1 2 3
r

Figure B.1: Velocity and vorticity in a Rankine vortex with w = a = 1.

Exercise 1

a) Find the pressure inside and outside of a Rankine vortex:

We use Eulers equations for incompressible flow ( neglecting viscous effects ):

= __v
Eulers equations Dt Ptg
V-u=0
Da ou ,  _._
D = o, TV
<~

We are working with cylindrical coordinates, use the appendix formulas

_ o 8 ’nga 8
_ 7_u(9(9 _ _U98U97 ug Oéy _U98U97 u§7
(@ V)i = " ggluece) = - gg o+ gg W= g0 T L0
et
0 10 19)
Vp —pér—l———pée-l- péz



Look at the different components:

_ u? 10p
e Il Rt
" r por
110
€p ——;;a—z =p=np(r,z) only
19p
_ 0= _19P _
“ p Oz
Solve for the pressure when r < a:
10 r?
ér —W2T:—;a—]; p:pw27—|—f(z)
0
e a—p =-pg = [f(z)=-pgz+C1
z
So we have the pressure:
2
p(r, z) = pr% —pgz+Cy r<a
Solve for the pressure when r > a:
_ wla* 19p pw?a*
€r: =—--= =—
" r3 por 272
_ 0
2 a—p =-pg = [(z)=-pgz+C:
z
So we have the pressure:
2 4
p(T,Z) = _p;}TZ’ —pgz+Cy >0

Now determine the difference between the constants by evaluation at r = a

pw3a

2

2 2.2

W
—pgz+ C =L —pgz + Co

b) Determine the pressure difference Ap between r = 0 and r — oo

= (Cy—C; = pW2£L2

Ap = pes —po = —pgz + C2 — (—pgz + C1) = Cy — C1 = pw’a’

¢) Now consider a free surface at atmospheric pressure pg.
Find the difference in z between r = 0 and r — oo

{

Determine the shape of the free surface:

pw2a?

5— — pgzo + C1

2 2
—B O pgzee + Co

r=20:

r— 00 !

Po =
Po =

pw?r?

Zoo — R0 =

Cy—Cy

Py

bo = 2 _ng+Cl r<a ZNT2:>ZZ%;‘2+01P*Q;DO
%at 2 4 _
pO:—p;}Tg _ng+CQ r>a ZN%jZZ_(;gg2 Cgpgpo
Say that z = 0 at r = 0 then C; = pg and we get
w2r2
Z = r<a
29
and
wial Oy - O wiat  wla®  w?a® 1 a’? >
z = _ _ _a ey
2gr2 pg 2912 g g 972
So we have y
w2;‘ r<a
z(r) = 5 5 ,
wga (1 — 2(1?> r>a

w



0.1

0.09r
0.08r
0.07r

0.06

Figure B.2: The free surface of a Rankine vortex with w =a =1 and g = 9.82.

wir?

29 r<a
2

z(r) =
(r) “9“2(1—%> r > a.

Exercise 2
Solving the 2D flow around a cylinder involves solving

%Jr(a-v)a:‘%vavzm V-u=0,

with the boundary conditions
=0 ona2®+y*=ad’ a— (U,0,0) as 2? +y* — 0.
Rewrite this problem in dimensionless form using the dimensionless variables

¥ =z/a @ =ua/U p =p/pU? t =tU/a.

0 0
Note that the scaling Z’ = Z/a implies V' = aV and ' = tU/a gives Fi %E
Change to dimensionless variables
vouw U? pU? vU _ o
- = _—'v/—/:_ V// _v/—/
a O a (@ Ju pa Pt a? b
Divide by U?/a
ou' i -V = -V Ua_g] v/27/
i TV =V g VT
~~
e
U2
T Inertial f U
The Reynolds number is Re = —%4- = _hertial forees _ 2@
U  Viscous forces v
a2
o’ _ B 1 9
W + (u/ . V/)u/ — _v/p/ + ﬁv/ u/

The continuity condition

Via=0 = —-V.-i=0 = V-@=0



The boundary conditions

_ _ 2 2 _ 2 2
2=0 onz’+y*=a’>= U@ =0 ond’s’"+d*/ =d*= @ =0 ona’"+y =1

u— (U,0,0) asa®+1y>—oo= Ut — (U,0,0) asac’’+a%y° — o=

@ — (1,0,0) asa2’” +y° — oo

The solutions of this problem will depend on Z’, Re and t’ only, and thus the solution of this problem is
the same for a specific Re independently of the individual values of U, a and v.

Exercise 3

Show that the net viscous force per unit volume is proportional to the spatial derivative of vorticity, i.e.

87’17‘ 3wk

= —UE;i} ——
al'j # ”k(?:vj

and discuss its implication for flows with uniform vorticity (as in solid-body rotation).

8Tij 8 8UZ 8’&]' 82ui 8211,j (?Qui

or.  For. 5—+a— :“345,4—5,3, ~H ooz,

T x; \ O T ;0% x;0x; ;0%
Owy, 0 Oup, 0% uyy, B 0%y, B
_,Ufglgk%j - _,Udsuka—xj (Eklma—ml> - _,Ufeklgaklmm - _,Ud(ézlisgm - 5zm5jl)m -

821Lj 8211,1' - 8211,1'
H al'jawi 8xj8xj _'ual'jal'j
Thus
8715 &uk

= —Eis
8CCJ‘ Heijk 8Ij

The net viscous force vanishes when the vorticity is uniform, since no deformation exists.



B.5 Exact solutions to Navier-Stokes

Exercise 1

Plane Couette flow:
Consider the flow of a viscous fluid between two parallel plates at ¥y = 0 and y = h. The upper plane is
moving with velocity U. Calculate the flow field.

Assume the following:

Steady flow:
0 _,
ot
Parallel flow: 5
Us
=0 =0
v T Oz
Two-dimensional flow:
w=20 2 =0
S 9z
No pressure gradient:
op 0
afi -

Navier—Stokes streamwise momentum equation:

% + (@ Vu= —%Vp—i— AR
We have o2 5
U U
= —=A =A B
12 By = u Y+

Boundary conditions:

So we get:

Exercise 2 (i)

Plane Poiseuille flow: ( Channel flow )
Consider the flow of a viscous fluid between two solid boundaries at y = +h driven by a constant pressure
gradient Vp = [—P,0,0]. Show that

Figure B.3: Coordinate system for plane Poiseuille flow

Navier—Stokes equations:
ou 1
o+ (@ V)= VPV

V-u=0.



Boundary conditions:
u(y==xh)=0

0
e We are considering a stationary flow and thus 9h .

e The constant pressure gradient implies 4 = u(y). Changes of @ in z, z would require a changing pressure
gradient in z, 2.

0
e The continuity equation V - u reduces to 8_1} = 0. The boundary condition v(y = +h) = 0 then implies
Y
v =0.

Let’s study the z component of the Navier—Stokes equations:

ow 9w

Vo =V = w=cay+tc
~ By 92 1y T c2

The boundary conditions w(y = —h) = w(y = h) = 0 imply ¢; = c2 = 0 and thus w = 0.
e We can conclude that @ = [u(y), 0, 0].

Let’s study the z component of the Navier—Stokes equations:

P 0%u Ju P P
0=— — > —=—-—— d = = =—— 1’ +d d
P +l/3y2 dy pr+ 1 {u=pv}=u(y) Q#y +diy +ds
The boundary conditions at y = +h give

P P
0=——h?+dih+dy, and 0=——h>—dih+ds
2 2u

P
We can directly conclude that d; = 0 and this gives do = 2—h2 and thus
I

P
= — h2 — 2 - = O
u=g, =y, v=w
Exercise 2 (ii)
Poiseuille flow: ( Pipe flow )
Consider the viscous flow of a fluid down a pipe with a cross-section given by r = a under the constant

0
pressure gradient P = —a—p. Show that
z

Figure B.4: Coordinate system for Poiseuille flow

Use the Navier—Stokes equations in cylindrical coordinates

ou, _ ug 190p 9 Uy 2 Oug
E—I—(th)ur—? ——;5+l/<v uT—————>



Oug B Uy Ug 1 Op 9 2 Ou, ug
W'F(U'V)Ue-i- ———T%-I—I/(VUQ‘FT—QW—T—Q
a’U/z — _ 1(9]7 2
W—i—( V)us = p82+ Vius

0 0
We know that 8_§ =0 and 8_p = 0 and can directly see that u, = ug = 0 satisfy the two first equations.
r

From the continuity equation we get

du
;Z =0 = wu,=u.(r0) only

Considering a steady flow we get from the Navier—Stokes equations

Ju ou 1
u-V z — Uz - = z = = -P V2 z
(@-Vu, =u o Uz P +vViu
Oou, .. .
But we know that 5 0 from the continuity equation. We get
z
10, Ou P d , Ou P
v? == z __z N o z __r
“ rar(r 87") 1 87’(T 87") ,ur
Integrate
ou, P, n N ou, P c1
=——71r“+c =——7r+ —
or 2 ! or 21 r
Integrating again we get
P, . o
Uy = —4—7‘ + ¢ In(r) + ¢ using the boundary conditions u,(r =0) < oo = ¢; =0
I

2
and we have

P
We also have u, = 0 at r = a and this gives ¢y = 4@

Exercise 3

Calculate the asymptotic suction boundary layer, where the boundary layer over a flat plate is kept parallel
of a steady suction Vj through the plate.

Assumptions.
Two-dimensional flow:

Parallel flow:

2 =0, Continuity satisfied
ox
Steady flow:
2 _y
ot

Momentum equations:
Ou ou ou  10p V(62u 82u>

o Yo Ty T s tP\az T o

v v v 10p , < 0% 82v>

Normal momentum equation gives

922 T 92

dp
£ -0
dy



Boundary conditions:

y—oo: u—Ug
Continuity gives
ou  Ov
—+=—=0 = = -V
or + dy v 0

Streamwise momentum equation at y — oo

ou,  19p U

-V - __--F o0
oy p Ox Ty Oy?
Ip
= —=0
Ox
Resulting streamwise momentum equation
du 0%u 0%u Vy Ou
_‘/0 v— = - __J_
Jy oy? oy? v Oy
Characteristic equation
Vi \%
M=—20)\ = N=0Xx=-2
v v

u(y) = A+ Be™Vov/v

Exercise 4

Two incompressible viscous fluids flow one on top of the other down an inclined plane at an angle av. They
both have the same density p and the viscosities p1 and po. The lower fluid has depth h; and the upper
hs. Assuming that viscous forces from the surrounding air is negligible and that the pressure on the free
surface is constant, show that

ur(y) = [(hy + ha)y — éy]m

Make the ansatz @ = [u1(y),0,0] and @2 = [uz2(y),0,0]. The continuity equation

0 0 0
gu + - 0 gives - 0 = v =c¢ and the boundary condition at y = 0 gives v = 0.
dr Oy oy
e Layer 1:
_ 1 9p,
N-S-e,:0= oy geos(a) = p1= —pgcos(a)y+ fi(x)
1 ’ d2 ’
N-S-é, O——;fl(a?)+lewu21 +gsin(a) = fi(z)=a
e Layer 2:
_ 1 0p2
N-S-e,:0= Sy gcos(a) = pa2 = —pgcos(a)y + fa(x)

d2UQ

N-S-e,:0= —%fé(:v) + ng—y2 +gsin(a) = folz)=co
The pressure at the free surface y = hy + hs is pg:
po = —pgcos(@)(hy + hs) + fa(z) = fo=po+pg(hi+ho)cos(@) = f5=0
The pressure is continuous at y = h:
po + pgha cos(a) = —pghy cos(a) + f1(z) = fi =po+pg(hi +ha)cos(a) = f, =0

This gives the pressure:

p1(y) = p2(y) = p(y) = —pg cos(a)y + po + pg cos(a)(hy + ha)



We now have two momentum equations in z:

And four boundary conditions:
BC1: No slip on the plane:  u1(0) =0

d
BC2: No viscous forces on the free surface: ﬂ2%|y:h1+h2 =0
Y

d d
BC3: Force balance at the fluid interface: Ml%b:m = ug%b:hl
Y Y

BC4: Continous velocity at the interface: u1|y=p, = ualy=h,

d
(1) = diyl = —U%y sin(a) +¢11 = w = —%y2 sin(a) 4 c11y + 12
dus g . g 2.
2) = — =—=ysin(« c = Uy = ——y sin(a) + ¢ +c
(2) dy ng (a) +cn 2 21/2y () + a1y + ca2

BC1 = c12 =0
BC2 = ug(—%(m + ho)sin(a) +¢21) =0 = o1 = V%(hl + ho) sin(«)

BC3 = ,ul(—uiy sin(a)+c11) = ug(—yiy sin(a)4co1) {p=vp} =cn1= %021 = V%(hl—i—hg)sin(a)
1 2

BC4 = —2ih‘;’ sin() + Vi(h1 + ha) sin(a)hy = —2ih§ sin(a) + 2L (hy + ha) sin(@)hy + caa
1

12 9] V2
. h? 11
= Coo = gSlH(OL) (71 — (hl —+ hg)h1> (V—2 — V_1>
This gives us the velocities,
. . sin(« 1
ur(y) = — L yPsina) + L (s + ho)sin(a)y = LD 1 1 hy)y - Ly2)
211 121 151 2

__gsin(a) 5  gsin(a) . i 1 1
uz(y) = 50, Y + p (h1 + h2)y + gsin(a) 5 (h1 + ha)hy T

gsin(a) 1, ) h? 1 1
= hi1+ha)y — = — — (h1 + ho)h —_ - —
L, (it ha)y = oy%) + gsin(e){ - = (b + ho)ha J{ - =
The velocity in layer 1 does depend on hy but not on the viscosity in layer 2. This is due to that the depth
is important for the tangential stress boundary condition at the interface but the viscosity is not. There is
no acceleration of the upper layer and thus the tangential stress must be equal to the gravitational force
on the upper layer which depends on ho but not on vs.



B.6 More exact solutions to Navier-Stokes

Exercise 1

Oscillating Rayleigh—Stokes flow (or Stokes second problem).
a) Show that the velocity field @ = [u(y, t), 0, 0] satisfies the equation

ou 0%u

o oy

Consider the Navier—Stokes equation in the z direction:

ou, ou Ou Ou_ 10p  (0°u O%u O
at " “ox ”ay Y9, T p Ox Y\ 922 oy? = 022

With the current velocity field only terms with y derivatives will remain since there can be no change in
the other directions. Further more, the streamwise pressure gradient has to be zero since the streamwise
velocity far from the wall is constant, namely zero.

ou 0%u

o oy

b) Show that the velocity field is

u(y,t) = Ue ™ cos(ky — wt), where k= ,/—

Make the ansatz: u =R [f(y)ei‘d t} = f(y)cos(wt).

Insert into the equation: _ _
iwf(y)ezwt — Vf//(y)ezwt

)~ ) =0 with f(y) =N gives

5 W w w(l+1
A ” 0 = A \/U ’/u(\/i)

Introduce k =/ i,
2v

J(y) = A4 4 BemrHIH) | f(y) 20 as g 00— A =0



We have
u= %[Beyk(lﬂ)eiwt] =R {Bekyei(“’t’“y)] = Be " cos(wt — ky) = Be ™ cos(ky — wt)

Boundary condition at y =0

At y =0 we have u = U cos(wt) = B=U

So we have
u(y,t) = Ue ™ cos(ky — wt), where k= \/g
5
as| |
af |
as| :
s |
Ses| |
ol |
15 :
1 |
os|- :
U5 s =4 0z 0 oz o+ 05 s 1
z

¢) How thick is the boundary layer thickness?

If we define the thickness § of the oscillating layer as the position where u/U = 0.01 we get that

2
e*“:om;»kmzméamm,/;” ;»5z6.5,/g

d) Consider instead the oscillating flow U, = U cos(wt) over a stationary wall. This will simply result in a
change of frame of reference to one following the plate instead. If we consider the solution to the previous
problem and look at it in this new frame of reference we get

u(y,t) = U cos(wt) — Ue " cos(ky — wt), where k= ;_1/

The solution now looks like this

5




Exercise 2

Consider a long hollow cylinder with inner radius 1 and a concentric rod with radiusrg inside it. The rod
is moving axially with velocity Uy.

a) Find the velocity field of a viscous fluid occupying the space between the rod and the cylinder.

Assumptions Steady flow:

0
i 0
Parallel flow and symmetry: 5 5
u=u,(r)e,, 5= 0, 5= 0
No streamwise pressure gradient:
% _y
0z

We can directly see that u, = ug = 0 satisfy the two first equations. The streamwise momentum equation
reduces to
(u-Vu, =vV3u,
where 9 5 9
U ug Ou U
—Z 4 2o Ttz + uz_z
or r 00 0z

G, 10 (00 10 P10 (o
uz_rar Tar 2 002 822 ror T@r

0 ( Ouy\
W(T 8r>_0

=0

(u-Vu, = u,

We end up with

Integrate twice

T(?uz =A = wu,=Alhr+B
or
Boundary conditions
uy(ro) = Uy = Alnrg+ B
Uz('rl) = O = Ah’l"’l +B = B:—Alnrl
U
Up=A(lnrg —Inr;) = A= ﬁ
Uy Uy In =
us(r) = o nr— e Inr = Uolné

b) With what force does one have to pull a rod with length L? Neglect end effects.

Shear stress

Ou, 1Uo

T = =
re =M or rln :—‘1)

Force
27TL,LLUO

In 2o
T

F= 27TTQLTTZ(TQ) =



B.7 Axisymmetric flow and irrotational vortices

Axisymmetric flow

Consider incompressible and rotationally symmetric flow with no mass source at the symmetry axis. The

velocity component in the direction of the axis of symmetry and the vorticity is given.

Uy =772 and w=w(r)e,.
1) Compute u,(r, z) and ug(r, z) for the two cases when
a) w(r)=0 and b) w(r) =w, e/

The vorticity is given,

1 €, TEp €,

o= i=-l2 92 0

w=VXu=—I5 55 7
Uy TUY Uy

Look at the different components:

_ 1 0u, 3U97_ _ B
er =50 —E—w-er—o = ug = ug(r)
_ ou, Ou, _ _ B
eg 92 — or —(A)'@@—O = UT—UT(T)
1[o(rug) Our] _ _
: ?[ a7 B ()

0
The rotational symmetry implies i 0. From the e, component we get,

%(r ug) = rw(r)

We also have the incompressibility condition:

_ 1 0 1 0ug Ou, B
N mUCD R i
—— =X~
=0 o
From this we get,
g(ru )= —r
gy \Ur) = Y
Equation (2) is valid both for case a) and b). Case a) w(r) =0
0 A
(1) = E(TUG) =0 = up= -
0 ) 2y
(2) = 8—(rur) = —ry = integrate the rhs ru, = —5 +B
T
B
= U = -1 + —
2 T
There should be no mass source at » = 0. The mass flow is,
yr?

2m
Q:/ uprdd =27 B — 2mr——.
0 2

When r — 0 then Q — 27 B which gives B = 0.

Up = —% for both a) and b)!



The circulation I is,

27 F
F:/ ugrdd =2rA = A=
0

2
2 2
p— —Tr a
=uwpe /

(1) = %@ up) =rwge "/
Integrate the right hand side:

2 2
Wy @ Wy @ C
rug = —-0" e/ L0 o gy = -0 /et 2
2 2r r
Look at the circulation,

2m 2
L(r)= / ugrdf = 27r(——w02a e~/ C)
0

= for r =0 we get

2
T = 2n(— 202

T 2
+0) = (0= 04 %0
This gives

T T2

2
ue:&_’"’_woa 1—€_T2/a2
2mr 2r

¢) Consider circles C(t) following the flow with a radius R(¢) and position Z(t). Compute R(t) and Z(t).
Can any of the flow cases be inviscid?

R(0)=Ry Z(0) = Z,
dR 1 1
—r=u(R)=-z7R = R(t)=Roe 37t
dz
%—UZ(Z)

vZ = Z(t)=Zyet
The circulation is then,

27 T a)
I(t) = /O ug(R)R df = 2w Rug(R) =

Iy + Twya? [1 - e‘R2/“2] b)

The circulation is constant for a) but not for b). This means that the flow in a) can be inviscid



Inviscid and irrotational vortices

Consider a circular flow with @ = ug(r)eg. Which vortices are inviscid and which vortices are irrotational?

The Navier—Stokes equation for ug

Oug 1 (1O [ Oug) up
o pr ror\_ or r2

10 ( 0w\ w _
r or r@r r2

For inviscid flow we require,

Make the ansatz ug = r",

10 1

—— (") =2 = It 2 o 2 1=0 = n=4+1
We get the inviscid flow,

B
~~ T
solid body rotation ~~
irrotational

The vorticity is,
10

w=Vxu={A32}= —8—(ru9)éz
T or

0
U_J:O = E(T’UQ):O = ’U,e:?

Conclusion:

Irrotational = inviscid
Inviscid # irrotational



Exercise 3

Show that the inviscid vorticity equation

reduces to the equation

in the case of axisymmetric flow:
a = u,(r,z,t)e, +u,(r,z,t)e,

The vorticity in an axisymmetric flow

w:VXﬁz(auT—auz>é9:wég

0z or
—_———

w

Study the right hand side of the inviscid vorticity equation

_ w 0 _ . w o _ _
(w-V) = 5 = (w-V)u= . (uT(r7 z,t)e, + u(r, z,t)ez) =
Eaur__i_g Bér_’_gauz__i_g Béz_g _

r 00 er TUT 00 r 06 © ruz 80 Tureg
~— ~—~ ~~ ~—~
=0 =&y =0 =0

The left hand side of the inviscid vorticity equation gives

Dw Oow . . . (0w 2] 0 _
E = E‘F(UV)W— {W—wee} - <E+ (UTE +uz&>w)et9

This gives that the inviscid vorticity equation now is

v (0 DN _w
ot “Tar “Zaz w_rur

1
Multiplyby;
OfeN 1,2 9\ _“. g
ot\r r\  or 0z r2 "

1
—Uy = wWU,—— and that wu,—- =
r ozr

Notice that

This means we can write

And thus we have



B.8 Vorticity equation, Bernoulli equation and streamfunction
Solid body rotation
Consider the flow in a uniformly rotating bucket with velocity
u = (wr,0,0)
a) Use Bernoulli equation to determine the free surface: What is wrong?

Bernoulli:

1
p + 5|u|2 +gz=C along streamlines
p

This gives the surface of constant pressure

C—p, wr?
Py 2g

z =

The free surface is highest in the center of the bucket, something is wrong. Bernoulli theorem is valid along
a streamline in a steady ideal fluid. If the flow had been irrotational, it would have been valid everywhere.
But now V x @ = (0,0, 2w).

b) Use Euler equation to determine the free surface:

Du 1
- __V
Dt P p+g
this gives
2
Ug 1 0p Jp 2 L9
_— = —— = —_— = = = —
e, . o 5, = P p=gp0rt 4 f(z)
1 0p dp
L 0=——— Z-0
©o pr 00 = 00
10p of
0=—-F-g = —==- = =
e, 20z 9 ER Py f=pgz+pg
Thus
1

p(r,2) = 5pw*r* = pgz + p

This gives the free surface where p = pg

Flow over a hill (Exam 20020527 question 2)

A hill with the height A has the shape of a half circular cylinder as shown in Figure 1. Far from the hill the
wind U is blowing parallel to the ground in the z-direction and the atmospheric pressure at the ground
is po.

a) (5) Assume potential flow and show that the stream function in cylindrical coordinates is of the form

Y = f(r)siné,

where f(r) is an arbitrary function. Calculate the velocity field above the hill.

b) (3) Derive an equation for the curve with constant vertical wind velocity V.

¢) (2) Assume that the density p and the gravitational acceleration g is constant. Calculate the atmospheric
pressure at the top of the hill.

a) The stream function satisfies continuity:

_ 1oy

1 oY
uT_T(?@’

vo = or

The flow is irrotational:
oY 0%y 10%) B



X

Figure B.5: Streamlines above a hill with A = 100m and U, = 5m/s. A paraglider pilot with a sink of
1m/s will find lift in the area within the dotted line, while soaring along the hill.

Introduce the ansatz 1 = f(r)sin@ into equation (1):

1
f'sin@+rf"sinf — ~fsinf=0 =
r

1
f/_"_rfll_;fzo
Make the ansatz f = r™:

1
"t rpn 1) - — =0 =
r

n+n?—-n—-1=0 = n==1
So we have

Y = (Ar—i— E) sin @
r

We need two boundary conditions.
1. Free stream:
Arsinf = Uyrsind = A=Usx

2. Streamline on the hill surface:

Usoh +

%:o = B=-Uxh?

So we have:
h2
Y =Us (r— —) sin @
r

Now we can calculate the velocity field above the hill:

2
u —1a—w—UOO<1—h—)c059

T o0 r2
o A
Ug = o = Uy (1+7’_2> sin 0

b) Constant vertical wind velocity is described by:

2

h h? h?
V = u,sinf + ugcos = Uy <1 — —2> cosfsinf — Uy <1+ —2> sinf cosf = —21/00—2 sinfcosf =
r r r

Us .
r= h\/—27 sin 6 cos 6

¢) Use Bernoulli equation with free stream pressure pg at the ground:

1 1 3
Po+ 5PU% =P+ 50(2Us)* + pgh = p=po = 5pU% = pgh



Stokes stream function:

Consider a 2D incompressible flow

B ou Ov
V U = O or % 6_y

Define the stream function ¥ such that:
ov ov
U= — V=——0
dy Or

This means

ou Ov 0% R

%4_8_3/_8:5831_81/61':07

so continuity is fulfilled. Now we can write

€ €, €
ov oV
W=VxUe = |2 & 2= (8 ,_8_,0)
0 0 w yooor
And - - -
@—an—z ea %— 00_6\11_32_\1;
a T8 % aoz 022 Oy?
By oz
Irrotational flow
VAU =0
In spherical coordinates for axisymmetrical flow, define ¥
_Lov 1 ow
~ r2sinf 06 ~ rsinf Or
Incompressibility is still valid
V-u=0
Velocity
Y
u=YV X —€y
rsin 0
Vorticity
B 1 02 n sinf 0 1 ov
w = — _— R
rsinf | Or? r2 06 \ sinf 06
Irrotational

0?v sin98< 1 ov

or? + r2 00

sinf 90

) -0



Flow around a sphere

Consider a sphere with ¥ = 0 at r = a, compute the irrotational velocity distribution when the velocity of
the freestream at infinity is U:

1
r—-oo ¥— §U7"Qsin29
= u, > Ucosf wug— —Usiné

Make the ansatz:
U = f(r)sin® @

For an irrotational flow we get

2 B
S Sf=0 = f=Ar T
T T

From infinity we get

A==-U
On the sphere
1., B 3
Ua"+—=0 = B=-3Ua
This gives
3
U= —U(r2 — —) sin? 6
r
The slip velocity on the sphere is
— 3Using
up = —5Usin

The radial velocity is u, = 0.



B.9 Flow around a submarine and other potential flow problems

Exercise 1

The flow around a submarine moving at a velocity V' can be described by the flow caused by a source and
a sink with strength @ at a distance 2a from each other.

T

A

Submarine

Figure B.6: Coordinate system for submarine problem

a) If one wants to construct a pressure sensor that will register an approaching submarine at a distance L,
what sensitivity is needed for the sensor? Assume an ideal fluid and that 2a = 80 m, Q = 915m3 /s, U = 8
m/s, L = 200 m and p = 1000 kg/m”.

Use a potential flow description
9¢ o¢
u = — = —
Ox’ dy

The flow is always irrotational due to the definition of the velocity potential

u = Vo, v
w=Vxu=VxV¢=0, curl(grad)=0

For incompressibility we get

(V)i

V-u=V V¢ = =Ap=0
6:101-
The equation is linear and thus superposition can be used. We have freestream plus 3D source plus sink
o= Uz + 0 + @

~~ 47 rq 4 re
freestream N N —

source sink

The first term is in cylindrical coordinates (R, 6, z) and the two last are in two different spherical coordinate
systems with origin in z—a and z+a, respectively. Transform the two second terms to cylindrical coordinates

—Q Q

=Uz+ +
¢ dm\/(z 4+ a)> + R?  4m\/(z —a)? + R?
Velocity 96 ! 96 96
u:vézﬁeR‘FE%ee‘F%ez:

QR QR _ Q(z+a) Q(z —a)
eR{ An((z + a)2 + R2)3/2 4n((z — a)? + R2)3/2 }“Z{m An((z + a)? + R2)32 4n((z — a)? + R2)3/2 }



We need to know the distance, b, from the point source to the stagnation point on the submarine nose.
Thus we need to know the length of the submarine.

b) How long is the submarine?
Compute where u, =0 for R =0

Q 1 1 _
(e I
AU (z—a)? = (2 +a)? __ —daz
QG aGrar  (Z-@p

Solving this system gives z = £43.01 m, z = £36.99 m, where the second solution lies inside the submarine.
The length is then 2 % 43.01 ~ 86 m and b = 3.01 m.

Now we continue to solve a)
Use Bernoulli equation to determine the pressure fluctuations at z = —-L —b—a, R=10

1 —12 1 2
- = Do + =pU
p+2p|u| Poc + 5P

Evaluate @ noticing that ugp =0

ﬁ(z_—L—b—a,R—O)—éz{U—l- —© @ }

L+ 02 An((L+ b+ 2a)

Inserting the given values gives |a| = 7.99914 m/s and we get

1
P— Do = 5p(U2 — |al?) ~ 6.86 N/m> ~ 0.07 mbar

¢) How wide is the submarine?
To get this we need to compute the shape of the submarine. The stream function is constant along
streamlines and is useful for this. In spherical coordinates the stream function is defined as

L
" r2sinf 96
1 ou

rsin® or

up =
Transformation between cylindrical and spherical coordinates
U, = UR Sin @ + u, cos 6
R =rsinf,z = rcosf
Our velocity field gives

1 oy 0 ind 1 1 +
———— — =sinf-—rsin —
r2sinf 96 4 (r2 +a? +2arcosf)3/2  (r2 4 a2 — 2ar cos 0)3/2

o050 U+Q rcosf + a B rcosf —a
4 | (r?2 + a2 + 2arcos6)3/2  (r2 4 a2 — 2ar cos 0)3/2

Q( r+acosf r —acosf
(

— Ucos + = -
st 2 + a2+ 2arcos0)3/2  (r?2 + a2 — 2ar cos )3/2

This is difficult to integrate.



Simplify to a Rankine body by neglecting the sink and say that a =0

B Q1 1 oy
uT_UCOSQ+47TT2_TQSin989

1
U= —Ur?sin?6 — Qcos0+c
2 47

Determine C from the stagnation point

Q
r 9 = s = O 2 = —
Uy ( T,70) = 7§ U
Since ¥ = 0 on the body we get
Q
c=—-——.
47
The stream function is then )
U = _UR*sin0 —Q(cosa +1)
2 47

source

d
The shape is given by ¥ = 0. As r — oo, § — 0 then rsinf — 5 This gives

Figure B.7: Rankine body for submarine problem

1L Q ,  4Q
VT T I e o Ur

There is a simple way of determining the radius as z — oo directly. The flow from the source must take up
an particular area in the flow at infinity. Since no fluid can cross the streamlines this area must be equal
to that of the Rankine body:

d? Q

— Ul d=2/£ —12.07
Q=Urs = Un m



We can use the computed stream function for a point source and displace it to z = —a. In cylindrical

coordinates
U -Q < z+a )
C Ar (z—a)?+ R?

Transform to spherical coordinates

U= __Q<
 4rm
\/(rc059+a)2 +725in% 0

rcosf +a )_ﬁ( rcosf +a )
47 \/r2 + a2 + 2arcosé

The stream function for the submarine is then

\IJ:lUTQSiHQH—&—g(— rcosf+a N rcosf —a )
2 4T\ Vr2 4 a2 +2arcosf /12 + a? — 2arcosf
10F
_10E
-80 -60 -40 —26 0 2‘0 40 60 80

z

Figure B.8: Submarine body for submarine problem

At r =R and 6 = 7/2 we get

1 Q a —a
\I/_—UR2+—(— + >
2 4\ VR?+a®> VR?+a?

For the body ¥ = 0 and we get
R2V/R? +a? — —“2 =0
™

Multiply by

R?*V/R? + a2 + w
™
a2Q2
(R2)3 4 (R2)2a2 _ —5i =0

Computing this
d=2R =12.0006 m



The complex potential

The lines with constant stream function ¥ are the streamlines. They are orthogonal to the lines of constant
velocity potential ¢ which are equipotential lines. Since both of them satisfy Laplace’s equation we can
define a complex function

F(z)=¢(z,y) +i¥(x,y) z=x+1iy

147 : : '. : : ' 7

1ol 5 . : : : : ‘ : |

10+ : : : ' - : _ -

Figure B.9: Complex potential for submarine problem, solid: ¥ , dotted: ¢

This is an analytical function since the Cauchy—Riemann equation holds

%_8_\11 and
or Oy

dp _ ov

oy  Ox

The velocity is then
dFF 0¢ 0V .
w(z) = e 8—x+za—x:u—w
This enables the use of complex analysis, in particular conformal mapping that can be used to compute
the flow over airfoil shapes.



Example:

Flow past a rotating cylinder centered at z = \ at an angle of attack «

i (@ N)? iT
F(z)=U Ae ¥4 ———e"*| — —1 A
() =0 |G+ et LA ] - Rog(s
3
Mapping by z = %Z + (iZ2 — a2> gives an airfoil shape with the potential F(z). A correct flow is not

achieved unless the Kutta—Joukovski condition is satisfied requiring

I'=—4nU(a+ M) sina

4} 1 Z-f(2)

3r \

a2t ‘

1! p
1t o
-2 -5 0 5
-3 4
_4 | /

T B = @

Figure B.10: Conformal mapping from circle to airfoil shape, (a = 3,A = 0.5)



B.10 More potential flow

Half body over a wall

A line source of strength @ is located at (0, a) above a flat plate that coincides with the z-axis. A uniform
stream with velocity U flows along the z-axis. Calculate the irrotational flow field.

Method of images. Put a line source of equal strength at (0, —a) in order to fulfill the condition of no flow
through the plate. Superposition of a uniform flow and the two line sources gives the complex potential

F=Uz+ gln(z—ia)—|—an(z—}—ia)
2w 2m

Complex velocity

W:E:U+Q( 1. + 1. )
dz 2r\z—1la z+1ia

B Q 1 1
W_U+27r<:v+i(y—a)+x+i(y+a)>
Q<x—i(y—a) +x—i(y—|—a))

W=U+"
T on 24+ (y—a)? 22+ (y+a)?

W=U Q z x . y—a y+a
= —_— -
+27T x2+(y—a)2+x2—|—(y—|—a)2 ! 22+ (y—a)? 224+ (y+a)?

The velocity field now becomes

B Q T T
T e ey A R

v

7& y—a n y+a
C2m\a?+(y—a)? 2%+ (y+a)?



Flow past a symmetric airfoil

a) Use conformal mapping to calculate the irrotational flow field around a symmetric airfoil.

Joukowski transformation

((z) =2+ ~
1 2
0.5 1

@

-0.5 -1
-1 -2
-1.5 -1 =05 0 0.5 1 -3 -2 -1 0 1 2

Equation for the circle _
2= =X+ (a+ e

Equation for the airfoil

a2

_ i0
(=—-A+(a+Ne +—/\+(a+>\)ei9

Complex potential in the z-plane

i (a+N)?,, il
— 1 1 1
F=U(z+ MNe +U7(z+)\)e +o- n(z+ A)

Complex velocity in the z-plane

dr i (a4+N)? | ir
W R — U la U 1
dz ‘ (z4+)N)? ot 2r(z + )

Complex velocity in the (-plane

N R Ty

The velocity can then be found by introducing the reversed transformation z = (/2 + /(2/2 — a? into

ur = Re{w(z)}, v« =—-Im{w(z)}

b) Calculate the Joukowski condition for the airfoil.

The flow field has a singular point at the trailing edge of the airfoil at { = 2a. Resolve the singularity by
choosing the circulation I' so the numerator vanishes at the trailing edge z = a
; ; il
Ue*-Ue“+ ——=0 =
¢ ot 2r(a+ )

s = dn(a+ AU _2,6 = dn(a+ NUsina
1



B.11 Boundary layers

Exercise 1

Consider the high Reynolds number flow in a conversing channel. Compute the boundary layer over the
surface at y = 0.

Assume the free stream:
Ux) =—

where @ is the flux. The boundary layer equations read:

ou ou Q 0%u
T . 2 1
“ax“’ay :C3+V(9y2 (1)

Ju  Ov
—+—=0 (2
Or * oy )
Seek a similarity solution where the dimensionless velocity u/U only depend on the dimensionless wall
distance

] 2z x\/g xV v
The stream function satisfies (2):
¥
oy’ - Oz
Make the stream function dimensionless:
fn) = 2
Us
Determine the terms in equation (1):
_ oy ofon o1 o, Q@
= By _U58n6y_U5f6_Uf = xf
87,/) 8(U5f) B of On 04 ou ..
- —‘U‘Sa—%‘%xf‘%df—

Q\ff D)+ 2[5 Ba [5r = —LEar

a a 6/8 " " 4
—u=—(——f>——%8—{78—2+62 —Qf (— )+Qf %(nf +1)

Ou_ 0 (_Qu\__Qofon__Qul_ \f
5 (o)t /

9*u Q [Qof"on - Q_2 "

0y~ 22\ v on oy _adu

n_ Q2 "
\/>f - -5 v f

_nflf”_fl2+77flf/l:_1_f”/ =
f/l/_f/2+1:0

u(0) =0 7'0) =
{u<oo> =1 7 {f’(OO) -

Insert into equation (1):

_QQ

"+ 1)+

Divide by Q?/z3:

Boundary conditions:



Substitute F(n) = f'(n):
F'—F?+1=0

F0)=0
F(o) =1
Solution:
2
F = 3tanh? i—i—\/j -2
<ﬁ 3

Exercise 2

Consider the flow downstream of a 2D streamlined body at high Reynolds number. Study the thin wake
downstream of the body where variations in y are much more rapid than variations in the downstream
direction. Also assume that the wake is so small that we can write v = U + u; where u; is negative and
describes the wake. The length scale in x is L and in y it is 6 with § << L.

U Y
‘ U+u

Figure B.11: Coordinate system for wake problem

a) Find the governing (linear) equations:
We start with the boundary layer equations since § << L,

ou ou B 1 @ 0%u

“or "'y T Tpox Vo2
ou Ov

e + 8_y =0
In the wake we have no pressure gradient,
P _y,
Ox
From the continuity equation we get,
g—z :—% _—(%<U+u1> :—% = v~ %ul << U

Inserting w = U + w1 in the boundary layer equations gives,

6’11,1 6’11,1 6’11,1 82U1
U— — — =0
ox +u18:c +v8y +V8y2
Neglect the quadratic terms,
Oup  uj Oouy 6 1 u?



8’&1 - 8211,1
Vo ~ Vo

b) Show that [*°_wuydy = constant:

Consider the relation,

QlZ/ up dy

—00
which gives the linear contribution from u; to the momentum flux.
* v o%u v[ou 1™
Lay=—|=2| =0

d d oo oo
Qi = 7 / up dy = / % dy = {From the governing equation} = / 9
Y

dx T J oo oo O LU oy? 7T

— 00

This means that Q1 is constant.

¢) Find a similarity solution for u;:

Seek a solution on the form,

o) = F@T) where =L

This gives, - -
Q1 = / F(2)f(n) dy = F(x)g(x) / £ ()

— 00

()1 = constant requires,
F(o)=1/g(e) and [ fn)dy = Qu = constant

This means,

w(e9) = =) = = (ﬁx))

Insert this into the equation of motion,
1
g(z)?

o
EOESO I

g(z) = (20%)1/2

') =

02 (s + 1) = v

=

g (x)g(x) =

This gives the equation for f,

F/(a) + Cot' () +Ca) = <f’(n) L Onfn) + D) _o

From the symmetry condition a%u(a:, 0) = 0 we can determine that f/(0) = —D = 0. This gives,

f'(n)+Cnf(n) =0

Integrating this we get,
2
fm) = ae=2"

We can determine the constant a from the condition that ()1 is constant,

[ s = 10— Canter

This now gives u1:




. 1/2 O U 1/2 2
foor= (o) "} s (5)

d) Relate u; to the drag Fp:

The

drag is
FDZ—p/ u1(U + 1) dy

— 0o

Remember that u; << U and neglect the u? term,

Fp = —P/ Uuydy = —pUQ1

— 00

This means that

Fp Fp v \'"? _u2
—_ —_—— j — — R dvax
a=-12 = w5 ()

Exercise 3

Give an order of magnitude estimate of the Reynolds number for:

i
ii
iii

iv

. Flow past the wing of a jumbo jet at 150 m/s (=~ Mach 0.5)
. A wing profile in salt water with L =2 cm and U =5 cm/s
. A thick layer of golden syrup draining of a spoon.

. A spermatozoan with tail length of 1073 ¢cm swimming at 10~! cm/s in water.

Estimate the boundary layer thickness in case (i).

Fluid | v cm?/s

i

ii

iii

iv

Water 0.01
Air 0.15
Syrup 1200

. Flow past the wing of a jumbo jet at 150 m/s (= Mach 0.5)

_5 2 UL .
U=150m/s,v=1510""m"/s,L =4m = Re = — ~ 4 x 10
v
. A wing profile in salt water with L =2 cm and U = 5 cm/s
-6 2 UL 3
U=0.05m/s,v =10""m*/s,L =0.02m = Re = — ~ 10
v
. A thick layer of golden syrup draining of a spoon.

UL
U =0.04m/s,v = 0.12m?/s, L = 0.0l m = Re = — ~ 0.003
1%

. A spermatozoan with tail length of 1073 ¢cm swimming at 1072 cm/s in water.

L
U=10""m/s,v =10"%m?/s,L =107 °m = Re = UL <102
v

The boundary layer thickness in (i) is O(1 mm)




B.12 More boundary layers

Drag on a circular cylinder

Use the integral form of the Navier—Stokes equations, Consider a fix volume in a fluid with velocity u. The
continuity equation becomes,

d
— dV = — ds.
7 Vp ﬁpuknk

The momentum equation,

d
— pu; dV = —7{ pu;nju; +pn; — iy n; | dS + / pF; dV
dt Jy s T 1%

Use this to compute the drag force on a cylinder:

o] fn JE 0
a T
= d || Wake
n ﬁ? n
{ L " ‘
|
The cylinder is stationary and so is the flow = 5 0. Incompressible flow with constant density. The

continuity equation gives:

/2
f ugngdS =0 = Uyl — L’U|y:_l/2 + L’U|y:[/2 + / Uw(y) dy =20
S 1/2

Due to the symmetry we get, s
~Upl + 2Lv|y—y /s + /l/: Uuw(y)dy =0
The momentum equation in x:
j{s [pnjujum +ngp— anwj} dsS =0
Far away from the cylinder we can assume p = pp and 7,5 = 75y = 0. This gives,

1/2
pUL(y) dy + / [nep — n;7ei] dS
2 cyl

—pU3L+ 2pUgv|y—1 /2L + /

Fp
Multiply the continuity equation by pUy,
1/2
—pUgl + 2pUgvly—1/2 L = —on/ Uw(y) dy
—1/2
Insert into momentum equation:

1/2 1/2
—on/ Uw(y) dy + / pUL(y)dy + Fp =0
—1/2 —1/2

Fp = p/_ll/; <U0Uw(y) - Ui(y)) dy = pUj /_ll/; (U}U]iy) - <U}Ufiy))2) N




Make the variable substitution r = y/d,
VAL (Uu(r)  (Uu())*
0" Ji2a\ Uo Uo

o[ (55 - (457 o=

— 00

Now if d << I we get,

0

The momentum thickness is called 8 and is a measure of the loss of momentum in the flow. Now compute
Fp 0

the d flicient Cp = ——— = 2=
€ drag coetnclen D %pUgd d

Glauert wall jet
Compute an ODE for a self-similar wall jet.

The boundary layer equations read:

ou ou 0%u

Oou  Ov
i —_ = 2
8x+8y 0 (2)

Seek a similarity solution where the dimensionless velocity u/Up,(z), where Uy, () is the jet core velocity,
only depend on the dimensionless wall distance

ye Y
9(x)
The stream function satisfies (2):
_ oY oY
=5y ~ B
Make the stream function dimensionless:
(U
100 = 7 @@

oY of on 1 /
U=—7—=Ung=—7—=Ungf —=Up
ay 990 dy gfg /

p= _Z_Z = _W = U gf = Ung'f — Ungf’ (_yg_ng) = —Un9f = Ung'f +Ung'f'n
o e Unf) = U = U0

Insert into equation (1):

! 1 1
Un f' (U, f' = Umg;nf") + Umg'nf = Upngf — Umglf)Umgf” = VUmg—gf'” =

/ / /
1
UnUnd® = URSnf " + UL f = UnUn f " = UL S f1 = vl 1" =

!/ 2 / !/ 2
f/// 4 (Umg 4 Umg g> ff// _ Umg f/2 =0 =
v 14 v

a B
f”/-f—aff”-f—ﬂf/Q:O




Boundary conditions:

u(0)=0 f(0)=0
v(0) =0 = f(0)=0
u(o0) =0 (o) =1

Similarity requires that o and 3 are constant. Assume the z-dependence:

Up =az™, g=bz"

Then we get
2

_ a
melp2ae?n — " m, 2n4+m=1
v -

1
08 =——amzx
v

1 1 2
a = —amz™ 1b22®" + —ax™bnaz" " ba™ = a—(m +n)
v v v

We can choose the length scale g such that o = 1:

a_b2: 1 & fe- m

v m-4+n m-4+n

So we have:
U BT =0 )
For what § is the boundary conditions fulfilled? Work on (3):

f///+ff//+ﬁf/220 =
P+ P+ (B-1f=0

Integrate:
eI E-1g=0. gt = [ 17> 0
n
Multiply with f”:
P+ 2+ @B-1g9f'=0 =
F'I+ (2 +gf) + (B =2)gf =0
Integrate:

317+ f9(6-2) [ orin=o0

n
Put in n = 0 and use the boundary conditions:

-2 [ arin=0 = -2 -

f=—-""__9 = 3m42m=0
m+n E—
Solve for m and n:
1 3
m=—-—, n=-—
2’ 4



B.13 Introduction to turbulence

Exercise 1

Compute the far-field two-dimensional turbulent wake U(z,y) behind a cylinder.

Let
Ul(xvy) :UO_U(Iay)v US(I) = Ul(xvy:())
Assume
Us<Uy = U<xUy, uv~Ug, x~L, y~I
Continuity
ou oV ov 0 ol l
Ox + dy = dy 817( 0 ) ox L
R , ~—~—
v ~Us

The turbulent boundary layer momentum equation read:

oU U 1P, U 0
Vo Vo T v Ve ™ 7

Disregard the pressure gradient and insert U = Uy — Uy:

ol Uy 0%U, 0 ,__
Uy—-U) | — | - V—=— - =
(to =) ( Oz ) dy "oy 3y(w) -
Neglect small terms:
Uy a ,__
U = 5o ()
Self-similar hypothesis:
Ul(xuy) _
—uv
iE =g(n)
where 5 5 )
Y g _ Yy My 9n_ 2
T G e L L

Determine the terms in equation (1):

o _ 9 _ e U
O _8I(Usf)_Usf+Usf 8CC_USf Uslnf
9, . 0 2 v 2,00 2
a—y(uv) = a_y(_Usg) =-Uig+ By _Usl

Insert into equation (1):

!
Uo(ULf ~ Usonf') = U2 d =
UOZU' Uol’
! —Y"s !
g = U2 f+ Us f

S

Ui(—00) =0 N f(=00)=0
0 f(o0) =0

Boundary conditions:



Similarity requires:
! /
S
=const = — = const
U

Assume the z-dependence:
Us = Ax™, [ = Bx"

Then we get
Bx"Amz™ ' =const- 2" = n+m-1=2m = m=n-—-1 =
U, = Az""', | = Bz"

‘We need one more condition. The momentum loss thickness is constant:

< U U * Uy—U; Uy — U, /OO U\ Uy
o= —(1-2)ay= 1- dy = 1- 22 Dy~
/_oo Uo ( Uo) Y /—oo Uo ( Uo > Y —o ( U0> Uo Y

1 o 1
— Uidy == —Cpd = const  (Recitation 12)
Up J_ o 2
— Urdy = Usl/ fdn=const =
UO —o0 —00
———
const

1
Ud=Ax""'Ba" =const = 2n—-1=0 = n:§ =

1

Us=Ax"2, |=DBx

=

For a sufficiently large Reynolds number, the wake will be turbulent.

U, AB

Re; = — —const =
v

A turbulent wake will remain turbulent!

To determine the wake-velocity profile, we need to model the turbulent shear stress. E.g.

W*V(?U =
U = vp—
dy

UZg=vy <—86—Uyl)——VTUSf’% =

g:—;}—flf’ = g’:—g—flf” =

~gt =0+ o =
SR n=0 @

Equation (2) can be solved together with the boundary conditions

F(200) = 0



B.14 Old Exams
Exam 031023

1. Relative motion.
0

%

Consider the relative motion of two fluid particles initially separated by the distance dz?. (Here z
and ¢ are the Lagrangian coordinates).

a) (5) Show that the separation at time df is

9ui

dri(dt) = dz? + 520 dadi.
J

b) (2) Use this relation to write down the expression for the deformation of the sides of a small cube
aligned with the coordinate directions. Thus, show that the components of the side aligned with the
z-direction, Rd;1, is deformed into

ou; .«
dr" = R(61 + ——sdi
Ty ( 1+ 6&6? )7
with analogous expressions for the other two sides.
c¢) (4) Show that the deformation rate of the volume of the cube is given by the divergence of the
velocity field. Note that ¥ = z; at £ = 0.
2. Flow between a rod and a cylinder.

Consider a long hollow cylinder with radius b, a concentric rod with radius a inside the cylinder, and
water occupying the space between the rod and the cylinder, see figure B.14. The rod is rotating
with the constant angular frequency w.

(10) Find the velocity field of the water driven by the rotating rod and the gravitational acceleration
g.

A 2

e

i g
a b

Figure B.12: Water and a concentric rotating rod inside a cylinder.



3. Bernoulli’s equation

a) (3) Derive the following formula:

6’11@_1(9

Uj=— = - =—(uju;) + €pw; uk.
79z 281:1-( i) + €ijkw;

b) (3) Use this in the momentum equation to derive Bernoulli’s equation for unsteady potential flow.
¢) (3) Use the result in (a) to derive Bernoulli’s equation for steady inviscid flow. Discuss the validity
of the derived relation.

4. Laminar wake flow.

Consider the laminar wake flow downstream of a two-dimensional streamlined body at high Reynolds
number, see figure B.13. Assume that the wake is so weak that we can write u = U + u; where g is
negative and much smaller than the free-stream velocity U.

a) (3) Motivate the usage of the equation

8’&1 - 8211,1
Vor =V a2

b) (2) Show that the mass flux @1, in the direction of the wake is constant in z

Q= / purdy. (%)

— 00

¢) (7) A similarity solution can be found by scaling the wake velocity with Us(z) = ui(x,0) so that
f(n) =ui(x,y)/Us(z), where n = y/d(x) is the similarity variable. Show, using (), that Uy = k/d6(z),
where k is a given constant. Find the similarity solution for u;.

U Y

U+u1

Figure B.13: Wake downstream of a flat plate.
5. Mean heat equation.
The heat equation for the instantaneous turbulent flow is

8t JaCCj B 8:%8:6]"

(8) Derive the heat equation governing the mean flow.



Answers to exam in Fluid mechanics 5C1214, 2003-10-23

. See Kundu & Cohen p. 57.

. Flow between a rod and a cylinder.

. See Kundu & Cohen pp. 110-114.

. Laminar wake flow.

. See Kundu & Cohen pp. 511-512.



Exam 040113

1. (5) Consider the unsteady flow,
u=ug, v==kt, w=0,

where ug and k are positive constants. Show that the streamlines are straight lines, and sketch them
at two different times. Also show that any fluid particle follows a parabolic path as time proceeds.

2. (5) For surface waves on water with finite depth h the phase speed is given by the relation ¢? =

2 tanh(kh). Compare the group velocity to the phase speed in the limit of long and short waves.
Make a rough 2D sketch of a wave packet and explain how it is moving.

3. Consider a thin layer of liquid in contact with a solid flat vertical wall. See figure 1. The wall is
subject to a constant temperature gradient with increasing temperature in the downward direction.
Due to a varying surface tension, as a result of the temperature gradient, a constant shear stress
7 at the free surface is acting upward. At the same time, the gravitational acceleration g is acting
downward.

a) (7) Assume constant layer thickness h and calculate the velocity field of the liquid layer.
b) (3) For what layer thickness h is the flux zero?

z

Figure B.14: Liquid film on vertical wall driven by gravity and surface tension.



4. a) (3) Show that

ou; 1 0
Uyt = o= (ujuy) + €jpwyun
al'j 2 6:101-

b) (4) Derive the vorticity equation starting with the Navier—Stokes equation for incompressible flow.

¢) (3) Show that the following relation holds for incompressible flow and discuss its implication for
inviscid flow

87’17‘ 8wk

= €
al'j Heijk al'j

5. Consider the flow over an oscillating plate.

a) (3) Motivate that the solution can be written as [u(y, t),0,0] and that it thus satisfies the equation

ou 0%u
4_,
ot 0y?
b) (7) Show that
u(y,t) = Ue ¥ cos(ky — wt), where k= 2i
v

6. a) (5) Derive the Reynolds average equation valid for turbulent flow.

b) (5) Assume that the Reynolds stress can be modeled as a turbulent viscosity and introduce this
into the Reynolds equation and simplify.



0

Solutions to exam in Fluid mechanics 5C1214, 2004-01-13

1. Streamline (fix t):

dx
EZU‘ZU‘O = T=uysta
d
Y u=kt = y=~kts+0b
ds
Then we see that y(z) is a linear function
kt
y=—x+d)
Uo

Particle path (fix Z;):

= =u=uy; = m:uof—i—wo

R 1 .
=u=k = :c:§kt2—|—y0

Then we see that y(x) is a parabola,

DN =

k
y= —2(172 — 2z07 + 23) + Yo
Up

2. The wave number is defined as k = 27/A, where A denotes the wave length of the wave. For long
waves, go to the limit £ — 0. For short waves, go to the limit k — oc.

e % - 1/—tanh kh) = \/gh tanh

lim tanh(z) = l = = \/g
xTr—00 s xr k

tanh(x)
x

Phase speed:

Short waves:

Long waves:

lim

x—0

=1 =

Group velocity:

i)

S dk 2 smh 2kh
Short waves:

111—{20 m =0 = c¢4=
Long waves:

o ()

Longer waves travel faster.

0o
T
|

|0 :
1O N
%

3. a) Assume steady, parallel flow u = w(x)e, and solve the z-momentum equation with boundary

conditions: 92 5
w w T
VW—QZ(L w(0) = 0,

W=7

— —gh

Jw g ow . gh T 1(7’ )
p



Integrate the equation once more and introduce the first boundary condition:

lg o

W= +Ax+ B, w(0)=0 = B=0
So we get:
1 1
w= 742 —<Z—gh>x
2v v A\p

b) The flux per unit width of the wall can be written
h
11 11 1
Q= /wd:c—[ g x5+ <——gh>x2} :__ZhQ__ghB‘
V 2 v o 2Vp 3v

_3T

2 pg

a) Begin with the second term on the right hand side:

Zero flux gives:

Oup, ou; Ouy,

€iikWiUE = €iik€ilm = (Um UL = 51@5‘ _6k 5‘1 U —— = Uk — Uk
1] 7 gk Eylm axl ( m) ( m m U ) axl al'k (%cl
8ui Ou; n N ou; 1 ( )+
U5 —— €iilkWiUk U4 = = U; U5 €iikWi UL
J ax U 6 VA ket J 6£Ej 2 7% YAkt

b) Navier-Stokes momentum equation for incompressible flow:

Ou; ou; 1 dp 0%u;

ot oy or;  p Oz + V(?:cj(?zj

Use the expression from 4. a):

du; 1 0 1 Op 0%u;

8t t3 2 8 (UJUJ) + EljkaUk 8561 + l/a.CCjan
Take the curl of the equation. The curl of a gradient vanish:

Owi Te i( W) = Pw;
8t Cimn 8CCm Cngk@jtik) = V(?:cj(?zj
(?wi + 8 ( ) (?Qwi
— + €niménjk=—— (Wjug) = v
ot K Oz T B0,

86«)1' 8 82%-

gt T iadmi = Oudumg) o (Wjuk) = vg -
Bwi 0 0 82%

+ —(wiu Wwil;) =V
ot 3:ck( i) = Oz B, (witi) O0z;0z;
Use continuity. We end up with the vorticity equation:

Owi | Owi_  Oui  OPw
8t ]817]' o ]817]' 8CCJ‘8IJ'

¢) Right hand side:

e QwE o Oun\_ o Oum
HEijk 73— ax] —HME€ijk ax] €kim axl = —HE€kij€kim 6(Ejal'l
0%u 0%u 0%u;
— 61677’7,_61777,6 T = J : = 2 7
p(0ad; Jl)(?zjascl (8%8171 8zj8:cj> HVu

Left hand side:

8Tij - 8 8UZ 8’&] 2
ox; “amj <8:vj * (%cl) pV

Thus:
87’17‘ 8wk
= — E’L” _—
al'j Heijk al'j

Irrotational flow is not subject to viscous forces.




5. a) Consider the Navier—Stokes equation in the x direction:

LR TR Y ox? Oy +8z

Ju n u% ou ou 10p ?u  0*u  9*u
ot ox y 0z pOx

With the current velocity field only terms with y derivatives will remain since there can be no change
in the other directions,

ou 0%u

o oy

b) Make the ansatz: u =R [f(y)ei”t} = f(y) cos(wt).

Insert into the equation:

iwf(y)em _ l/fll(y)eiwt
[y )__f( ) = with f(y) = e  gives

/\2—%:0 - i,/ \/7<1+Z>

Introduce k = Rl

f(y) = A" 4 BemvHIHD - f(y) — 0 as Yy — 00— A=0
We have
u="=N [Be_yk(lﬂ)em] =R [Be_kyei(‘”t_ky)] = Be " cos(wt — ky) = Be " cos(ky — wt)

Boundary condition at y =0
At y = 0 we have u = U cos(wt) = B =U

So we have,

u(y,t) = Ue ™ cos(ky — wt), where k= /2i
v

6. a) Turbulent flow is inherently time dependent and chaotic. However, in applications one is not
usually interested in knowing full the details of this flow, but rather satisfied with the influence of
the turbulence on the averaged flow. For this purpose we define an ensemble average as

(n)

where each member of the ensemble u; ’ is regarded as an independent realization of the flow.

We are now going to derive an equation governing the mean flow U;. Divide the total flow into an
average and a fluctuating component u; as

w=u;+u;  p=p+p
and introduce into the Navier-Stokes equations. We find

o ou; ou; , Ou 10p 10p
ot ot U ox;

i A Vaul + V3,
oz, St T +uJ8:vj p O, pale”’ Uy VU

;i
N Iy

We take the average of this equation, using

which gives



W—i_u'ja.fj_ p(?ml i
ou;

=0
6:101-

where the average of the continuity equation also has been added. Now, let U; = w;, as above, and
drop the . We find the Reynolds average equations

(9Ui+ oU; __16P+i(
ot T0x;  pox; Oz
oU; —0

8171' o

Tij — Uill;)

where u;u; is the Reynolds stress.

b) Assume the Reynolds stress:
2 _
UiUj = §]<61] - 2VTeij

The first term on the right hand side is introduced to give the correct value of the trace of w;u;. Here
the deformation rate tensor is calculated based on the mean flow, i.e.

1<8U1- ouU; 20U, )

=500 " 0w 300,

where we have assumed incompressible flow. Introducing this into the Reynolds average equations
gives

=

oU; ou; 0 P 2 _ 1 _10P .
o UJ(?TJ__&IJ_[ (p+3k>6w+2(v+uT)eU}— paxi+(V+VT)v U;

where the last equality assumes that v, is constant, an approximation only true for very simple
turbulent flow. It is introduced here only to point out the analogy between the molecular viscosity
and the turbulent viscosity.



Exam 041018

1. The kinetic energy dT' of an infinitesimal volume element, with density p, which is rotating with
angular velocity € can be expressed

1 1
dT:§v-vpdV:§(Q><x)~(Q><x)pdV,

where v is the velocity of the volume element and x is the vector from the center of rotation O to
the volume element, see figure B.15.

Figure B.15: Coordinate system and definitions

a) (5) Show that the total kinetic energy of the body can be expressed as
1
T=|[ dI'= §leQle,
%

where J;; is the moment of inertia tensor with respect to the origin of the unprimed system. It is
defined as

Jj = / (xrzrdjs —zjz)pdV.
1%

b) (5) Show that you can relate J;; to the moment of inertia tensor with respect to the center of mass
of the body chl in the following way

Jbo

Jii = (22wl — zjz) M + JG chl = / (z)xy 05 — xay)pdV,
v

where M is the total mass of the body and the primed coordinates represent the coordinate system
centered at the center of mass C of the body.

Hints: Integrals of the type fv xj pdV vanishes as a result of the definition of the center of mass. The
two coordinate systems are related by the formula x = z + x'.



2. (10) Consider the laminar flow of a viscous fluid down a vertical cylindrical pipe with radius a. The
flow is driven by the gravitational acceleration g. Calculate the velocity field.
3. Potential flow and conformal mapping

a) (2) Show that the Kutta-Joukowski transformation ¢ = z 4+ a?/z maps a circle with radius a to a
flat plate with length 4a.

b) (2) Write down the complex potential of the flow around a circular cylinder with radius a at angle
of attack a and with clockwise circulation I'. The uniform far-field velocity has the magnitude U.

¢) (4) Show that a necessary condition for finite velocity at the trailing edge of the flat plate is (Kutta
condition)
I' =4nUasin a.

d) (2) How should one modify the circle in order to obtain a finite velocity at the leading edge?

4. Blasius boundary layer
a) (2) Write down the boundary layer equations.

b) (8) Make appropriate assumptions for similarity and reduce the boundary layer equations to an
ordinary differential equation for the boundary layer over a flat plate (i.e there is no pressure gradient
in the free stream). Also state the boundary conditions for the similarity function.

c) (2) Sketch the streamwise and normal velocity profiles.

5. Turbulent flow

a) (2) Define the velocity and length scales appropriate for turbulent flow near a wall, using the wall
shear stress 7,,, the viscosity v and the density p.

b) (2) What is the law of the wall and what is the explicit functional dependence of the turbulent
mean velocity in the intermediate region between the wall and the outer flow?

¢) (4) In two-equation turbulence models, partial differential equations for the turbulent kinetic energy
k and the dissipation rate € are solved. In those equations, the turbulent viscosity vp = Upl, where up
and [/ are the turbulent velocity and length scales, respectively. Use dimensional analysis to determine
up, ! and vp in terms of k and e.



Solutions to exam in Fluid mechanics 5C1214, 2004-10-18

1. a) The kinetic energy of an infinitesimal volume element

1 1
dT:§V-VpdV:§(Q><x)~(Q><x)pdV:>

1 1 1
dT = gvivip dV = gsiijjIkailleImpdV = 5(5jl5km — 5jm5kl)$kImQlepdV =
1
5(@1%% —xx) QY pdV =
1 1
T= v dl = 5 . dT(éjlxk:vk — l'jxl)pdVQle = §leQle,

where
Jj = / (0j1zpxy — z52)pdV.
v

b) The moment of inertia tensor

Jj = /V(&jl:ckxk —xzx)pdV = /V[(Sjl(Zk + xp) 2k + x)) — (25 + 25) (2 + 27)|pdV =
/V[(Sjl (zrzr + 2z, + 2hay,) — (221 + zjz) + 22 + 2x))|pdV =
(zk2k0 — zjzl)/ pdV +/ (x),2),05 — xhay)pdV+
v v

2201 / zpdV + z; / xipdV + z / zipdV.
1% v 1%
The three last terms vanishes due to the definition of the center of mass. So we have
le = (zkzkéjl — ijl)M + chi,
where

M:/ pdV and Jﬁ:/(zﬁcx;@l—x;xf)pd‘[
14 \%4

2. Poiseuille flow ( Pipe flow )

Use the Navier—Stokes equations (with no volume force) in cylindrical coordinates

ou, ug 19p 9 Uy 2 Oug
W—i—(u-V)ur—? _—;Eﬂ/(v UT_T_Q__—>

Oug Up U 1 dp 9 2 Ju, ug
ot +(u-Vyup + T89+V<v u0+r2 00 r2
Ou, _1op 9
5 + (u-Vu, 50 + vV,

10 1% Ou,

R I M

We know that @ = 0 and ? = 0 and can directly see that u, = ug = 0 satisfy the two first

r
equations. From the continuity equation we get

Ouz

5, =0 = wu,=u,(r,0) only

Considering a steady flow we get from the Navier—Stokes equations

(u-V)uz:uz% = uz(??u;

9% =vVu, —g




But we know that Ou,
0z

= 0 from the continuity equation. We get

10, Ou g 0, du g
2, 29, Yty d - 2y =<
V”Z_rar(rar) v = 8T(T(’9T) VT
Integrate
Ou, 1lg , Ou, 1g c1
rar_2ur ta = 8T_2ur+r

Integrating again we get

Uy = Zg 24+ Inr+ ey using the boundary conditions u,(r =0) < co = ¢; =0
v
ga®
We also have u, = 0 at r = a and this gives ¢y = ~ and we have
v
g
Uy = —E((f —r?)
. Potential flow and conformal mapping
a) Equation for the circle _
z = ae'?
Equation for the plate
2 i0 —i6
C=z+ 2 = aet® + e = 2a% = 2a cosb,
z

which is a real function taking the values from —2a to 2a, thus a flat plate with length 4a.

b) Complex potential for a circular cylinder

) 2 ir
F=Uze ™ +Ua—elo‘ + 1—lnz
z 2

¢) Complex velocity for the circular cylinder

dF —ia 2ia
W—E—Ue —U;e +%

Complex velocity in the (-plane

dF/dz . a? | i a?
— — U —la U_ 1 - 1 .
v d¢/dz ( ‘ 2° +27rz>/( 22)

The flow field has singular points at the leading and trailing edges of the flat plate. Resolve the
singularity at the trailing edge by choosing the circulation I'" so the numerator vanishes at z = a

. . il
Ue ™ —Ue* + e
2mwa
I, = 47TUG% =4nUasin a.
i
d) Move the point z = —a inside of the circle by putting the center at z = —\. We still want a sharp
trailing edge so the circle crosses the real axis at z = a. The radius of such a circle is a + A and the
circle is described by .
2= =X+ (a+N\)e"

. Blasius boundary layer

a) Boundary layer equations



b) Seek a similarity solution where the dimensionless velocity u/U, where U is the constant free-stream
velocity, only depends on the dimensionless wall distance

n = Yy
()
The stream function satisfies (2):
_ o W
Oy’ Ox
Make the stream function dimensionless:
_ Y(=,y) _

Determine the terms in equation (1):

O 5000 s e g
u=g, = USG5 = U5 =U]
!

_ _Z_‘i _ _‘9([;;5” —_USf—UsS (_%—‘i) _Usnf — U f
ou 0 N o .,
92 = on Uf) =-Usnf

ou 0 P
8%73 SN 1,
o= (U1'5) =V

w_
dz

Insert into equation (1):
!/ 5/ 1 !/ !/ !/ 1 1 1 "

25l 1 pt! 26/ 1 pt! 25l " 1 "
—Ugﬁff +Ug77ff —Ugff =vUf =

52
f/// + (U(S/(S) ff// _ O
v
———
«
Similarity requires that « is a constant. We can integrate it with respect to x in order to find §

2avx
U

Ué's 1, avz
v =« = 55 —7 = 6((E)—

The value of the constant « is just a matter of scaling, we can choose it to be 1/2 so

The ordinary differential equation becomes
fl/l_"_lffI/:O
5 .

We have the boundary conditions

u(0) =0 f(0)=0
v0)=0 = { f0)=0
u(o0) =U f(c0) =1.

¢) Figure B.16 shows the dimensionless streamwise and normal velocity profiles.



5. Turbulent flow

a) Velocity scale near the wall:

Tw
Ur = 4| —
P
Length scale near the wall:
ly=—
Ur
b) Law of the wall
+_ U + +_Y
U"=—=f(y"), where y™ ==

o~
*

Ur

Functional dependence in the intermediate region
+_ 1 +
UT=—-Iny" + B,
K

where « is the Karmans constant.

¢) Dimensions for k and e:

Dimension analysis for wp: -
up o k™™ [LT7Y =

LT—l _ LQmT—2mL2nT—3n =
2m+2n =1 n=20
= 1 =
—2m —3n = -1 m=3

UTO(\/E

Dimension analysis for [:

lx k™e™ [L] =

I = L2mT—2mL2nT—3n =

2m+2n=1 n=-—1
= 5 =
—2m—3n=0 m=3

Figure B.16: Velocity profiles of Blasius boundary layer.



So we have

or



Appendix C

Study questions 5C1212

1. Define and use the Rankine-Hugoniot jump condition to compute the shock speed for the following

problem
uptuu, = 0 —oco<xr<oo, t>0
1 <0
u(z,0) = e
0 otherwise

2. Define the entropy condition for a scalar conservation law.
u+ fu)y=0 —oco<z<oo, t>0

with a convex flux function f(u). The shock is moving with speed s and the state to the left is given
by ur, and the state to the right by ug.

Why do we need an entropy condition ?
3. Write a difference approximation (in 1D) on conservative form and define the notation.

4. Solve

u? 1 <0
+  Jr = 07 70 - Cl
w+ () u(z.0) {O " (€1
by the upwind scheme on the following form,
“jH U T ALY (uf —uj_q)

a) Will the numerical solution converge to the analytical solution?

b) If not, suggest another way of solving C.1.
5. Define a total variation decreasing (TVD) method. Why is this a desirable property ?

6. Investigate the one-sided difference scheme

for the advection equation
U + augz =0

Consider the cases ¢ > 0 and a < 0.
a) Prove that the scheme is consistent and find the order of accuracy. Assume k/h constant.

b) Determine the stability requirement for @ > 0 and show that it is unstable for a < 0.
7. Apply Lax-Friedrichs scheme to the linear wave equation
us + au, = 0.
a) Write down the modified equation.

b) What type of equations is this?

¢) What kind of behavior can we expect from the solution?
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8.

10.

11.

12.

A the three-point centered scheme applied to
ur +au, =0, a>0.

yields the approximation
alt
U?Jrl = u;l + 2A£E( J+1 ujfl)

Show that this approximation is not stable even though the CFL condition is fulfilled.

. What does Lax’s equivalence theorem state?

What is the condition on the n x n real matrix A(u) for the system
u + Au, =0
to be hyperbolic ?

The barotropic gas dynamic equations
pt+puy =0 (C.2)

1
ut+uuz+;pz:()

where
p=p(p) =Cp”

i and C a constant, can be linearized by considering small perturbations (p’, u') around a motionless
gas.

a) Let p = po + p’ and u = ug + v where up = 0. Linearize the system (C.2) and show that this
yields the following linear system (the primes has been dropped)

pt + poug =0
a2

U+ —pz; =0 (C.3)
£o

where a is the speed of sound. a and pg are constants.
b) Is the system given by (C.3) a hyperbolic system? Motivate your answer.
¢) Determine the characteristic variables in terms of p and wu.

d) Determine the partial differential equations the characteristic variables fulfill - characteristic for-
mulation.

e) Given initial conditions at t = 0 and let —0co < < 0o (no boundaries)
p(0,2) = sin(x) u(0,z) =0
determine the analytical solution to (C.3) for ¢ > 0. Hint: Start from the characteristic formulation.

The linearized form of (C.3) is given by

<Z>t i (a2(/)po poo) (Z)m =9 (C.4)
A

where a is the speed of sound. a and pg are constants.
a) Draw the domain of dependence of the solution to the system (C.4) in a point P in the x-t plane.

b) The system is solved numerically on a grid given by z; = jAz,j = 0,1,2... and ¢, = nAt,n =
0,1,2,..... using an explicit three-point scheme, see the figure below.

Draw the domain of dependence of the numerical solution at P (in the same figure as a)) of the
three-point scheme in the case when

i) the CFL condition is fulfilled
ii) the CFL condition is NOT fulfilled.
Assume that P is a grid point.



13.

14.

15.

16.

17.

18.

19.

n+1

j—1 J J+1

To solve Euler equations in 1D

pt + pug +upy =0
1

ut+uux+;pz:0

pt—l—chux—Fupz =0

How many boundary conditions must be added at (motivate your answer)

inflow boundary when the flow is

a) Supersonic

b) Subsonic

outflow boundary when the flow is

¢) Supersonic

d) Subsonic

Describe the ideas behind a flux splitting scheme for solving a non-linear hyperbolic system of equa-

tions,
U;+ F(U), =0

a) Show that a vector field w; can be decomposed into

dp

Wi = Ui + 57—
6:101-

where u is is divergence free and parallel to the boundary.

b) Apply this to the Navier-Stokes equations, show that the pressure term disappears and recover an
equation for the pressure from the gradient part.

From the differential form of the Navier-Stokes equations obtain

a) the Navier-Stokes equations in integral form used in finite-volume discretizations,

b) a variational form of the Navier-Stokes equations used in finite-element discretizations.

a) Write down the appropriate function spaces for the pressure and velocity used to define weak
solutions to the Navier-Stokes equations.

b) Explain the concept of essential and natural boundary conditions.

a) How is a finite-element approximation defined?

b) Explain how to convert a FEM discretization to an algebraic problem, e.g. that the Navier-Stokes

equations yield
vK+Cu) G u\ _ (f
GT 0 p /) L0

a) By choosing z;, = uy, in the finite element approximation of the Stokes problem, show that any
Galerkin velocity solution is stable.

b) Describe and interpret the LBB condition.



20.

21.

22.

23.

24.

25.

26.

27.

Choice of elements. Discrete elements pairs
a) constant pressure-bilinear velocities,
b) the Taylor-Hood pair,

c) a stable choice with piecewise linear velocities.

)
a) Derive the finite volume (FV) discretization on arbitrary grids of the continuity equation (Qu,;/dxz; =
)

=)

)

b) derive the FV discretization for Laplace equation on a Cartesian grid,

c¢) show that both are equivalent to a central difference approximation for Cartesian grids.

Derive the finite element (FEM) discretization for Laplace equation on a Cartesian grid and show
that it is equivalent to a central difference approximation.

Iterative techniques for linear systems.

a) Define Gauss-Seidel iterations for the Laplace equations,

b) Define the 2-level multigrid method for the Laplace equation,

State the difficulties associated with the the finite-volume discretizations of the Navier-Stokes equa-
tions on a colocated grid? and show the form of the spurious solution which exist.

a) Define an appropriate staggered grid that can be used for the discretization of the Navier-Stokes
equations,
b) write down the FV discretization of the Navier-Stokes equations on a staggered cartesian grid,

¢) discuss how to treat noslip and inflow/outflow boundary conditions.

Time dependent flows.

a) Define a simple projection method for the time dependent Navier-Stokes equations

ilo) (5 5) ()= (7)

b) show in detail the equation for the pressure to be solved at each time step and discuss the boundary
conditions for the pressure.
Time step restriction for Navier-Stokes solutions.

a) Motivate the use of an appropriate form of the advection-diffusion equation as a model equation
for stability analysis,

b) derive the time step restrictions for the 1D version of that equation,

c) state the 2D equivalent of that restriction.
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